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Abstract
In industrial manufacturing systems, failures of machines caused by faults in their key com-
ponents greatly influence operational safety and system reliability. Many data-driven methods 
have been developed for machinery diagnostics and prognostics. However, there lacks sufficient 
labeled data to train a high-performance data-driven model. Moreover, machinery datasets are 
usually collected from different operation conditions and mechanical components, leading to 
poor model generalization. To address these concerns, cross-domain transfer learning methods 
are applied to enhance the feasibility and accuracy of data-driven methods for machinery diag-
nostics and prognostics. This paper presents a comprehensive survey about how recent studies 
apply diverse transfer learning methods into machinery tasks including diagnostics and prog-
nostics. Three types of commonly-used transfer methods, i.e., model and parameter transfer, 
feature matching and adversarial adaptation, are systematically summarized and elaborated on 
their main ideas, typical models and corresponding representative studies on machinery diag-
nostics and prognostics. In addition, ten widely-used open-source machinery datasets are pre-
sented. Based on recent research progress, this survey expounds emerging challenges and future 
research directions of transfer learning for industrial applications. This survey presents a sys-
tematic review of recent research with clear explanations as well as in-depth insights, thereby 
helping readers better understand transfer learning for machinery diagnostics and prognostics.

Keywords  Transfer learning · Fault diagnosis · Remaining useful life prediction · Domain 
adaptation · Manufacturing automation

1  Introduction

A manufacturing field is inseparable from the extensive use of various types of machines. 
In industrial machines, such as induction motors and turbines, some key machinery com-
ponents such as gears and bearings, tend to have various failures due to their harsh working 
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environment and long operation time. Such failures may affect the performance of the 
whole machine, causing huge economic losses or even casualties (Xia et  al. 2018; Lei 
et al. 2018; Li et al. 2020; Chen et al. 2021). To improve the safety and reliability when a 
machine runs, various advanced signal processing techniques and data-driven methods are 
developed for machinery diagnosis and prognostics. Machinery diagnosis aims to detect 
machine faults in time and accurately identify their fault types, which is considered as a 
classification task by machine learning algorithms. Machinery prognostics refers to the 
prediction of the remaining useful life (RUL) of a machine or predicts some potential faults 
in advance, which helps reduce maintenance costs (Zhong et  al. 2019; Jiao et  al. 2021). 
Such prognostics is mainly regarded as a regression task in machine learning.

Intelligent data-driven methods are proved to be effective and have many advantages 
(Zhao et  al. 2019; Li et  al. 2021; Zhao et  al. 2018). Compared with traditional physical 
model-based methods, they do not require specialized operational mechanisms and high-
level expertise to build models and are not limited by corresponding background knowl-
edge (Liu et  al. 2022; Ding et  al. 2021; Wang et  al. 2020). Therefore, in recent years, 
many studies have been using data-driven learning methods for diagnosis and prognostics 
(Zhong et  al. 2019), and most of them have achieved outstanding results. However, like 
other machine learning algorithms, the high performance of a data-driven model requires 
the following two prerequisites: (1) there is sufficient labeled data, namely, historical data 
is well labeled in terms of whether it is normal or not and what faults have occurred if not; 
and (2) training and testing data follow the identical distribution, which is an assumption 
widely used in the application of machine learning algorithms.

However, in a real-world scenario, it is difficult to satisfy such prerequisites. Gener-
ally speaking, it is very hard to obtain sufficient labeled data (Ko and Kim 2019; Deng 
et al. 2021). On the one hand, machines are not allowed to run with faults because severe 
faults can cause significant losses. Hence, labeled data, especially failure data, are very 
scarce. On the other hand, some machines have long life cycles, and it is time-consuming 
and even impossible to obtain complete data that represent their full life cycles. Borrow-
ing data from other relevant datasets to train the model is thus a possible solution. But the 
data obtained by different machines come from different operating conditions and different 
working environments, which do not necessarily satisfy the assumption of independent and 
identical distribution. The model learned directly in this way has poor generalization and 
sometimes fails completely.

