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Abstract. In this paper, we study some geometric properties of the Fourier space of a
hypergroup and other related Banach spaces. We are mainly concerned by the Radon-
Nikodym property, the Dunford-Pettis property and the Schur property. Among other
results, we proved that if H is a commutative hypergroup, then the Fourier space of
A(H) has the Dunford-Pettis property; if H is a compact hypergroup then A(H) has
the Schur property and consequently the Dunford-Pettis property. We also showed that
the Figà-Talamanca�Herz space Ap(H) does not have the Schur property if H is not
compact.

1. Introduction

The Fourier algebra A(G) and the Fourier-Stieltjes algebra B(G) of a locally compact
group G is the center of much attention from researchers in harmonic analysis since
Eymard published his article [8] which deals with these objects. Many authors have ex-
amined conditions under which certain Banach spaces related to the Fourier algebra of the
locally compact group G possess speci�c geometric properties such as the Radon-Nikodym
property (RNP), the Dunford-Pettis property (DDP) and the Schur property (SP). For
instance, in [15], Lau and Ülger extensively examined the aforementioned properties for
the algebras A(G) and B(G) with C∗-algebras techniques. In the same sense, we may
cite the work by Taylor [22] who studied the geometry of the Fourier algebras on locally
compact groups with atomic representations. Subsequently, Miao [16] investigated these
properties for the Figà -Talamanca-Herz (FTH) algebras Ap(G) the category of which
generalizes the category of Fourier algebras. It is noteworthy to mention the signi�cant
works of E. Granirer in the study of geometric properties of Banach spaces related to the
Fourier algebra of various classes of groups [11, 12, 13]. In [9], Finet investigated the RNP
for a subspace of the Lebesgue space L1(K), where K is a compact hypergroup.

Hypergroups are topological spaces which, without being groups, exhibit some of the char-
acteristic structures of groups. These structures include the potential for de�ning convolu-
tion on the space of all �nite regular Borel measures on these toological spaces, similar to
the group case. It was Dunkl [6], Jewett [14] and Spector [19] who, independently of each
other, initiated the study of hypergroups through their papers in the 1970s. Hypergroups
generalize locally compact groups in various aspects. Consequently, any result from group
harmonic analysis could have it analogous version (possibly under additional conditions)

2000 Mathematics Subject Classi�cation. 46B22, 20N20, 43A62.
Key words and phrases. locally compact hypergroup, commutative hypergroup, compact hypergroup,

Banach space, Fourier algebra, Radon-Nikodym property, Schur property, Dunford-Pettis property.

1



2

in the realm of hypergroups, particularly in the context of commutative hypergroups and
compact hypergroups. Details regarding the theory of hypergroups, standard examples
and most of their fundamental properties can be found in the book [2] by Bloom and Heyer.

Muruganandam studied several hypergroups the Fourier spaces of which are Banach al-
gebras under pointwise multiplication. For commutative hypergroups, he successfully
constituted a list of su�cient conditions for the Fourier space to be a Banach algebra
in [17]. Additionally, in the article [18], he introduced a new class of hypergroups called
spherical hypergroups, along with a subclass named ultraspherical hypergroups which in-
cludes double coset hypergroups. He established that the Fourier spaces of ultraspherical
hypergroups are Banach algebras via pointwise multiplication. Vrem [23] also conducted
harmonic analysis on compact hypergroups and characterized their Fourier spaces. In [1],
the author introduce the Figá-Talamanca�Herz space Ap(H) for a locally compact mea-
sured hypergroup H. The Chapter 5 of Degenfeld-Schonburg's thesis [3] on multipliers
for hypergroups is dedicated to these algebras in the case of commutative hypergroups.
In [7], the authors investigate the RNP for Fourier spaces and other spaces related to com-
mutative hypergroups and compact hypergroups. The present article aims to explore the
geometric properties (mainly the DPP and the SP) for the Fourier spaces of hypergroups
and other spaces related to these Fourier spaces.
The rest of the paper is organized as follows. In Section 2, we provide some de�nitions,
facts, and notations which are essential in the article. Section 3 is devoted to an overview
of the RNP, the DPP and the SP. In Section 4, we investigate the SP and the DPP for the
Fourier spaces of hypergroups. In Section 5, we obtain, among other results, a necessary
condition on a hypergroup in order that its Figà-Talamanca�Herz space has the SP.

