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Abstract—Energy efficient object detection and im-
age transmission are one of the key issues in Wire-
less Multimedia Sensor Networks (WMSN). Recent
approaches in WMSN propose in-node object detection
and tracking algorithms. However, a little effort has
been made to effectively detect object presence and
absence in images in WMSN. Since object detection
has a direct relation with image transmission, therefore
effective object detection algorithm would provide a
reduction in false transmission of image information.
In this paper, a novel object presence model and
image transmission scheme is proposed for WMSN.
This scheme uses the transmission of an image seg-
ments rather than a complete image. It guarantees in-
node energy conservation and minimal image content
transmission to the sink node. The proposed scheme
is evaluated based on in-node energy consumption
and reconstructed image Peak Signal to Noise Ratio
(PSNR). Simulation results show that the proposed ap-
proach saves 95% of the node energy with the received
image PSNR of 46 db as compared to other state of the
art approaches.

Index Terms—Wireless Multimedia Sensor Net-
works, Object detection, Object tracking, Energy con-
servation

I. Symbols and their definition
Symbol Definition
ri(x, y) ith Relaying node coordinates
Ni(x, y) ith Monitoring node coordinates
di,j RF distance between ith and jth node
Vj Battery state of charge of jth node
Bi Background for ith frame
Ii ith current frame
< Information set
P (kL) Probability of Lth intensity pixel having

intensity KL

h(kL) Histogram of Lth intensity pixel having
intensity KL

Pco Pixel Coordinates
Oi Object detection function
δ Standard deviation
µ Mean
I Reconstructed image
E Energy consumption

II. Introduction

THE development in miniaturization technology en-
ables us to integrate heterogeneous sensing de-

vices on one sensing platform. One prolific advantage of
this miniaturization is the availability of Complementary
Metal Oxide Semiconductor (CMOS) cameras and its inte-
gration with traditional Wireless Sensor Networks (WSN),
which transform the WSN to Wireless Multimedia Sensor
Networks (WMSN). This transformation allows to imple-
ment multi-dimensional signal processing algorithms on
these sensing platforms. Consequently, it offers countless
services as compared to the traditional WSN. They can
be used in surveillance, habitat monitoring, traffic control,
intrusion detection, and health care monitoring. Moreover,
they can be used in difficult, unattended and inadequate
resourced areas. However, there are certain limitations
that need to be addressed when developing algorithms
for data processing in WMSN. These are limited memory,
limited processing, narrow bandwidth and limited battery
power [1]. Therefore, the cognition of amendments in
traditional multi-dimensional signal processing techniques
is a primitive step before practical implementation in
WMSN. To be more specific, the inherent energy hungry
visual processing techniques require careful adjustments to
coherently adopt with the stringent constraints offered by
WMSN. To provide this coherency, the work in this paper
focuses on modifying traditional paradigm of data pro-
cessing in WMSN. Specifically, the objective is to prolong
the node lifetime by minimizing the in-node processing
cost. Accordingly, visual object identification and tracking
processes are carried out at the sink node where the
realization of object geometry can enable the remote node
to decide about further operation in its sensing area. To
provide a formal justification of this modification from
image processing perspective, we reveal that background
subtraction provides erroneous results, preferably with
environmental variations and when camera orientation is
deviated from its reference position. This mainly occurs
because of a strong wind blowing, waving trees, shad-
ows, seismic movement, water flowing and illumination
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changes. Eventually, target tracking from image processing
perspective demands continuous isolation of objects from
the background. Therefore, background subtraction and
template matching are typically the healthiest candidates.
Most of the algorithms in WMSN grounded on object
tracking necessitate the in-node processes to be in the
active state for the period in which the target object
remains in the vicinity of the sensing node. This implies a
swift drain out in the available node energy and therefore
in the life time of a sensor node [2].
The main contribution of this work is of two folds. Firstly,
to build robust object appearance detector to detect minor
and major variations in an image and transmit the image
data only when it is required.
Secondly, to remove redundant features from an image to
optimize the reduction in the energy consumption during
data transmission. Additionally, to fit the data in the
available bandwidth keeping accumulative processing cost
as low as possible. For this purpose, an object appearance
model is developed based on spatiotemporal variations in
the image. This model provides energy conservation at the
remote node during acquisition and transmission of visual
data. The rest of the paper is organized as follows: Section
III reviews state of the art work done in WMSN. Section
IV defines the Network Model. SectionV describes the in-
node processing model. Section VI provides simulation
results and finally Section VII concludes the paper.

