Yaser Hashem

Yaser Hashem
Institut Européen De Chimie Et Biologie · ARNA, U1212

PhD

About

84
Publications
13,258
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,994
Citations
Additional affiliations
May 2014 - present
French National Centre for Scientific Research
Position
  • Group
January 2010 - March 2014
Howard Hughes Medical Institute
Position
  • Research Associate

Publications

Publications (84)
Preprint
Full-text available
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors currently proliferating among human pathogens that provide resistance against clinically important ribosome-targeting antibiotics. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure and...
Article
Kinetoplastids are unicellular eukaryotic parasites responsible for human pathologies such as Chagas disease, sleeping sickness or Leishmaniasis, caused by Trypanosoma cruzi, Trypanosoma brucei, and various Leishmania spp., respectively. They harbor a single large mitochondrion that is essential for the survival of the parasite. Interestingly, most...
Article
Full-text available
Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome...
Article
Full-text available
Translation initiation on structured mammalian mRNAs requires DHX29, a DExH protein that comprises a unique 534-aa-long N-terminal region (NTR) and a common catalytic DExH core. DHX29 binds to 40S subunits and possesses 40S-stimulated NTPase activity essential for its function. In the cryo-EM structure of DHX29-bound 43S preinitiation complexes, th...
Preprint
Full-text available
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors currently proliferating among human pathogens that provide resistance against clinically important ribosome-targeting antibiotics. Here, we combine genetic and structural approaches to determine the activity of the streptococcal ARE ABC-F protein MsrD on the ribosome and its regulati...
Article
Full-text available
Cryo-electron microscopy is now used as a method of choice in structural biology for studying protein synthesis, a process mediated by the ribosome machinery. In order to achieve high-resolution structures using this approach, one needs to obtain homogeneous and stable samples, which requires optimization of ribosome purification in a species-depen...
Article
Plants make up by far the largest part of biomass on Earth. They are the primary source of food and the basis of most drugs used for medicinal purposes. Similarly to all eukaryotes, plant cells also use mitochondria for energy production. Among mitochondrial gene expression processes, translation is the least understood; although, recent advances h...
Article
The folding of ribosomal RNAs is central to the biogenesis of the mitoribosome and is a complex, stepwise process. Five recent cryo-EM studies detail the late steps of the folding and maturation of the human mitoribosomal large subunit RNA that forms the catalytic core of the ribosome: the peptidyl transferase center (PTC).
Article
Full-text available
Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus finding new molecular targets is imperative. Aminoacyl-tR...
Preprint
Full-text available
Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome...
Chapter
Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around ‘hot spots’ involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size...
Article
Full-text available
Canonical mRNA translation in eukaryotes begins with the formation of the 43S pre-initiation complex (PIC). Its assembly requires binding of initiator Met-tRNAiMet and several eukaryotic initiation factors (eIFs) to the small ribosomal subunit (40S). Compared to their mammalian hosts, trypanosomatids present significant structural differences in th...
Article
Full-text available
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot...
Article
Full-text available
Significance Kinetoplastids is a group of flagellated unicellular eukaryotic parasites including human pathogens, such as Trypanosoma cruzi and Leishmania spp., etiologic agents of Chagas disease and leishmaniasis. They are potentially lethal, affecting more than 20 million people worldwide. Therapeutic strategies are extremely limited and highly t...
Preprint
Full-text available
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRES) do not require initiator tRNA, an AUG codon or initiation factors, and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I...
Article
Full-text available
Mitochondria are the powerhouses of eukaryotic cells and the site of essential metabolic reactions. Complex I or NADH:ubiquinone oxidoreductase is the main entry site for electrons into the mitochondrial respiratory chain and constitutes the largest of the respiratory complexes. Its structure and composition vary across eukaryote species. However,...
Article
Full-text available
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide co...
Preprint
Full-text available
Kinetoplastids are unicellular eukaryotic parasites responsible for human pathologies such as Chagas disease, sleeping sickness or Leishmaniasis (1). They possess a single large mitochondrion, essential for the parasite survival (2). In kinetoplastids mitochondrion, most of the molecular machineries and gene expression processes have significantly...
Article
Full-text available
The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs¹. These organelles have a bacterial origin and were acquired during an early endosymbiosis event². Mitochondria possess specialized gene expression systems composed of various molecular machines, including the mitochondrial ribosomes (mitoribosomes)...
Article
Full-text available
In higher eukaryotes, the mRNA sequence in the direct vicinity of the start codon, called the Kozak sequence (CRCCaugG, where R is a purine), is known to influence the rate of the initiation process. However, the molecular basis underlying its role remains poorly understood. Here, we present the cryoelectron microscopy (cryo-EM) structures of mamma...
Article
Mitochondria are endosymbiotic organelles responsible for energy production in most eukaryotic cells. They host a genome and a fully functional gene expression machinery. In plants this machinery involves hundreds of pentatricopeptide repeat (PPR) proteins. Translation, the final step of mitochondrial gene expression is performed by mitochondrial r...