2. Hypergroups : Definitions and basic facts

Let H be a locally compact Hausdor� space. Denote by C(H), Cb(H), Cc(H) and
C0(H) the space of complex-valued continuous functions on H, the space of the space
of complex-valued continuous functions with compact support and the space of complex-
valued continuous functions which vanish at in�nity respectively. Denote by M(H) the
set of bounded Radon measures on H. The topology on M(H) is given by the weak
topology σ(M(H), Cb(H)). LetM1(H) denote the space of all probability measures on H
equipped with the weak topology and letM+(H) denote the subspace ofM(H) consisting
of positive measures.
Let K(H) denote the space of all not empty compact subsets of H. For subsets U and V
of H, set

KU(V ) = {A ∈ K(H) : A ∩ U 6= ∅, A ⊂ V }.
The set K(H) is given the topology generated by the sets KU(V ) where U and V are open
subsets of H. This topology is called the Michael topology on K(H) [2, page 7].

We recall the following de�nition of hypergroup from [18] using Jewett's axioms [14].

De�nition 2.1. A nonempty locally compact Hausdor� space H is called a hypergroup,
if the following conditions hold.
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H1: There exists a binary operation ∗ called convolution on M(H) under which
M(H) is an associative algebra. Moreover, for every x, y ∈ H, the product δx ∗ δy
is a probability measure and the mapping (x, y)→ δx∗δy is continuous from H×H
into M1(H).

H2: There exists an element (necessarily unique) e in H such that δe∗δx = δx∗δe = δx
for all x ∈ H.

H3: There exists a (necessarily unique) homeomorphism x → x− of H called invo-
lution satisfying the following :
(1) (x−)− = x for all x ∈ H.

(2) If µ− is de�ned by

∫
H

f(x)dµ−(x) =

∫
H

f(x−)dµ(x) for all f ∈ Cc(H), then

(δx ∗ δy)− = δy− ∗ δx− for all x, y ∈ H.
(3) e belongs to supp(δx ∗ δy) if and only if y = x−.

H4: For every x, y ∈ H, supp(δx ∗ δy) is compact. Moreover, the mapping (x, y)→
supp(δx ∗ δy) is continuous from H × H into K(H), with respect to the Michael
topology.

For a continuous function f on H, f(x ∗ y) is de�ned by

f(x ∗ y) = 〈f, δx ∗ δy〉 =

∫
H

f(z)d(δx ∗ δy)(z).

If f is continuous on H and x ∈ H, the left translation Lxf of f by x is de�ned by

Lxf(y) = f(x ∗ y).

If f is a function on H, set

f̌(x) = f(x−) and f̃(x) = f(x−).

Let H be a hypergroup with a left Haar measure. The Banach spaces Lp(H), 1 ≤ p ≤ ∞,
are understood as usual.
For f, g ∈ Cc(H), de�ne the convolution f ∗ g by

(f ∗ g)(x) =

∫
H

f(x ∗ y)g(y−)dy.

It is well known that, for 1 ≤ p ≤ ∞, if f ∈ L1(H) and g ∈ Lp(H) f ∗ g ∈ Lp(H) and
‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

For a Hilbert space H, denote by B(H) the involutive Banach algebra of all bounded
linear operators on H.

De�nition 2.2. [2, De�nition 2.1.1] We refer to π as a representation of the hypergroup
H in some Hilbert space Hπ if

(1) π is a ∗-homomorphism from the involutive Banach algebra M(H) into B(Hπ),
(2) π(δe) = I, where I is the identity operator,
(3) For elements ξ, η ∈ Hπ, the mapping µ 7−→ 〈π(µ)ξ, η〉Hπ is continuous on M+(H)

with respect to the weak topology.



4

The Hilbert space Hπ is called the representation space of π. A representation π is said
to be unitary if for all µ ∈ M(H), the operator π(µ) is a unitary operator on Hπ. The
representation π is said to be irreducible if there is no closed proper subspace of Hπ that
is invariant by π(µ) for all µ ∈M(H).

Let us say some words about commutative hypergroups [17, Section 4] and [3].
A hypergroup H is said to be commutative if the convolution is commutative. That is for
each x, y ∈ H, δx ∗ δy = δy ∗ δx. In [20], the author proved that a left Haar measure exists
on every commutative hypergroup.

Let H be a commutative hypergroup. The dual Ĥ of H is the space of continuous
complex-valued functions χ such that

χ(x ∗ y) = χ(x)χ(y) and χ(x−) = χ(x) for all x, y ∈ H.

