
Bug Reports Evolution in Open Source Systems

Wajdi Aljedaani1 and Yasir Javed2,3

1 Al-Kharj College of Technology, Al-Kharj, Saudi Arabia,
2 Network Security Research Group, Faculty of Computer Science and Information

Technology,Universiti Malaysia Sarawak,
3 Prince Sultan University, Riyadh, Saudi Arabia
waljedaani@tvtc.gov.sa, yjaved@psu.edu.sa

Abstract. Open Source Software communities usually utilize open bug
reporting system to enable users to report and fix bugs. In addition, the
lifetime of most open source system stays for long periods of time. In
this work, we comprehensively examine the evolution of bug reports in
four different open source systems from various languages. The selected
project are analyzed since 2004 in order to find how many bugs are
reported compared to their resolution. We report our results and some
recommendations to the open source community.

Keywords: Bug repository, bug report, open-source system bugs,

1 Introduction

Large software systems are becoming essential to people daily lives. A big por-
tion of these software systems is attributed to their maintenance. Several studies
demonstrated that more than 90% of the software development cost is dedicated
to maintenance and evolution tasks [1]. With a huge number of software systems,
understanding and fixing bugs come to be a puzzling task. As bug reports (BRs)
can facilities useful information to fix bugs, researchers have focused on how to
leverage them to ease the task of fixing these bugs. The bug reports quality is
very essential in easing the fix for that bug. Hooimeijer and Weimer [2] formed a
descriptive model for bug reports lifetime. Bettenburg et al. [3] examined what
makes a good bug report. Several researchers also explored different aspects of
bug reports such as duplicate detection [4], fixer recommendation [5], feature
prediction [6], and bug localization [7]. Bhattacharya et al. [8] investigated the
fixing time of bug in Android apps. They studied both quality of bug reports
and the bug-fixing process. A large amount of the software maintenance is at-
tributed to bug fixing. Normally, bugs are reported, fixed, verified and closed.
Nevertheless, in some scenarios, bugs have to be re-opened, which will increase
maintenance costs, degrade the overall user-perceived quality of the software and
lead to unnecessary rework.

Bug fixing is a very important essential activity in software development and
maintenance. Bugs are reported, recorded, and managed in bug tracking sys-
tems such as Bugzilla. A bug report contains many fields, which provide insights



into the bug and help in fixing it. Open source software (OSS) development is
a collaborative large team activity contributed by many globally distributed de-
veloper community. Many open source software teams depend on freeware tools
to plan, code, test, track-report-fix bugs and market product(s). Open source
projects embrace open bug repositories such as Bugzilla to support its devel-
opment and maintenance in managing and maintaining bugs. Geographically-
distributed users and developers can report software bugs. This will help in
addressing these bug reports. In this way, open source software is iteratively
developed and the quality of the produced software can be improved [4]. A bug
triage is the person who will decide to whom a bug reported is assigned.

There is a number of reasons for bugs in open source systems but their resolu-
tion requires a proper attention from developers and contributors of the project.
In order to understand how bugs are reported over time and how bugs are re-
solved the authors tend to perform this research. This research will also highlight
the time taken to resolve the bugs that might vary from days to months but in
some case more than a certain number of years. The authors will also propose
a model to avoid a situation where a low priority bug always sits unresolved.
Sometimes bugs are often misreported and thus require no attention, this study
will also look into how many of this kind of case exists.

2 Literature review

A number of researchers have studies the qualitative analysis of bug repositories
on a survey, and open software system [9], [10], [11], [12]. Zaman et al. [13]
examined bugs performance in two software systems Firefox and chrome to study
the collaboration among project team members to identify performance bugs.
Their investigation centered done on Firefox for bugs that on Firefox and Firefox
core component, and the entire bug reports that were submitted to chrome
system.

Banerjee et al. [9] studied two bug repositories of Mozilla and Eclipse in order
to compare the similarities and differences between each of them. Their goal was
to evaluate user behavior, the structure of the repository and the type of bugs.
They also looked into the duplicating groups as well as the frequency of the re-
ported bugs. Our study is similar to their in the frequency of reported bug. They
concentrated only on two open source software Mozilla and Eclipse, however, we
studied four open source software Ant, K3B, Kate, and OpenSSH. We analyzed
the evolution of bug repository for these projects over the time reporting bug
per year. Bugs evolve over time and in order to make them maintainable and
making sure that they stay with passage over time require the resolution of bugs
as mentioned by [14]. The authors in [15] worked in the classification of bugs in
order to find out the impact of bugs but were limited to manual checking and
only Apache projects. The authors in [16] have worked on the system of bounty
for awarding problem solvers to award them with some gifts or monetary values.
It also highlights the need for funding for open source projects to sustain in the
market and thus this study will highlight the issues in terms of days to resolve



the project. It will also highlight that commitment in projects make the project
running else open source projects community consist of a number of project but
are not being used due to lack of support.