The above problems greatly limit the practical application of machine learning methods 
for intelligent diagnosis and prognostics. Transfer learning (TL) emerges fortunately and 
can break such limitations. As an emerging artificial intelligence technology, TL methods 
have been successfully applied in diverse fields, such as medical image diagnosis, bioin-
formatics analysis and transportation applications. TL solves the tough problem of train-
ing models without labels by generalizing knowledge from related domains. Its main goal 
is to learn domain-invariant features and reduce the differences among cross-domain fea-
tures such that models trained on labeled source data can maintain their good performance 
on target domain data. Since there is distribution divergence between source and target 
domains, most TL methods focus on matching feature representations to aligning their 
data distributions. Among existing research, feature-based domain adaption methods are 
most commonly seen. They make source and target features closer by learning domain-
invariant representations. Depending on whether neural networks are used or not, they 
can be divided into shallow and deep ones. The former maps source and target data into 
a shared subspace to reduce their distribution divergence, which is simple and efficient to 
train but has limited accuracy. The latter extracts invariant features by convolutional neural 
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networks (CNN) which are excellent and powerful when they are used to mine complex 
structure and learning feature representation. This well suits the TL necessities of feature 
extraction and distribution matching among different domains. Therefore, deep learning 
methods have been widely used.

A large number of TL methods have been applied to machinery diagnosis and prognos-
tics. This work provides a comprehensive review of them and aims to make the following 
contributions: 

(1)	 It summarizes the research progress of TL-based machinery diagnosis and prognosis 
tasks and provides researchers with a clear and complete understanding of this field. It 
systematically organizes TL methods and sort out three types of methods: model and 
parameter transfer, feature matching, and adversarial adaptation-based ones. For each 
type of TL methods, we conclude its representative algorithms and summarize their 
advantages, disadvantages, development and evolution.

(2)	 It puts forward a general framework of cross-domain transfer methods. Existing meth-
ods can be viewed as instantiations of such framework with different choices: whether a 
feature extracting method is shallow or deep; whether source and target feature extrac-
tors are shared or not; whether a feature matching term to reduce domain divergence is 
used or not; and whether an adversarial discriminator is used or not. To the best of our 
knowledge, it is the first time that various transfer methods are organized in the same 
framework to show their similarities and strengths, which should inspire researcher in 
the development of new and novel methods.

(3)	 It analyzes and compares machinery TL applications, based on which valuable con-
clusions and useful suggestions are drawn. The machinery application is divided into 
three transfer settings, which provides a quick start for beginners to grasp the basics of 
machinery transfer tasks. Ten widely-used datasets in machinery diagnostics and prog-
nostics are described with detailed discussions as well as resource links. The results of 
different methods on machinery classification and regression tasks (i.e., fault diagnosis 
and remaining useful life prediction) are summarized, which offers intuitive compari-
sons in terms of the advantage and performance of various types of TL methods.

(4)	 Based on comprehensive analyses, it points out the shortcomings of current methods and 
presents suggestions to extend their applicability. It also indicates future prospects for TL-
based machinery applications, and summarizes emerging challenges and future directions.

Firstly, we introduce the basis of TL methods and different settings of transfer tasks in 
machinery applications. Then, we present a detailed literature review of recent applications 
that use cross-domain transfer methods for machinery diagnosis and prognostics. After-
ward, some popular open-source machinery datasets are described. Last but not least, we 
present the challenges and future research directions of developing and applying TL meth-
ods to machinery diagnosis and prognostics.

2 � Background

2.1 � Concepts and definitions

In transfer learning, we need to clarify which one is “source” and which one is “target” 
before conducting any transfer. A dataset with labels functions as the “source” denoted as 
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DS = (X
S
,Y

S
) where X

S
∈ Rd×n1 is a d-dimensional feature space, and Y

S
∈ Rn1 is the label 

and n1 is the total number of source samples. The dataset without labels is the “target” 
denoted as DT = (X

T
) where X

T
∈ Rd×n2 and n2 is the total number of target samples. Some 

frequently used notations and their descriptions are presented in Table 1.

Definition 1  (Domain). A “domain” D = {X,P(x)} consists of two main parts: feature 
data X and its corresponding marginal probability distribution P(x) that falls into [0,1].

Definition 2  (Task). A “task” T = {Y, f (x)} consists of two parts: labels Y and their cor-
responding function f(x) that predicts them.

According to above definitions, given a domain D, a task T depicts the relationship 
between labels and features, and f(x) is the conditional probability distribution Q(y ∣ x) , 
which predicts the probability of label y given a sample x.

