
Yaohao deng- Peking University
Yaohao deng
- Peking University
About
9
Publications
750
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
34
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (9)
When observed, a quantum system exhibits either wave-like or particle-like properties, depending on how it is measured. However, this duality is affected by the entanglement of the system with its quantum memory, raising a fundamental question: how are wave–particle duality and entanglement related? Here, we broaden the scope of wave–particle duali...
We report a very-large-scale silicon photonic quantum chip, on which we prepare various four-level four-qudit graph states and use them to demonstrate high-dimensional one-way quantum computation and measurement-based quantum algorithm.
Characterization and categorization of quantum correlations are both fundamentally and practically important in quantum information science. Although quantum correlations such as non-separability, steerability, and non-locality can be characterized by different theoretical models in different scenarios with either known (trusted) or unknown (untrus...
Characterization and categorization of quantum correlations are both fundamentally and practically important in quantum information science. Although quantum correlations such as non-separability, steerability, and non-locality can be characterized by different theoretical models in different scenarios with either known (trusted) or unknown (untrus...
We report the multi-path delayed-choice experiment on a large-scale integrated silicon photonic chip. Wave- and particle-nature in generalised form are characterised experimentally and the generalisation of Bohr’s multi-path duality relation is demonstrated.
Famous double-slit or double-path experiments, implemented in a Young's or Mach-Zehnder interferometer, have confirmed the dual nature of quantum matter, When a stream of photons, neutrons, atoms, or molecules, passes through two slits, either wave-like interference fringes build up on a screen, or particle-like which-path distribution can be ascer...
Bohr’s complementarity is one central tenet of quantum physics. The paradoxical wave-particle duality of quantum matters and photons has been tested in Young’s double-slit (double-path) interferometers. The object exclusively exhibits wave and particle nature, depending measurement apparatus that can be delayed chosen to rule out too-naive interpre...