III. Related Work
Image processing in WSN has gained remarkable inter-

est among research communities recently. The availability
of low cost CMOS camera has made it possible to incorpo-
rate visual sensors with WSN. However, traditional data
and image processing techniques for object detection and
tracking need modifications, in order to enable them to
cope with the aforementioned constraints [1]. This may
include fusion of camera and scalar sensors to achieve
in-node energy conservation [3]. However, effective op-
eration necessitated the development of middleware for
communication between vision module and sensor node
[4]. Since these approaches mainly set the initial stage
for WMSN operation, therefore, low level computer vision
techniques for an object detection and tracking were the
choices to express the energy constraints. In WSN, tar-
get tracking has been achieved using Unscented Kalman
Filter (UKF) [5]. The idea was to maximize the utility
information from a set of sensor nodes in a resource
constrained environment. Target tracking using particle
filter was proposed in [6], [7] and a multi target tracking
algorithm using Bayesian filter was proposed in [8]. These
algorithms were suitable for scalar WSN and cannot be
implemented without modifications for WMSN, where low
processing and simplified object tracking algorithms are
the suitable choice. In [9], an energy aware dynamic object
tracking was proposed using cooperative communication
between scalar and camera nodes. However, the visual in-
formation processing cost was masked and it was assumed
to give accurate results. The amount of data provided

by WMSN nodes facilitated the division of data into
multiple levels of information [10]. This division enabled
a remote node to process information to the extent of
an end user requirement [11]. However, since most of
the WMSN schemes for object tracking proposed back-
ground subtraction scheme as their initial step assuming
a static camera [12]. In such cases, there are chances of
miss-detection and miss-classification. This mainly occurs
because of environmental variations such as illumination
changes [13]. Although, background maintenance scheme
is one solution, however energy conservation is the main
issue in continuous processing of images [14]. Much of the
research work in this area was carried out to get an opti-
mal point so that minimum processing and transmission
energy are required [15]. To get a good tradeoff between
an image quality and transmission energy consumption,
a distributed processing using 2 Dimensional Discrete
Wavelet Transform (2D-DWT) was studied. Images were
decomposed into multiple resolutions using 2D-DWT. A
self-adaptive transmission scheme was proposed to get a
tradeoff between energy consumption and image quality
[16], [17], [18]. Data compression using Discrete Cosine
Transform (DCT) and DWT were performed so that less
energy was consumed during image transmission [19], [20].
However, conventional compression techniques need to be
modified to cope with the low memory and processing
requirements of WMSN.

IV. Network Model
In this section, we enlighten upon the topology of the

network to be used for image transmission purpose. It
encourages to analyze the in-network energy consumption
during the transmission of image frames. As the energy
consumption during an image transmission is always on
the higher side as compared to in-node processing there-
fore, the main aim of introducing topology is to find the
overall energy consumption during the transmission of set
of image frames. Consider a random deployment of WMSN
nodes in the field. Each WMSN node is equipped with
limited resources.We assume that there is no channel im-
pairments in the network. This assumption will be relaxed
in Section V. To reliably transmit an image through the
network and to avoid any collision due to simultaneous
transmission of image information by two or more nodes,
each WMSN nodes in this paper are divided into two
classes:

1) Relaying Node (RN)
2) Monitoring Node (MN)

The network topology is shown in Fig. 1.
Each RN node maintains a Relaying Node Parameter

(RNP) set:

RNP = {ri(x, y)|rj(x, y), Nj(x, y), di,j , Vj ⊂ ri}. (1)

where ri(x, y) is the ith RN node coordinates, rj(x, y) is
the jth RN node coordinate connected to the ith RN node.
Nj represents the number of MN nodes connected to ith

RN node, di,j represents the RF distance between the
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Fig. 1. Network Model

ith and the jth RN node and Vj represents the battery
state of the jth MN node. Each MN node also maintains
a Monitoring Node Parameter (MNP) set:

MNP = {Nj(x, y)|ri(x, y), di,j , Vi ⊂ ri}i 6= j. (2)

where Nj(x, y) is the jth MN coordinates, ri(x, y) is the
ith RN node coordinates connected to the jth MN node.
di,j represents the RF distance between the ith MN node
and the jth RN node and Vi represents the battery state
of the ith RN node. An MN node upon the detection of
any activity transmit its data packet to the nearest RN
node determined by the distance di,j . Each RN node upon
reception of the data packet provides best possible path
for the data packet to the sink node through intermediate
RN nodes. Since coordinates alone cannot determine the
proximity of the two sensor nodes therefore, the distance
is incorporated in (1)and(2). Also, by the inclusion of
distance parameters in (1)and(2), we are able to find the
nearest the relying node to which the monitoring node can
send its information with minimal energy consumption.