The elements of Ĥ are called (hermitian) characters of H.
For µ in M(H) the Fourier-Stieltjes transform of µ is de�ned by

F(µ)(χ) =

∫
H

χ(x)dµ(x), χ ∈ Ĥ

and for f in L1(H), the Fourier transform of f is de�ned by

F(f)(χ) =

∫
H

f(x)χ(x)dx, χ ∈ Ĥ.

Let us denote by S the subset of Ĥ de�ned by

S = {χ ∈ Ĥ : |F(µ)(χ)| ≤ ‖λ(µ)‖,∀µ ∈M(H)}.

There exists a unique non-negative measure ν on Ĥ such that∫
H

|f(x)|2dx =

∫
Ĥ

|F(f)(χ)|2dν(χ)

for all f ∈ L1(H) ∩ L2(H). The measure ν is called the Plancherel-Levitan measure;
moreover, S is the support of ν. Let us notice that if H is a commutative hypergroup,
then the Fourier space A(H) is isometrically isomorphic to L1(S, ν) [17, page 69] (see
Section 4 for the de�niton of A(H)).

3. Overview of some geometric properties of Banach spaces

In this section, we take an overview of the geometric properties we are going to investigate.

De�nition 3.1 (Radon-Nikodym property). A Banach space X has the Radon-Nikodym
property (RNP) if every bounded subset D of X is dentable; that is, for each ε > 0, there
exists some xε ∈ D such that xε 6∈ co

(
D\Bε(xε)

)
, where Bε(xε) = {y ∈ X : ‖y−xε‖ < ε}

and co
(
D\Bε(x)

)
is the norm closed convex-hull of D\Bε(x).

For further insight into the Radon-Nikodym property, we refer to the interested readers
the book [4] where various aspects of this property are discussed. We extract from this
book the following properties that we may need.
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• If X has the RNP, then every subspace of X has the RNP.
• The space X has the RNP if every separable closed linear subspace of X has the
RNP.
• If X has the RNP, then any closed subspace of X has the RNP.
• Let Γ be a discrete set. Then `1 := `1(Γ) has the RNP and every Banach space
which is norm isomorphic to `1 has the RNP.

De�nition 3.2 (Dunford-Pettis property). The Banach space X is said to have the
Dunford-Pettis property (DPP) if, for any Banach space Y , every weakly compact lin-
ear operator T : X → Y is completely continuous, i.e. T sends weakly Cauchy sequences
into norm convergent sequences.

De�nition 3.3 (Schur property). The Banach space X is said to have the Schur property
(SP) if every weakly convergent sequence in X is norm convergent.

Remark 3.4. Note that if a Banach space has the SP, then it has the DPP. Also, for
every discrete set Γ, the space `1(Γ) has the SP.

4. Geometric properties of the Fourier space A(H) of a hypergroup H

In the rest of the paper, H is assumed to be a hypergroup with a left Haar measure.
Let us denote by λ the left regular representation of H on L2(H) given by

λ(x)f(y) = f(x− ∗ y)

where x, y ∈ H and f ∈ L2(H). This can be extended to L1(H) by setting

λ(f)(g) = f ∗ g
for f ∈ L1(H) and g ∈ L2(H). Let C∗(H) denote the C∗-algebras of H and by C∗λ(H)
the norm closure of the space {λ(f) : f ∈ L1(H)} in the algebra B(L2(H)) of bounded
linear operators on L2(H).

De�nition 4.1. [17, De�nition 2.2] Let H be a hypergroup. The Banach space dual of the
C∗-algebra C∗(H) is called the Fourier-Stieltjes space of H and it is denoted by B(H).

The Banach space dual of C∗λ(H) is denoted by Bλ(H) and it is a closed subspace of
B(H).

De�nition 4.2. [17, Section 2.3] The closed subspace spanned by {f ∗ f̃ : f ∈ Cc(H)} in
Bλ(H) is called the Fourier space of H and it is denoted by A(H).