Given a labeled source domain DS = (X
S
,Y

S
) and an unlabeled target domain DT = (X

T
) , 

let P(X
S
) and P(X

T
) be the marginal probability distributions of a source and target, and 

QS(YS
∣ X

S
) and QT (YT

∣ X
T
) be the conditional probability distributions of a source and 

target respectively. TL assumes that P(X
S
) ≠ P(X

T
) and QS(YS

∣ X
S
) ≠ QT (YT

∣ X
T
) . In 

plain English, the feature space of source and target domains are different, and so are their 
prediction functions. This indicates that directly using a source model to predict the labels 
of a target dataset does not work, especially when there is a large difference between their 
data distributions. Such TL setting is the most commonly encountered in practice. There-
fore, TL methods aim to learn features of DS and DT and draw their distributions closer to 
each other in learned space where their divergence is greatly reduced. Once the domain-
invariant features are learned, the classifier trained based on such features of DS can also 
perform well on DT with more accurate predictions than directly re-using a source model.

Table 1   Symbols and 
descriptions

Symbols Description

D
S
 , D

T
Source/target domain

X
S
 , X

T
Source/target data

Y
S
 , Y

T
Source/target label

n
1
 , n

2
Number of source/target samples

n
c

Number of classes
W Classifier coefficient vector
K Kernel matrix
H Centering matrix
L
M

Marginal MMD matrix
L
C

Conditional MMD matrix
� Coefficient of classifier regularization
� Coefficient of domain divergence
� Coefficient of conditional distribution matching
� Coefficient of domain discriminator
� Network parameters (weights and biases)
� Learning rate
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2.2 � Different transfer settings

According to the definitions of TL in machinery diagnosis and prognostics, Table 2 sum-
marizes related studies into three different transfer settings. 

(1)	 Transfer between different working conditions of the same machine. Sensor data under 
different operating situations and working environments usually have changing fea-
tures, thus their intrinsic data distributions are different. In other words, data collected 
under varying working conditions belong to different domains. Hence, learning knowl-
edge from other working conditions can be regarded as a type of cross-domain transfer.

(2)	 Transfer between machine components. Intuitively, different machine components are 
installed in different places (Shen et al. 2020), and each of them has its unique charac-
teristic. It is obvious that data of various components are from different domains, so it 
is also a kind of cross-domain transfer. Compared with the transfer between different 
working conditions of the same machine, the knowledge transfer from one component 
to another is more difficult.

(3)	 Transfer from simulation to real-world. Many researchers build their own experimental 
platforms in laboratories and artificially simulate various machinery faults. Since the 
laboratory simulation cannot fully take the environmental noise or disturbance into 
consideration, it is hard to completely simulate complex working environments of 
real-world scenarios. The real-world industrial machines are often operated under some 
harsh settings, which is very hard, even impossible, to be fully simulated. Therefore, 
there is conspicuous distribution divergence between laboratory simulations and real-
world machines, thus be regarded as the toughest transfer.

3 � Cross‑domain transfer methods

We summarize the cross-domain transfer methods for machinery diagnostics and prog-
nostics into 3 classes: model and parameter transfer-based, feature matching-based, and 
adversarial adaptation-based ones. Specifically, their general architectures are depicted in 
Fig. 1. To conclude these methods, we draw a framework in Fig. 2. Existing methods can 
be viewed as instantiations of such framework with different choices. We have: (1) whether 
the method used for extracting features from raw data input is shallow or deep; (2) whether 
the feature extractors for source and target inputs are shared or separated; (3) whether the 
feature matching term is added to reduce domain divergence; and (4) whether the domain 
discriminator trained with adversarial objectives is used. Next, we present the basic prin-
ciples and representative work of each type. A comprehensive overview is presented in 
Table 3.

3.1 � Model and parameter transfer‑based methods

Model and parameter transfer-based methods for machinery diagnostics and prognostics 
are the most commonly used ones. More importantly, they are also served as the basis of 
other transfer methods. Model transfer is a basic operation in TL. It takes the advantage of 
pre-trained models and directly transfers their parameters. With model transfer methods, 
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there is no need to train a model from scratch, thus reducing the training burden. Although 
both shallow models and deep neural networks models can be transferred, it is more com-
mon to transfer neural networks because their structures are more suitable for such transfer. 
Deep neural networks are regarded as a powerful feature extractor with multiple hidden 
layers which can directly learn hierarchical features from raw data. Following Yosinski 