V. In-Node Processing Model
To preserve the node energy during image processing

and transmission, the in-node process is modeled using
a saptio-temporal approach. Before proceeding to further
calculations, it is assumed that the camera is initially
static and the environmental variations are monotonically
modeled. An MN node first captures the image of the
scene and stores it in the memory. It also transmits this
image to the sink node so that the image variation at the
corresponding node can be monitored. The stored image
in the MN node is updated with the time by using (3):

Bi = α×Bi−1 + (1− α)× Ii, 0 ≤ α ≤ 1. (3)

where Bi is the background for ith frame Ii, Bi−1 is the
initial background and α control the rate of update. The
background model presented in (3) is affected by several
factors. The major problem arises in setting the value of
α. If the value of α is close to 1 the model will give more
preference to the previous background. In this case, the

Current Image

Fig. 2. Test Image

foreground object if remain static, will take more time in
becoming part of the background. Whereas, if the value
of α is close to 0 the model will give more preference
to update the background using current frame. In this
case, the foreground object if remain static, will take less
time in becoming part of the background. However, in the
proposed approach since the images are transmitted to the
sink node, therefore, if no image is received for a particular
node the sink node assumes that either there is no object
or the object in the area is static considering that the node
is not depleted of energy.

A. Object Detection
The image captured by each MN node is first divided

into four blocks of the same size. Fig. 2 shows an example
image which is divided into four equal blocks. These blocks
have been shown in Fig. 3. It then forms a set < by using
(4).

< = {in|in ∈ Ij , n ≤ 4}. (4)

To detect the appearance of the object in the scene, a
probabilistic approach is proposed. Considering the distri-
bution of pixels in the image by using (5).

P(Ij ,in∈<)(kL) = mL

RT
. (5)

where P(Ij ,in∈<)(kL) is the probability that Lth intensity
pixel having intensity kL occurs in the nth block of jth
frame, mL is the number of occurrence of kL intensity
pixel, RT is the total pixels in the nth block of jth frame,
i.e., RT= RN × CM . If there is any object appear in the
scene, the number of pixels with Lth intensity will change
from mL to m/

L and hence the probability from Pi(kL) to
P
/
i+1(kL):

P
/
(Ij ,in∈<)(kL) = m

/
L

RT
, (6)

4 P(Ij ,in∈<)(kL) =| P(Ij ,in∈<)(kL)− P(Ij−1,in∈<)(kL) | .
(7)
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Block 1 Block 2

Block 3 Block 4

Fig. 3. Image Division into Four Sub-blocks

To simplify calculations, we make use of histogram[21] and
relate it with the above equations:

h(Ij ,in∈<)(kL) = nL, (8)

h(Ij ,in∈<)(kL) = RT × P(Ij ,in∈<)(kL). (9)

In order to calculate the probability we project each his-
togram value to a Gaussian distribution by using (10), (11)
and (12) as:

Ph(Ij,in∈<)(kL) =
1√

2πδ2
e
−1
2δ2 (h(Ij,in∈<)(kL)−µ(h(Ij,in∈<)(kL))),

(10)

µ(h(Ij ,in∈<)(kL)) = 1
L

L−1∑
L=0

h(Ij ,in∈<)(kL), (11)

δ(h(Ij ,in∈<)(kL)) =√∑255
L=0(h(Ij ,in∈<)(kL)− µ(h(Ij ,in∈<)(kL)))2

L− 1 ,
(12)

4P(Ij ,in∈<)(kL) =
L−1∑
L=0
| P(Ij ,in∈<)(kL)−P(Ij−1,in∈<)(kL) | .