Denote by [λ(H)]′′ the bicommutant of λ(H) = {λ(x) : x ∈ H}. The space [λ(H)]′′ is a
von Neumann algebra called the von Neumann algebra of H and it is denoted by V N(H)
[17, De�nition 2.17].
The space V N(H) is called an atomic von Neumann algebra if the representation λ is
atomic. That is, λ is the direct sum of irreducible representations [21, Section I.9 and
Section III.6].
It is noteworthy to recall the following result about the RNP related to the theory of
von Neumann algebra : Let M be a von Neumann algebra with predual M∗. Then, the
following assertion are equivalent[22, Theorem 3.5].
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(1) The space M is an atomic von Neumann algebra.
(2) The space M∗ has the RNP.

Theorem 4.3. If H is a commutative hypergroup, then A(H) has the DPP.

Proof. If H is a commutative hypergroup, then A(H) is isometrically isomorphic to
L1(S, dν) [17, Proposition 4.2]. Thus A(H) has the DPP since any L1-spaces has the
DPP by [5]. �

Let M be a von Neumann algebra and M∗ be its predual. Then, the following asssertions
are equivalent [15, Theorem 3.4].

(1) M is the direct summand of �nite dimensional C∗-algebras.
(2) The space M∗ has the SP.

Theorem 4.4. If H is a compact hypergroup, then A(H) has the SP, hence the DPP.

Proof. If H is a compact hypergroup, then the left regular representation λ can be
written as a direct sum of continuous irreductible subrepresentations each of which is
�nite-dimensional ([23, Theorem 2.2]) and thus generate �nite dimensional subalgebras
of B(L2(H)). This implies that λ is atomic. Then, the von Neumann algebra V N(H) =
[λ(H)]′′ is the direct summand of �nite dimensional C∗-algebras. Therefore, A(H) which
is the predual of the von Neumann algebra V N(H) has the SP. It also has the DPP since
SP implies DPP. �

5. Geometric properties of the Figà-Talamanca�Herz spaces Ap(H) of a
hypergroup H

The results in this section are the analogue for hypergroups of some results on locally
compact groups in [12, 15, 16].

De�nition 5.1. ([1] or [3]) Let H be a hypergroup. For 1 < p < ∞ with
1

p
+

1

q
= 1,

de�ne Ap(H) to be the set{
h ∈ C0(H) : h =

∞∑
n=1

fn ∗ ǧn, fn ∈ Lp(H), gn ∈ Lq(H), ∀n ∈ N,
∞∑
n=1

‖fn‖p‖gn‖q <∞
}
.

with the norm

‖h‖Ap(H) = inf

{
∞∑
n=1

‖fn‖p‖gn‖q : h =
∞∑
n=1

fn ∗ ǧn

}
,

where the in�mum is taken over all possible representations of h. Equipped with this
norm, Ap(H) a Banach space called the Figà-Talamanca-Herz space.

Fact 5.2. Hereafter are somes facts about Ap(H).

(1) If p = 2, A2(H) = A(H) the Fourier space of H.
(2) If u ∈ Ap(H), then there exists sequences (fn) and (gn) in Cc(H) such that u =∑∞

n=1 fn ∗ ǧn. [1, Lemma 2.2 ].
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De�nition 5.3. Let 1 < p < ∞. The topology on B(Lp(H)) associated to the family of
semi-norms

T 7→
∣∣∣ ∞∑
n=1

∫
H

T (fn)(x)gn(x)dm(x)
∣∣∣

with
∑∞

n=1 fn ∗ ǧn ∈ Ap(H), is called the ultraweak topology.

This topology is Hausdor�.

De�nition 5.4. Let H be a hypergroup. For 1 < p <∞, the map λp : M(H)→ B(Lp(H))
de�ned by

(λp(µ))(f) = µ ∗ f for µ ∈M(H) and f ∈ Lp(H)

is a representation of M(H) in the Banach space B(Lp(H)).
The closure of λp(L

1(H)) in B(Lp(H)) with respect to the ultraweak topology is denoted
by PMp(H). The elements of PMp(H) are called p-pseudomeasures on H.

If p = 2, then λ2 is the left regular representation of H and PM2(H) is the von Neumann
algebra V N(H).
The dual space of Ap(H) can be isometrically identi�ed with the Banach space PMq(H)
by the following fact.

Fact 5.5. [1, Theorem 2.9] Let 1 < p < ∞ with
1

p
+

1

q
= 1. If F ∈ Ap(H)∗, then there

exists a unique F ′ ∈ PMq(H) such that for all f ∈ Lp(H) and g ∈ Lq(H),

F (f ∗ ǧ) =

∫
H

F ′(g)(x)f(x)dx = 〈F ′(g), f〉.