3 Bug Tracking System

When a developer or a user encountered a bug while using the software or wants
to request an enhancement, he or she usually open a bug report in the open
bug repository. Many open bug repositories (e.g., Bugzilla, Jira, Gnats, and
Trac) have been adopted in open source projects. We only explore projects that
use Bugzilla as their bug tracking system. This Section introduces background
material necessary for this work.

In Bugzilla, bugs are kept in the form of bug reports which consist of prede-
fined fields, text description, and attachments. Bugzilla keeps a record of several
information about bug reports in its database. The fields are usually found are:

E Bug ID: Unique identifier for bug reports.
E Description: Textual description of the bug.
E Opened: Date of the report.
E Status: Status of the report. (new, assigned, reopened, needinfo, verified,

closed, resolved and unconfirmed).

E Resolution: Action to be performed on the bug (obsolete, invalid, incomplete,
notgnome, notabug, wontfix, and fixed.

E Assigned: Name and/or e-mail address of the developer in charge of fixing
this bug.

E Priority: Urgency of the error. (immediate, urgent, high, normal and low).

E Severity: How this error affects the use and development of the software.
(blocker, critical, major, normal, minor, trivial and enhancement).

E Reporter: Name and e-mail address of the bug reporter.
E Product: Software that contains the bug.
E Version: Version number of the product.
E Component: a Minor component of the product.
E Platform: Operating system or architecture where the error appeared.

Figure 1 shows the bug life cycle adapted form Bugzilla, whenever a new
bug is reported, it report is forwarded to the developer for deciding whether the
bugs need further details or whether it will be fixed. Once the bug is accepted
the Bugs is fixed and the report goes to the reporter. If the solution is accepted
then the bug is considered to be resolved else the bug is reopened and goes back
to developer.

4 Data Collection

For a selected software program, we extracted the vital data from the bug repos-
itory. From that point, we identify the bug reports that were relevant to our soft-
ware system and perform an extraction of metric for the entire bug reports in



Fig. 1. Bugs life cycle as reported by Bugzilla

all of the four projects. This research concentrated on the bug reports metrics to
identify the similarities and differences between each project in our dataset. We
gathered the data of all bug reports in all projects that were submitted to bug
repository Bugzilla in the period from 2004 to 2017 and retrieved almost 13,047
bugs. In this study, we collect all types of bugs, for example, closed, opened,
wont fix, etc. First, we check all the available bug repositories for all examined
software system in the Bugzilla bug tracker website. For each software system,
we extract the essential data from the bug repository (i.e., bugID, description,
status, resolution, priority, and reporter). As shown in Figure 2 we have used
Bugzilla from three major sources (1) Eclipse (2) KDE and (3) OpenSSH. This
research then extracted all the bugs to conduct the study.

Fig. 2. Process of how this reserach is conducted

5 Research Methodology

This research focused on open source projects from various languages that are
Ant [17], K3B[18], Kate [19] and OpenSSH [20]. We have looked over these
projects from their first bug reporting year. These projects are evaluated in
term of Reported bugs, Number of unsolved bugs, Number of latest commits,
Number of Duplicated Bugs and Average time to fix the bugs.

Each project bug has been extracted over the years till date using the crawlers
built by us. It is seen that OpenSSH started with the highest number of bugs



but has decreased a lot to 213 while for ANT has reduced the number of bugs to
half. The most number of bugs were for ANT was 2402 in 2008. Table 1 shows
the detail about the system that was selected.

System Platform Language #Bug Reports

Apache Ant Java 3,608
KDE K3B C++ 1,838

KDE Kate C++ 4,902
OpenSSH OpenSSH Portable C 2,699

Total 13,047
Table 1. Project details along with their Bugs.

Table 2 shows the number of bugs collected for each project from the year
2004 to 2017 in terms of a total number of bugs for each year and number of
fixed bugs for each year.

Year # Bug Reports # Fixed Bugs
Ant K3B Kate OpenSSH Ant K3B Kate OpenSSH

2004 102 7 366 764 94 0 209 379

2005 49 272 171 32 44 115 89 16

2006 21 410 99 263 17 265 40 129

2007 10 105 149 18 3 55 77 4

2008 2402 72 163 216 1044 25 77 137

2009 252 88 310 103 106 56 111 43

2010 175 434 696 157 87 43 299 94

2011 96 59 534 164 30 25 217 80

2012 112 29 570 22 50 4 214 1

2013 97 13 400 48 42 5 151 21

2014 133 224 293 89 72 11 123 35

2015 60 22 404 279 14 0 103 118

2016 45 51 450 331 21 15 102 147

2017 54 52 297 213 13 21 40 2
Table 2. The Bugs Reported and Bugs Solved since 2004 for all the projects.