(13)
The absolute difference gives a set of threshold values T
for each image block, which are arranged sequentially by
using (14) as:

T = {4P(Ij ,in∈<)(kL)| 4 P(Ij ,in∈<)(kL) ∈ (Ij , in ∈ <)}.
(14)

The resulting value of T is compared with the threshold t
empirically calculated. If the value of T is greater than t
it will indicate the presence of the object in the scene and
vice versa. However, this approach is affected by several
environmental variations, therefore, we logically fused the
value of threshold values T with background subtracted
result. The logical fusion means that the threshold value
T and background subtracted results are combined using
AND operation. The reason is to check if the result of

both the threshold T and background subtracted result
is greater than a predefined threshold t, that is empir-
ically calculated, will trigger the transmission of image.
The selection of possible value of t depends upon the
intended application. For a static camera since the outdoor
changes in the scene are not abrupt, therefore a fix value
of threshold is sufficient, however for abruptly changing
environment or when the scene changes continuously like
in the case when the camera moves in an environment
to track the object, then the value of t needs to be
dynamic [22], [23], [24], [25]. However, in the present case
the camera is static therefore we fix the value of threshold t
to a certain value depending upon our experiments setting.
The background subtracted result will give a conventional
foreground. However, in this approach we count the total
number of pixels participating in the foreground object.
The total number of foreground pixels for each block is
calculated using (15).

Iforeground =
N−1∑
Pco=0

| I(Ij ,in∈<)(Pco)−I(Ij−1,in∈<)(Pco) |> Ith.

(15)
where Pco is the pixel coordinates. Since the presence and
absence of an object is similar to tossing an unbiased coin
therefore we define the following function:

Oi =
{

1, if (T, Iforeground) > t

0, otherwise .
(16)

Once the presence and absence is predicted by the appear-
ance model, the particular area from the whole image is
sent to the 2D-DWT process to further decompose it into
multiple sub-bands. The 2D-DWT is applied using 1D-
DWT in a row and column approach. Afterwards, images
are sent to the sink node in a multi-hop fashion. The in-
node process is shown in the Algorithm 1.

Algorithm 1: In-Node Process
Input : RN = {r1 . . . rn}: Set of RN nodes

connected to ith MN node
Dxd,yd : Sink node location
Fi: Frame captured by Ni node

Output: in = {in| ∈ Fi, n ≤ 4}: Image segment from
ith MN node

Frame Capture & Transmit captureTransmit()
1 capture Fi ;
2 compute < ;
3 compute T and Iforeground;

if (Ti, Iin,foreground) >= t then
4 extract(in ∈ Fi) ;
5 {iLL, iLH , iHL, iHH} = 2D −DWT (in);
6 packetize {iLL, iLH , iHL, iHH} ;
7 transmit {iLL, iLH , iHL, iHH} ;

else
discard Fi
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B. Scene Reconstruction
Once image is received at the sink node, it is then

superimposed on the reference frame received earlier.
Since, in the proposed approach only a portion of the
total image is transmitted therefore the pixel coordinates
are unaltered at the MN node. This helps in efficiently
replacing the pixels in the reference image with a portion
of the transmitted image at the sink node. However, the
pixel values are susceptible to channel distortion due to
the addition of additive noise η.

ir(x, y) = in(x, y) + η, ir ∈ Io, in ∈ Ij , r 6= j. (17)

The quality of reconstructed image is evaluated using Peak
Signal to Noise Ratio (PSNR).

VI. Simulation Results and Discussion
Simulations are performed on the Intermittent Object

Motion dataset and Baseline dataset provided by [26].
Among the various categories, we choose a scenario for
Winter Drive Way (WDW) from Intermittent object mo-
tion data set and pedestrians from baseline dataset. The
data sets contain 2500 frames of 240 × 320 resolutions.
The algorithm is applied on 200 frames. Each frame is
divided into four blocks 120 × 160 of the same size. For
each block the appearance model predicts the presence
and absence of an object or activity in the scene. If any
activity is detected the image is transmitted in a multi-
hop fashion. For image transmission purpose the RN node
first form a network topology with its neighboring RN
nodes. One example of this topology is shown in Fig. 4.
After the formation of relaying node topology, the network
topology is initiated. An example of such network topology
is shown in Fig. 5. The possible data paths taken by
the image blocks are shown in Fig. 6, 7 and 8.These
data paths corresponds to the strategy used for image
transmission purpose. In Fig. 6, the RN node 2 does not
have access to the sink node therefore, it transmits its
information to the RN node 1, which transmits the image
to the sink node, which is labeled as 30. The advantage
of using this type of coordinated transmission increases
the reliability of overall network and reduces the energy
consumption as selected nodes are used for transmission
of image information to the sink node. In Fig. 7, a similar
strategy was followed, however, the number of nodes in
this case was slightly increased. In Fig. 8, the number
of nodes used to transmit the information has further
reduced. An important aspect of this strategy is that not
all the nodes are utilized for image transmission purpose,
which reduces the overall in-network energy consumption.
To compare the proposed method with other state of the
art approaches, the proposed algorithm is simulated using
Imot2 integrated with OV7670 Camera. The Imot2 and
the camera parameters are shown in the Table 1.