Fig. 1   General architecture of a Model and parameter transfer-based methods, b Feature matching-based 
methods (only deep methods are presented), and c Adversarial adaptation-based machinery diagnostics and 
prognostics. Source and target models (or feature extractors) can be shared or separated. For the conveni-
ence of reading, we draw two separated models with different color to represent their models

Fig. 2   General framework of cross-domain transfer methods
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et  al. (2014), lower layers learn abstract and general features such as edges and curves, 
which can be applied to common image recognition tasks; and higher layers learn differ-
ent task-specific and discriminative features which suit different application fields. In the 
process of model training, the deep architecture is able to automatically select and extract 
features, and it is trained to learn discriminative features based on the training data such 
that they are useful for accurate prediction in subsequent classification. However, training 
such a large and high-performance network from scratch usually requires sufficient labeled 
training data, many computational resources and considerable time.

Model transfer is applied to overcome the training difficulties. Rather than training and 
optimizing all networks weights from random initialization, model transfer directly takes 
the weights that have been trained in another application as the initial weights. Note that, 
in order to ensure an effective and successful transfer and avoid negative transfer, it is more 
appropriate to use the knowledge obtained from a different but related application. After 
transferring the parameters, according to whether the transferred weights are fixed or not, 
there are two ways to accomplish the model training in terms of the current target task: (1) 
loading the weights of a pre-trained network as the initial setting and proceeding to update 
and optimize them based on the target data; and (2) freezing the weights in the lower layer 
and only updating those in several higher layers when training. Such a process of updating 
and optimizing the weights in higher layers is called fine-tuning. The latter is less time-
consuming because it essentially reduces the number of parameters to be trained, thus it 
becomes a more widely-used approach. As mentioned before, lower layers extract some 
common features and higher layers learn task-specific ones. How many lower layers should 
be fixed and how many higher layers should be fine-tuned depend in part on how different 
the source and target datasets are from each other. For similar datasets, only fine-tuning the 
fully connected layers can achieve satisfactory transfer performance. For datasets with con-
siderable differences, more convolutional layers need to be updated. Apart from network 
weights that need to be optimized via model training, the hyperparameters (such as learn-
ing rates, dropout rates, and regularization coefficients) are also required to be tuned.

Model and parameter transfer have been applied to the research on machinery diagnos-
tics and prognostics. Shao et al. (2020) present a modified transfer CNN to diagnose faults 
in a rotor-bearing system under varying working conditions. Their method belongs to the 
first kind of model and parameter transfer, i.e., transfer all parameters and then adjust all 
weights in all layers. As shown in Fig. 3, parameters (weights and bias) of a source CNN 
are transferred to the target model. Their basic CNN architecture is LeNet-5 that is a clas-
sical and concise network including an input layer, two convolutional layers, two pooling 
layers, and a fully connected layer. Note that, since LeNet-5 has only five layers, updating 
all weights is not too burdensome. But for larger and deeper CNN with hundreds of layers, 
training all layers is time-consuming and undesirable. In order to enhance the performance 
of a basic CNN, stochastic pooling and leaky rectified linear units are developed to form 
the modified CNN in Shao et al. (2020). As presented in Fig. 3, infrared thermal images are 
collected for both source and target domains and then input to the modified CNN. They are 
used for characterizing the health condition of a rotor-bearing system. The procedures of 
model and parameter transfer in Shao et al. (2020) are quite representative with the below 
steps: 

(1)	 The thermal images of a rotor-bearing system under different operating conditions are 
collected, and then converted into grayscale images, and then divided into source and 
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target domains according to their different working conditions. The source domain has 
enough labeled samples, but the target one has a small number of labeled samples.

(2)	 Combine the techniques of stochastic pooling and leaky rectified linear unit to form a 
modified CNN.

(3)	 Use sufficient samples from the source domain to train a modified source CNN by 
minimizing cross-entropy loss between predictions and true labels.

(4)	 Initialize a target modified CNN with the same structure and hyperparameters as the 
source model, and directly transfer all the pre-trained weights and biases from the 
source modified CNN to the target one.

(5)	 Train the target modified CNN using small samples in the target domain, and optimize 
and update its weights and biases.

(6)	 Use the remaining samples in the target domain to test the diagnostic performance of 
the trained target model.