Moreover, the mapping

Ap(H)∗ → PMq(H), F 7→ F ′

is a surjective isometry ; it carries the weak*-topology of Ap(H)∗ to the ultraweak topology
of PMq(H).

Lemma 5.6. Let H be a hypergroup. Consider a sequence {fn} ⊂ Lp(H). If {fn}
converges weakly to 0 in Lp(H), then ∀g ∈ Lq(H), the sequence {fn ∗ ǧ} converges weakly
to 0 in Ap(H).

Proof. Let F ∈ Ap(H)∗. By Fact 5.5, there exists a unique F ′ ∈ PMq(H) such that

F (fn ∗ ǧ) =

∫
H

F ′(g)(x)fn(x)dx

= 〈F ′(g), fn〉

Since {fn} converges weakly 0 in Lp(H) and F ′(g) ∈ Lq(H), we have that the sequence
{〈F ′(g), fn〉} converges to 0. Therefore, the sequence {F (fn ∗ ǧ)} converges to 0 for every
F ∈ Ap(H)∗. It follows that {fn ∗ ǧ} converges weakly to 0 in Ap(H). �

Lemma 5.7. Let H be a hypergroup. For x ∈ H and f, g ∈ Cc(H), we have

Lx(f ∗ ǧ) = (Lxf) ∗ ǧ.
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Proof. Let z ∈ H, we have
Lx(f ∗ ǧ)(z) = (f ∗ ǧ)(x ∗ z)

=
∫
H
f((x ∗ z) ∗ y)g(y)dy

=
∫
H
f(x ∗ (z ∗ y))g(y)dy (by associativity of ∗)

=
∫
H

(Lxf)(z ∗ y)g(y)dy
= ((Lxf) ∗ ǧ)(z).

�

The following theorem is the analogue in the framework of hypergroups of Lemme 3.1 in
[16].

Theorem 5.8. Let H be a hypergroup. If H is not compact, then there is a sequence {xn}
in H such that xn →∞ ; that is, for any compact subset K of H there is an N ∈ N with
xn 6∈ K for all n > N . Furthermore, if w ∈ Ap(H), then the sequence {Lxnw} converges
weakly to 0 in Ap(H).

Proof. If the space H is not compact, then let us choose a σ-compact subset H ′ = ∪∞n=1Kn

of H, whith Kn an open relatively compact set and Kn ⊂ Kn+1 for all n. For any compact
subset K of H, there is some N ∈ N such that K ∩H ′ ⊆ ∪Nn=1Kn ∩K. For each n ≥ 1,
if we choose xn ∈ Kn+1\Kn, then we obtain that xn 6∈ K for all n > N .
Now, let w ∈ Ap(H). By Fact 5.2 (2), there exists sequences (fi) and (gi) in Cc(H) such
that w =

∑∞
i=1 fi ∗ ǧi. Thus, Lxnw =

∑∞
i=1 Lxn(fi ∗ ǧi). By Lemma 5.7 , Lxn(fi ∗ ǧi) =

(Lxnfi) ∗ ǧi.
Let us denote by Vi the compact support of fi. We have |fi(y)| ≤ ‖fi‖∞1Vi(y) for all
y ∈ H, where 1Vi is the characteristic function of Vi.
Let h ∈ Lq(H). Then,∣∣∣〈h, Lxnfi〉∣∣∣ =

∣∣∣∫
H

h(y)Lxnfi(y)dy
∣∣∣

=
∣∣∣∫
H

h(y)fi(xn ∗ y)dy
∣∣∣

≤
∫
H

∣∣∣h(y)
∣∣∣.∣∣∣fi(xn ∗ y)

∣∣∣dy
≤
∫
H

∣∣∣h(y)
∣∣∣.‖fi‖∞1Vi(xn ∗ y)dy

≤
∫
x−n ∗Vi

∣∣∣h(y)
∣∣∣.‖fi‖∞1Vi(y)dy

≤ ‖fi‖∞
(∫

x−n ∗Vi

∣∣∣h(y)
∣∣∣qdy)1/q

.