6 Analysis and Discussion

As shown in Figure 3, the total numbers of resolved bugs are mostly done for
Ant except for the year 2008, where actually the numbers of reported bugs were
too much. A number of solved bugs reveal that resolution and dedication of
committers with the project and overall success of the project.



Fig. 3. Number of resolved bugs over the year



Figure 3 shows only the bugs resolved, but most of these bugs were resolved
in short time while other were closed as they were wrongly reported. As shown
in Table 3, most numbers of bugs are not open except ANT that has 10 opened
in 2009. This shows that committers tend to solve most bugs and fix them. [14]
also shows that bugs are sometimes misreported and requires a proper mech-
anism for developers to close this kind of issues. It also shows that some bugs
need not be fixed and these fixings requires either some additional effort and
will be fixed in upcoming releases. Except Ant and Kate, OpenSSH and K3B
have less won’t fixed bugs referring to their popularity and their commitment to
solve problem. Moreover, the community in OpenSSH is big it also refers to the
quick solution of bugs as more dedication is offered by a most number of peoples.

Year # Opened Bugs # Won’t Fixed Bugs
Ant K3B Kate OpenSSH Ant K3B Kate OpenSSH

2004 0 0 0 0 1 0 17 65

2005 0 0 0 1 1 5 11 1

2006 0 0 0 1 0 11 5 23

2007 0 0 0 0 1 1 11 0

2008 9 0 0 0 220 1 16 32

2009 10 0 0 1 11 0 7 15

2010 1 0 0 1 6 0 20 18

2011 1 0 0 2 6 0 43 27

2012 1 0 0 0 9 0 101 1

2013 1 0 0 2 21 0 25 1

2014 3 2 1 1 5 4 18 0

2015 1 0 0 7 9 0 113 19

2016 1 2 6 2 0 1 45 40

2017 2 1 3 2 4 0 7 1
Table 3. Number of opened as well as won’t fixed bugs.

A number of duplicated bugs refers to the point where bugs might be reported
differently by two or more people. The opened bugs are referred to committers
and they mostly decide whether the bug is duplicate or not. A number of dupli-
cated bugs also refers to how many people faced the same issue and may require
more attention than other bugs as shown in Figure 4.

It is seen that ANT has the only spike of high duplicated bugs with Kate
have the same issue at number of years but is tend to reduce in current years that
shows the awareness among developers regarding the solution of the problems
as shown in Equation 1. Equation 1 allows to find a predictor based on trend
about number duplicated bugs in upcoming years.

y = −25.91 lnx + 60.98 (1)



Fig. 4. The number of duplicated bugs over the years for all four projects

A total number of commits represent the dedication of developers and con-
tributors dedication toward the success of the project as shown in Figure 5,
shows the number of bug reporters has decreased over the current years that
also make sure about the project stability and less number of bugs. It may also
depict that project are being fixed consistently and thus require less number of
bugs.

The number of days per solution to bug varies from 0 to all four projects to
above 5K days that may be due to non-priority of the bug or the bugs require
fixing some menu issues and that is solved after the solution of each bug. The
average of each bug solving is highest in ANT that is around 1125 days while
lowest in K3B that means each bug is solved in a less than year calendar while
Kate is also solved in an year as shown in Table 4.

Platform #Minimum #Average #Maximum

Ant 0 1125.061 4721
K3B 0 274.54 2854

Kate 0 370.22 4857
OpenSSH 0 572.94 5470

Table 4. Summary of fixing time of the projects (in #days).

While looking at above results it is proposed that a complete reporting should
be made that can help with following:

– Auto classification of bug when reported. This will require two approaches
to be followed (1) the proposed system can ask reported to bug to select



Fig. 5. The number of bug reporters each year combined for a project

the type of bug (2) second and most important approach is text mining and
auto classification of bug according the reported issue. This means that whole
reported text will be matched against bug classification corpus already built
and will be assigned a weight for each category. The category with highest
weight will be selected.

– Assigning it to relevant developer automatically that means checking about
which developer can fix similar kind of bug, which developer have less load,
which developer needs less time to fix the bug thus will be dependent on
number of factors and all will be taken into account.

– Assigning the time-line to fix the bug depending on its category like a pro-
grammatic ally bug error will have a small fixing time compared to cosmetic
changes.

– Propose developers already known solution for the reported kind of bug in
order to expedite the process. This will help the developers in doing the quick
fix and will allow the developer to accept or reject the solution in order to
help other developers whether the suggested solution is better or not.