Many methods are based on a similar transfer paradigm. When only a small number of 
target data samples are available, we prepare a target model with the same architecture and 
parameters as a source model, and then update the target model based on training data in 
the target domain. Chen et al. (2019) present a slightly different transfer scheme for intel-
ligent diagnosis. Their work assumes that the number of categories (i.e., labels) of target 
tasks are not always equal to those of source tasks. Thus, exactly copying their architec-
tures may not work. To address such issue, they propose to modify the number of softmax 
output nodes during a transfer stage such that it corresponds to the number of labels in 
target tasks. Besides, one-dimensional raw vibration signals are used as the input of CNN. 
Zhang et al. (2017) and Li et al. (2020) indicate that such one-dimensional vibration data 
is collected by sensors and can be very long. Thus, they adopt a sliding frame to extract 
samples by small steps, as shown in Fig. 4. All data in a time frame is regarded as a row of 
the input data. The length of the vibration signal is fixed, and the step size and frame size 
should be set appropriately so as to generate more effective samples. They also affect the 
size of the input layer. For example, both a large frame size and a small step size result in a 
large input size. Since the source and target data are collected under different working con-
ditions, they may have different signal lengths and sample sizes. Therefore, the structure of 
target models in Zhang et al. (2017) and Li et al. (2020) are altered according to the dimen-
sionalities of target data and labels.

Shao et al. (2018) use a deep transfer framework to accelerate the training of deep neural 
networks as well as achieve accurate machine fault diagnosis. Figure 5 shows the general 
pipeline of the proposed framework. They first use a Wavelet transformation to convert the 
original one-dimensional sensor data into images which present time-frequency distribu-
tions. A VGG-16 network pretrained on the ImageNet dataset is used as the source model 
for transfer. To fit the network architecture of VGG-16, a time window consisting of 1024 
data points is converted to a 224×224 time-frequency image. Since the source dataset, i.e., 
ImageNet dataset that consists of natural images, is considered to be quite different from 
the studied target dataset that is composed of time-frequency images, three highest-level 
blocks of a target network are fine-tuned based on labeled training data while the weights 
of other lower layers are fixed. Three mechanical datasets including induction motors, 
gearboxes, and bearings with sizes of 5000, 6000 and 9000 time-series samples, are used to 
verify the effectiveness of the proposed pipeline.

Apart from AlexNet and VGG architectures, the model and parameter transfer method 
can be applied to an auto-encoder (AE). For rolling bearing fault diagnosis, Li et al. (2019) 
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construct a deep transfer nonnegativity-constraint sparse AE to tackle the transfer diagno-
sis problem with limited labeled target data. They first build a base deep AE by stacking 
multiple nonnegativity-constraint sparse AEs, then train the base model with source data. 
The model architecture and parameters (including weights and biases) of the source deep 
AE are transferred to initialize the target model which is then fine-tuned by limited labeled 
target data. The deep transfer framework is verified by a motor bearing source dataset and 
a real-world bearing target dataset collected from railway locomotive. The work Zhiyi et al. 
(2020) applies a similar transfer method in Li et al. (2019), except that it enhances auto-
encoder by replacing the standard activation function with a scaled exponential linear unit 
and adding a nonnegative constraint term into its loss function. Sun et al. (2018) select a 
sparse AE to construct a deep transfer network for RUL prediction. A case study on the 
cutting tool is performed to validate its effectiveness. Following the idea of model and 
parameter transfer, in Sun et al. (2018), they directly transfer and then fine-tune weights 
and bias learned in pre-trained source sparse AE networks.

More related machinery applications based on model and parameter transfer can be 
found in Zhao et al. (2020), Zhang et al. (2020), Zhao et al. (2021), Huang et al. (2021), 
Dong et al. (2022) and Hasan et al. (2019).

To conclude, the model and parameter transfer methods accomplish the transfer by 
using pre-trained models that are already well-trained using other large datasets. A target 
model can share the network structure, model parameters and model hyperparameters of 
a pre-trained source model. The majority of this type of research deploys such method in 
deep neural networks where the lower-level weights of the target model are obtained from a 
pre-trained model, and the higher-level weights are fine-tuned to fit the specific fault diag-
nosis or RUL prediction task. By this means, model and parameter transfer can offer rea-
sonable and suitable initialization to a target model and decrease the number of parameters 

Fig. 3   General framework of CNN transfer (Shao et al. 2020)
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that need to be updated in a target model, which greatly improves the target model’s train-
ing process. It is noted that model and parameter transfer-based machinery diagnostics and 
prognostics methods require the target data to be partially labeled at least because model 
fine-tune needs such labeled data. Moreover, when the distributions of source and target 
data are quite different, only fine-tuning is not enough to achieve satisfactory results, thus 
demanding considerations of feature alignment to be discussed next.