(∫
x−n ∗Vi

∣∣∣1Vi(y)
∣∣∣pdy)1/p

(Hölder inequality)

≤ ‖fi‖∞m(Vi)
1/p

(∫
x−n ∗Vi

∣∣∣h(y)
∣∣∣qdy)1/q

,

where m is the Haar measure of H. Moreover,

(∫
x−n ∗Vi

∣∣∣h(y)
∣∣∣qdm(y)

)1/q

goes to 0 when

n tends to ∞ since for any compact subset K of H, x−n ∗ Vi ∩K = ∅ for su�ciently large
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n. Hence, the sequence {〈h, Lxnfi〉} converges to 0. Thus, {Lxnfi} converges weakly to
0 in Lp(H). This implies, by Lemma 5.6, that for every F ∈ Ap(H)∗, F (Lxn(fi ∗ ǧi)) =
F ((Lxnfi) ∗ ǧi) converges to 0. It follows that F (Lxnw) =

∑∞
i=1 F (Lxn(fi ∗ ǧi)) converges

to 0 whenever n goes to ∞. �

For any x ∈ H and f ∈ PMq(H), let us de�ne xf ∈ PMq(H) by 〈xf, u〉 = 〈f, Lx−u〉, u ∈
Ap(H).

Corollary 5.9. Let H be a non-compact hypergroup and let {xn} be a sequence in H such
that xn →∞ as in Theorem 5.8. If f ∈ PMq(H), then the sequence {xnf} tends to 0 in
the weak-* topology of PMq(H).

Proof. Let f be in PMq(H). Let u ∈ Ap(H). We have 〈xnf, u〉 = 〈f, (Lx−n )u〉. It follows
from Theorem 5.8 that the sequence {(Lx−n )u} converges weakly to 0 in Ap(H). Thus,
{〈xnf, u〉} converges to 0. �

Theorem 5.10. Let H be a hypergroup. If H is not compact, then Ap(H) does not have
the SP.

Proof. Let V be a relatively compact symmetric neighbourhood of e in H. If H is not
compact, then let xn be as in Theorem 5.8. Set un = Lxn(1V ∗ 1V ). By the choice of V ,
1V ∈ Cc(H) and 1V = 1̌V . Thus 1V ∗ 1V ∈ Ap(H). Using Theorem 5.8, we get that the
sequence {un} converges weakly to 0 in Ap(H). Moreover,

1V ∗ 1V (e) = m{e ∗ V ∩ V } = m{V },

where m is the left Haar measure on H. Hence,

‖un‖Ap(H) = ‖1V ∗ 1V ‖Ap(H) ≥ ‖1V ∗ 1V ‖∞ = m{V } > 0.

It follows that {un} is not norm convergent in A(H). Thus, Ap(H) does not have the
SP. �

Theorem 5.11. The space Bλ(H) has the RNP and the DPP if only if H is compact.

To prove this theorem, we may need the following well-known results.

(1) The dual A∗ of a C∗-algebra A has the RNP if and only if A does not contain an
isomorphic copy of `1 [10, Corollary VII.10].

(2) If X∗ has the DPP, then so does X [5, Corollary 2].
(3) If X has the DPP and contains no copy of `1, then X∗ has the SP [5, Theorem 3].

Proof. (of Theorem 5.11) We recall that Bλ(H) = (C∗λ(H))∗. If Bλ(H) has the RNP, then
C∗λ(H) does not contain an isomorphic copy of `1. If Bλ(H) has the DPP, then C∗λ(H)
has also the DPP. Since C∗λ(H) does not contain an isomorphic copy of `1 and has the
DPP, then its dual (C∗λ(H))∗ = Bλ(H) has the SP. Therefore, A(H) := A2(H) which is a
subspace of Bλ(H) has the SP. Thus H is compact by Theorem 5.10.
In the converse, if H is compact, then by [17, Corollary 2.14], A(H) = Bλ(H). Thus,
Bλ(H) has the DPP by Theorem 4.4 and the RNP by [7, Theorem 3.3]. �
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Conclusion

We have established that if H is a commutative hypergroup, then the Fourier space of
A(H) has the Dunford-Pettis property ; if H is a compact hypergroup then A(H) has the
Schur property and consequently the Dunford-Pettis property. We also showed that the
Figà-Talamanca�Herz space Ap(H) does not have the Schur property if H is not compact.
As future work, we can study the geometric properties for spherical hypergroups and ultra-
spherical hypergroups (see the de�nitions of such hypergroups in [18]). Roughly speaking,
they are hypergroups constructed from locally compact groups. The challenge could be
to predict geometric properties of spherical hypergroups or ultra-spherical hypergroups
from the properties of the underlying locally compact groups.
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