– Once the bug is solved, a message about fixing the bug will be sent to
reported in order to verify and close the ticket. This is will an accountability
and easy quality assurance system.

7 Conclusion

This paper looks into the number of systems that are Open Source and popularly
used by industry and academia. The authors selected top most used system from
different categories all built in different languages. These systems are seen for
their number of bug reported by people, the time it takes to solve the bugs and



how many bugs are solved over the calendar year. The bugs reporting show that
there is a number of people that are using the system and efficiently contributing
to testing an open source system that shows the reliability of the system. If the
bugs are not solved in time the system fails and lacks interests but continuous
development and contribution assures that selected system are still in use since
2004. The authors suggest making a system in order to highlight the bugs to
committers and contributors. The system will help in classification of bugs as
well as make sure that none of the bugs is active and unresolved in a calendar
year. The authors introduced an aging concept for bugs so that the lowest priority
bugs make a high priority to solve the problem of overlooking. In future, authors
plan to look into the bugs and classify them according to their type thus making
the proposed system reality. The system will automatically look for solution
using crawlers to find the right kind of solution.



Bibliography

[1] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao
Ohira, Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto. Studying
re-opened bugs in open source software. Empirical Software Engineering,
18(5):1005–1042, 2013.

[2] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In
Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pages 34–43. ACM, 2007.

[3] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just,
Adrian Schroter, and Cathrin Weiss. What makes a good bug report? IEEE
Transactions on Software Engineering, 36(5):618–643, 2010.

[4] Anahita Alipour, Abram Hindle, and Eleni Stroulia. A contextual approach
towards more accurate duplicate bug report detection. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages 183–192.
IEEE Press, 2013.

[5] Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. Dretom: Developer rec-
ommendation based on topic models for bug resolution. In Proceedings of
the 8th international conference on predictive models in software engineer-
ing, pages 19–28. ACM, 2012.

[6] Yuan Tian, David Lo, and Chengnian Sun. Information retrieval based
nearest neighbor classification for fine-grained bug severity prediction. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages
215–224. IEEE, 2012.

[7] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry.
Improving bug localization using structured information retrieval. In Au-
tomated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 345–355. IEEE, 2013.

[8] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan
Koduru. An empirical analysis of bug reports and bug fixing in open source
android apps. In Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, pages 133–143. IEEE, 2013.

[9] Sean Banerjee, Jordan Helmick, Zahid Syed, and Bojan Cukic. Eclipse
vs. mozilla: A comparison of two large-scale open source problem report
repositories. In High Assurance Systems Engineering (HASE), 2015 IEEE
16th International Symposium on, pages 263–270. IEEE, 2015.

[10] Minhaz F Zibran, Farjana Z Eishita, and Chanchal K Roy. Useful, but
usable? factors affecting the usability of apis. In Reverse Engineering
(WCRE), 2011 18th Working Conference on, pages 151–155. IEEE, 2011.

[11] Andrew J Ko and Parmit K Chilana. Design, discussion, and dissent in
open bug reports. In Proceedings of the 2011 iConference, pages 106–113.
ACM, 2011.

[12] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiß, Rahul
Premraj, and Thomas Zimmermann. Quality of bug reports in eclipse. In



Proceedings of the 2007 OOPSLA workshop on eclipse technology eXchange,
pages 21–25. ACM, 2007.

[13] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul
Premraj, and Thomas Zimmermann. What makes a good bug report? In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of software engineering, pages 308–318. ACM, 2008.

[14] Yasir Javed and Mamdouh Alenezi. Defectiveness evolution in open source
software systems. Procedia Computer Science, 82:107–114, 2016.

[15] Jijie Wang, Mark Keil, Lih-bin Oh, and Yide Shen. Impacts of organiza-
tional commitment, interpersonal closeness, and confucian ethics on will-
ingness to report bad news in software projects. Journal of Systems and
Software, 125:220–233, 2017.

[16] Md Rejaul Karim, Akinori Ihara, Xin Yang, Hajimu Iida, and Kenichi Mat-
sumoto. Understanding key features of high-impact bug reports. In Em-
pirical Software Engineering in Practice (IWESEP), 2017 8th International
Workshop on, pages 53–58. IEEE, 2017.

[17] Apache ant - welcome. http://ant.apache.org/. (Accessed on 02/11/2018).
[18] Github - kde/k3b: K3b is a full-featured cd/dvd/blu-ray burning and

ripping application. https://github.com/KDE/k3b, . (Accessed on
02/11/2018).

[19] Github - kde/kate: An advanced editor component which is used
in numerous kde applications requiring a text editing component.
https://github.com/KDE/kate, . (Accessed on 02/11/2018).

[20] Openssh. https://www.openssh.com/. (Accessed on 02/11/2018).