Fig. 9 shows the received image PSNR for the two
datasets. Fig.10 shows the received image PSNR for the
two datasets in case of channel distortion. Although, in
the proposed approach the PSNR ratio is not stable,
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Fig. 4. Relaying Node Topology
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Fig. 6. Data Path 1
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TABLE I
Imote2 Integrated with OV7670

Symbol Description Value
It,on Current drawn in active mode

Tx/Rx in (mA)
44 mA

Ic,on Current drawn when camera is ac-
tive

18 mA

Ttx Time to transmit a single bit 0.4 usec
Vb Supply voltage 4.5
Clk Clock period 24 nsec

however, the maximum value is well above 40 db. The
energy consumption is calculated by using (18).

Econsumed = {(Vb × ClK × Ic,on) + (Vb×
It,on × Ttx)} × in, in ∈ Ij , n ≤ 4.

(18)

The energy consumption analysis has been done by com-
paring the proposed approach with the direct approach.
In the direct approach a whole image is transferred to the
sink node in a multi-hop fashion. Fig.11 shows the In-node
energy consumption using both approaches applied on the
aforementioned datasets. As can be seen, there is a signifi-
cant amount of reduction in the node energy consumption.
Table II shows a comparison of performance with other
state of the art approaches. The work presented in [18],

Fig. 9. Received PSNR
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Fig. 10. Received PSNR in case of Channel Distortion

TABLE II
Comparison of Techniques

Technique P SNRdb Energy Consump-
tion (mJ)

% Energy
Saving

Lucire et.
al[18]

31 1252.6 87.47

Nasri et.
al [16]

20 1252.6 87.47

Proposed
Approach

46 411.3 95.88

[16] used direct approaches in transmitting images through
the sink node. In their work, the image is transmitted
as a whole to sink node traversing the path through all
available network nodes, which is considered as a direct
approach. The network energy consumption in this case is
on the higher side. The reason for this increase in energy
consumption is because of the two main assumption: First,
all nodes in the sensor network has been utilized for the
transmission of image information, that makes the in-
network energy consumption on the higher side. Secondly,
the image information has been transmitted as a whole
utilizing 2D DWT approach, however, no intelligence has
been incorporated in the system which makes the nodes
energy on the higher side. Fig. 12 shows the in-network
energy consumption for the transmission of 200 images. As
can be seen in Fig. 12, in a coordinated transmission the
energy consumption of the whole network can be greatly
reduced. Further, the work presented in the proposed
approach, provides energy conservation both in-node and
in-network along with the additional features of object
detection in the remote area. Fig.13 and Fig. 14 show
the simulation results from the two datasets. It can be
concluded from the Fig.13,14, that since a portion of
the image information is being received at the sink node
with an acceptable range of PSNR values, therefore, the
proposed approach can be used in real time object tracking
and localization systems.
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Fig. 14. (a) Actual image from Pedestrians dataset (b) Reconstructed
image (c) The upper right portion of the image in (a) is sent to the
sink node (d)The bottom right portion of the image in (a) is sent to
the sink node

Fig. 11. In-Node Energy Consumption
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Fig. 12. In-Network Energy Consumption

VII. Conclusion
In this paper, we have presented a scheme for efficient

object detection and image transmission in WMSN nodes.

Our scheme provides energy conservation during transmis-
sion of image frames. These images can be transmitted
through the available bandwidth because of the size reduc-
tion. Besides, conserving the in-node energy it has been
shown that the object presence model effectively locate
the object when it appeared in the scene. Additionally,
transmission of particular image fragments provides a
better image reconstruction at the sink node. The scheme

Fig. 13. (a) Actual image from WDW dataset (b) The upper
left portion of the image in (a) is sent to the sink node (c) The
reconstructed image after superimposing the received image on the
stored image for a particular sensor node
has been evaluated using a custom made hardware WMSN
node and other state of the art online image dataset.
The received image PSNR is taken into account during
the reconstruction process at the sink node. Simulation
results report 95%of energy saving and a PSNR of 46
db as compared to other popular image transmission
techniques.
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