
Yasir Mahmood- PhD
- PostDoc at Paderborn University
Yasir Mahmood
- PhD
- PostDoc at Paderborn University
Computational (Parameterized) complexity, Mathematical Logic, Abductive reasoning, Argumentation, Database repairs
About
28
Publications
532
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
42
Citations
Introduction
Abductive reasoning, Argumentation, Logic of dependence and independence
Complexity theory, Parameterised complexity theory, Efficient Algorithms
Current institution
Publications
Publications (28)
The connection between inconsistent databases and Dung's abstract argumentation framework has recently drawn growing interest. Specifically, an inconsistent database, involving certain types of integrity constraints such as functional and inclusion dependencies, can be viewed as an argumentation framework in Dung's setting. Nevertheless, no prior w...
We study consistent query answering via different graph representations. First, we introduce solution-conflict hypergraphs in which nodes represent facts and edges represent either conflicts or query solutions. Considering a monotonic query and a set of antimonotonic constraints, we present an explicit algorithm for counting the number of repairs s...
argumentation is a popular toolkit for modeling, evaluating, and comparing arguments. Relationships between arguments are specified in argumentation frameworks (AFs), and conditions are placed on sets (extensions) of arguments that allow AFs to be evaluated. For more expressiveness, AFs are augmented with acceptance conditions on directly interacti...
argumentation is a popular toolkit for modeling, evaluating, and comparing arguments. Relationships between arguments are specified in argumentation frameworks (AFs), and conditions are placed on sets (extensions) of arguments that allow AFs to be evaluated. For more expressiveness, AFs are augmented with \emph{acceptance conditions} on directly in...
Argumentation is a well-established formalism for nonmonotonic reasoning, with popular frameworks being Dung’s abstract argumentation (AFs) or logic-based argumentation (Besnard-Hunter’s framework). Structurally, a set of formulas forms support for a claim if it is consistent, subset-minimal, and implies the claim. Then, an argument comprises suppo...
We discover a connection between finding subset-maximal repairs for sets of functional and inclusion dependencies, and computing extensions within argumentation frameworks (AFs). We study the complexity of existence of a repair, and deciding whether a given tuple belongs to some (or every) repair, by simulating the instances of these problems via A...
In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analog of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We focu...
Knowledge bases are widely used for information management, enabling high-impact applications such as web search, question answering, and natural language processing. They also serve as the backbone for automatic decision systems, e.g., for medical diagnostics and credit scoring. As stakeholders affected by these decisions would like to understand...
We study the expressivity and the complexity of various logics in probabilistic team semantics with the Boolean negation. In particular, we study the extension of probabilistic independence logic with the Boolean negation, and a recently introduced logic FOPT. We give a comprehensive picture of the relative expressivity of these logics together wit...
We give a comprehensive account on the parameterized complexity of model checking and satisfiability of propositional inclusion and independence logic. We discover that for most parameterizations the problems are either in FPT or paraNP-complete.KeywordsPropositional LogicTeam SemanticsModel checkingSatisfiabilityParameterized Complexity
Argumentation is a well-established formalism for nonmonotonic reasoning and a vibrant area of research in AI. Claim-augmented argumentation frameworks (CAFs) have been introduced to deploy a conclusion-oriented perspective. CAFs expand argumentation frameworks by an additional step which involves retaining claims for an accepted set of arguments....
We study the expressivity and the complexity of various logics in probabilistic team semantics with the Boolean negation. In particular, we study the extension of probabilistic independence logic with the Boolean negation, and a recently introduced logic FOPT. We give a comprehensive picture of the relative expressivity of these logics together wit...
In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analogue of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We fo...
Argumentation is a well-established formalism dealing with conflicting information by generating and comparing arguments. It has been playing a major role in AI for decades, now. In logic-based argumentation, we explore the internal structure of an argument. Informally, a set of formulas is the support for a given claim if it is consistent, subset-...
In this paper, we investigate the parameterized complexity of model checking for Dependence and Independence logic, which are well studied logics in the area of Team Semantics. We start with a list of nine immediate parameterizations for this problem, namely the number of disjunctions (i.e. splits)/(free) variables/universal quantifiers, formula-si...
Dependence Logic was introduced by Jouko Väänänen in 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parameterisations with respect to central decision problems. The model checking problem (MC) of PDL is NP-complete (Ebbing and Lohmann, SOFSEM 2012). The subject of this research is to identify a list of param...
In this paper, we investigate the parameterized complexity of model checking for Dependence Logic which is a well studied logic in the area of Team Semantics. We start with a list of nine immediate parameterizations for this problem, namely: the number of disjunctions (i.e., splits)/(free) variables/universal quantifiers, formula-size, the tree-wid...
In this paper, we investigate the parameterized complexity of model checking for Dependence Logic which is a well studied logic in the area of Team Semantics. We start with a list of nine immediate parameterizations for this problem, namely: the number of disjunctions (i.e., splits)/(free) variables/universal quantifiers, formula-size, the tree-wid...
Argumentation is a widely applied framework for modeling and evaluating arguments and its reasoning with various applications. Popular frameworks are abstract argumentation (Dung’s framework) or logic-based argumentation (Besnard-Hunter’s framework). Their computational complexity has been studied quite in-depth. Incorporating treewidth into the co...
In this work we analyse the parameterised complexity of propositional inclusion (PINC) and independence logic (PIND). The problems of interest are model checking (MC) and satisfiability (SAT). The complexity of these problems is well understood in the classical (non-parameterised) setting. Mahmood and Meier (FoIKS 2020) recently studied the paramet...
Logic-based argumentation is a well-established formalism modeling nonmonotonic reasoning. It has been playing a major role in AI for decades, now. Informally, a set of formulas is the support for a given claim if it is consistent, subset-minimal, and implies the claim. In such a case, the pair of the support and the claim together is called an arg...
Logic-based argumentation is a well-established formalism modelling nonmonotonic reasoning. It has been playing a major role in AI for decades, now. Informally, a set of formulas is the support for a given claim if it is consistent, subset-minimal, and implies the claim. In such a case, the pair of the support and the claim together is called an ar...
Abductive reasoning is a non-monotonic formalism stemming from the work of Peirce. It describes the process of deriving the most plausible explanations of known facts. Considering the positive version, asking for sets of variables as explanations, we study, besides the problem of wether there exists a set of explanations, two explanation size limit...
In this paper, we initiate a systematic study of the parameterised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of Väänänen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parameterisations with respect to the central decision problems. The model checking pr...
In this paper, we initiate a systematic study of the parameterised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of Väänänen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parameterisations with respect to the central decision problems. The model checking pr...
Abductive reasoning is a non-monotonic formalism stemming from the work of Peirce. It describes the process of deriving the most plausible explanations of known facts. Considering the positive version asking for sets of variables as explanations, we study, besides asking for existence of the set of explanations, two explanation size limited variant...
Abductive reasoning is a non-monotonic formalism stemming from the work of Peirce. It describes the process of deriving the most plausible explanations of known facts. Considering the positive version asking for sets of variables as explanations, we study, besides asking for existence of the set of explanations, two explanation size limited variant...
In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checkin...