3.2 � Feature matching‑based methods

Feature matching-based transfer methods aim to reduce the distribution difference between 
source and target features through feature transformations. With feature matching, the 
knowledge of source domain can be transferred to target model. Some methods transform 
the source features so as to match them with the target features, and vice versa. Some meth-
ods transform both source and target features into a shared feature space where their dis-
tributions are drawn closer and become similar to each other. According to whether deep 
neural networks are used or not, feature matching-based methods can be divided into shal-
low methods and deep ones.

3.2.1 � Shallow methods

To better present different shallow feature matching approaches, we introduce some clas-
sical transfer methods in two classes: (1) distribution adaptation that draws source and tar-
get features closer by aligning their statistical features (e.g., align marginal or conditional 
distributions or both of them); and (2) subspace feature learning which projects original 

Fig. 4   General framework of fault diagnosis models (Zhang et al. 2017)
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source and target features into a shared subspace based on matching statistical features or 
manifold learning.

(1) Distribution adaptation
Distribution adaptation of source and target features is a widely used TL method. As 

shown in Fig. 6 , the basic motivation behind this approach is that since the data probabil-
ity distributions in source and target domains are different, then the most straightforward 
way is to bring these different data distributions closer by some transformations. According 
to the nature of data distribution, these methods can be classified into marginal, condi-
tional, and joint distribution adaptation.

Marginal distribution adaptation aims to reduce the difference between the marginal 
probability distribution of source data and that of target one, i.e., minimizing the distance 
between P(��) and P(��):

where D(⋅, ⋅) measures the distance. More specifically, D(DS,DT ) denotes the distance 
between source and target data, and D(P(X

S
),P(X

T
) means the distance between source 

and target marginal probability distributions.

(1)minD(DS,DT ) = minD(P(X
S
),P(X

T
))

Fig. 5   General pipeline (Shao et al. 2018) based on fine-tuning pre-trained models
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TCA (Transfer Component Analysis) (Pan et  al. 2010) is a representative method that 
applies marginal distribution adaptation. It takes the Maximum Mean Discrepancy (MMD) 
(Gretton et al. 2006) as its distance metric. MMD is the most frequently used metric in TL, 
which measures the distance between two distributions in the Reproducing Kernel Hilbert 
Space (RKHS) (Borgwardt et al. 2006). It is a nonparametric approach to estimate distance 
and is also a kernel learning method. MMD between �� and �� is:

where kernel mapping � ∶ x → �(x) maps data into RKHS where the inner product calcu-
lation in (2) can be shifted to the form of kernel functions. Namely, MMD can be obtained 
by directly calculating the kernel functions. Moreover, TCA assumes that the feature map-
ping function � can achieve P(�(X

S
)) ≈ P(�(X

T
)) , namely, the marginal distribution of 

source and target are similar after mapping. Therefore, in TCA, the objective of minimiz-
ing the domain difference is written as

where tr(⋅) is the trace operation, ki is the i-th row vector of matrix 
K = �(X)T�(X) ∈ R(n1+n2)×(n1+n2) which denotes the kernel matrix, W is a transformation 
matrix, and L

M
 is the MMD matrix whose entry at (i, j) is calculated as:

Adding a regularization term tr(WT
W) and a constraint WT

KHKW = I ( I is an identity 
matrix) that maintains the variance of mapped data, TCA is formulated as:

where H = I(n1+n2)
− (1∕n1 + n2)11

T denotes the centering matrix, 1 is a (n1 + n2)-dimen-
sion column vector whose all entries are 1, and � is a trade-off coefficient. Solving (5) with 
the Lagrange duality theory, the solution of W in TCA is the p (p ≤ n1 + n2 − 1) largest 
eigenvectors of (KL

M
K + �I)−1KHK . With the optimal W, the original source data and 

target data are transformed to be similar, i.e., the transformed features are matched. There-
fore, a well-trained source model based on such source features can achieve good results on 
transformed target features.