Preprint
Full-text available
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide co...
Preprint
Full-text available
Mitochondria are the powerhouses of eukaryotic cells and the site of essential metabolic reactions. Their main purpose is to maintain the high ATP/ADP ratio that is required to fuel the countless biochemical reactions taking place in eukaryotic cells. This high ATP/ADP ratio is maintained through oxidative phosphorylation (OXPHOS). Complex I or NAD...
Article
Full-text available
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide co...
Article
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide co...
Preprint
Full-text available
The 43S preinitiation complex (PIC) assembly requires establishment of numerous interactions among eukaryotic initiation factors (eIFs), Met-tRNAiMet and the small ribosomal subunit (40S). Owing to several differences in the structure and composition of kinetoplastidian 40S compared to their mammalian counterparts, translation initiation in trypano...
Preprint
Full-text available
In eukaryotes, cap-dependent translation initiation represents one of the most complex processes along the mRNA translation regulation pathway. It results in the formation of several transient complexes involving over a dozen eukaryotic initiation factors (eIFs) and culminates in the accommodation of the start codon at the P-site of the small ribos...
Preprint
Full-text available
The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs. These organelles have a bacterial origin and were acquired during an early endosymbiosis event. Mitochondria possess specialized gene expression systems composed of various molecular machines including the mitochondrial ribosomes (mitoribosomes). M...
Article
Full-text available
Mitochondria are responsible for energy production through aerobic respiration, and represent the powerhouse of eukaryotic cells. Their metabolism and gene expression processes combine bacterial-like features and traits that evolved in eukaryotes. Among mitochondrial gene expression processes, translation remains the most elusive. In plants, while...
Article
Translation initiation in eukaryotes is a complex multistep process that requires the interplay of over a dozen protein factors together with the small ribosomal subunit (SSU) and the mRNA. During all these steps, the SSU serves as a platform for attachment, displacement and release of different molecules. In recent years, the great number of high-...
Article
Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at...
Article
Kinetoplastids are potentially lethal protozoan pathogens affecting more than 20 million people worldwide. There is a critical need for more specific targets for the development of safer anti-kinetoplastid therapeutic molecules that can replace the scarce and highly cytotoxic current drugs. The kinetoplastid ribosome represents a potential therapeu...
Article
Full-text available
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, erro...
Article
In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress-induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of...
Article
Full-text available
For many years initiation and termination of mRNA translation have been studied separately. However, a direct link between these two isolated stages has been suggested by the fact that some initiation factors also control termination and can even promote ribosome recycling; i.e. the last stage where post-terminating 80 S ribosomes are split to star...
Article
Full-text available
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence...
Chapter
Protein synthesis is a universally conserved process that is assured by a macromolecule called the ribosome (3.4 – 4.5 Mda). In spite of the conservation of the ribosome among all orders of life, its structure presents significant differences between eukaryotes and bacteria. Bacterial ribosome, smaller than its eukaryotic counterpart, presents spec...
Article
Full-text available
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence...
Article
Staphylococcus aureus is a major opportunistic and versatile pathogen. Because the bacteria rapidly evolve multi-resistances towards antibiotics, there is an urgent need to find novel targets and alternative strategies to cure bacterial infections. Here, we provide a brief overview on the knowledge acquired on S. aureus ribosomes, which is one of t...
Article
mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l...
Article
Full-text available
The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provid...
Article
Full-text available
Plasmodium falciparum, the mosquito-transmitted Apicomplexan parasite, causes the most severe form of human malaria. In the asexual blood-stage, the parasite resides within erythrocytes where it proliferates, multiplies and finally spreads to new erythrocytes. Development of drugs targeting the ribosome, the site of protein synthesis, requires spec...
Article
Full-text available
During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 1...
Article
Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair...
Chapter
Full-text available
Single-particle cryo-electron microscopy has the immense advantage over crystallography in being able to image frozen-hydrated biological complexes in their “native” state, in solution. For years the ribosome has been the benchmark sample for particles without symmetry. It has witnessed steady improvement in resolution from the very first single-pa...
Article
Full-text available
Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, energy-dependent translational throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cr...
Article
Full-text available
ABC-F proteins have evaded functional characterization even though they compose one of the most widely distributed branches of the ATP-binding cassette (ABC) superfamily. Herein, we demonstrate that YjjK, the most prevalent eubacterial ABC-F protein, gates ribosome entry into the translation elongation cycle through a nucleotide-dependent interacti...
Article
Full-text available
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å res...