(2)MMD(X
S
,X

T
) = ‖ 1

n1

n1�
i=1

�(X
S
) −

1

n2

n2�
j=1

�(X
T
)‖2

H

(3)

minD(DS,DT ) = min‖ 1

n
1

n
1�

i=1

�(X
S
) −

1

n
2

n
2�

j=1

�(X
T
)‖2

H

= min‖ 1

n
1

n
1�

i=1

W
Tki −

1

n
2

n
2�

j=1

W
Tkj+n

1
‖2
H

= tr(WT
KL

M
KW)

(4)L
M (ij) =

⎧⎪⎨⎪⎩

1

n2
1

xi, xj ∈ XS,

1

n2
2

xi, xj ∈ XT ,

−
1

n1n2
otherwise.

(5)
min tr(WT

KL
M
KW) + �tr(WT

TW)

s.t.WT
TKHKW = I
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Conditional distribution adaptation aims to reduce the difference between the con-
ditional probability distributions of source and target data, i.e., minimizing the distance 
between source conditional distribution Q

S
(Y

S
∣ �(X

S
)) and target one QT (YT

∣ �(X
T
)) . 

They are hard to be directly computed, so they are approximated by Q
S
(X

S
∣ �(Y

S
)) and 

QT (XT
∣ �(��)) . Note that, there are few studies that apply conditional adaptation alone 

(Saito et al. 2017). Most studies utilize both marginal and conditional adaptations with a 
coefficient � , so as to achieve robust transfer performance, i.e.,

If target labels are unavailable, QT (�� ∣ �(��)) cannot be directly calculated. To deal with 
this, many studies apply pseudo target labels to complete the calculation in (6). In most 
work ( Kang et al. 2020), the pseudo labels of target data are predicted by the source model 
or unsupervised clustering methods. e.g., K-Nearest Neighbor Classifier. Joint Distribution 
Adaptation (JDA) (Long et al. 2013) and Transfer Joint Matching (TJM) (Long et al. 2014) 
are typical transfer methods that consider both marginal and conditional probability distri-
butions. They take MMD as the distance metric, i.e.,

where �(�)

�
= {xi ∶ xi ∈ �� ∩ y(xi) = c} is a set of source data with label c, i.e., their 

true label y(xi) = c , and n(c)
1

 is the total number of data samples in such set. Similarly, 
�

(�)

�
= {xj ∶ xj ∈ �� ∩ yp(xj) = c} represents a set of target data whose pseudo labels yp(xj) 

are c, n(c)
2

 is the total number of target samples that belong to label c, and L̂
c
=
∑N

c

c=1
�� . 

The entry at (i, j) of conditional MMD matrix �� is:

(6)
minD(DS,DT ) = min[D(P(�(��)),P(�(��)))

+ �D(QS(�� ∣ �(��)),QT (�� ∣ �(��)))]

(7)

D(QS(�� ∣ �(��)),QT (�� ∣ �(��)))

= ‖ 1

n
(c)

1

�
i∈��

(c)

�Tki −
1

n
(c)

2

�
j∈��

(c)

�Tkj‖2H

=

C�
c=1

tr(�������)

= tr(����̂���)

Fig. 6   Motivation of distribution matching
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Integrating (3) and (8) into (6), the objective of distribution adaptation can be reformulated 
as

Following the similar solving steps, JDA can get its optimal transformation matrix that 
makes P(�(��)) ≈ P(�(��)) and Q

S
(�� ∣ �(��)) ≈ Q

T
(�� ∣ �(��)) . In JDA, the trade-off 

coefficient � is set to be 1. Balanced Distribution Adaptation (Liu et al. 2021) and Dynamic 
Distribution Adaptation (Wang et al. 2020) extend this method by exploring the best trade-
off coefficient � between two distributions and propose an approach to estimate and update 
it dynamically.

(2) Subspace feature learning
Subspace feature learning methods assume that the source and target data samples are 

similar in the transformed subspace. They firstly compute a domain-specific subspace for 
the source data and another one for the target data independently. Then, they project source 
and target data into intermediate subspaces. Next, subspace features of source and target 
mapped data are learned such that they are closer to each other. There are two ways to learn 
subspace features: statistical distribution alignment and manifold one. The former projects 
both source and target data to a commonly shared subspace by aligning their statistical dis-
tributions. The latter builds a (potentially large) set of intermediate representations along 
the shortest geodesic path that connects source and target subspaces.

Statistical distribution alignment-based methods focus on aligning the statistical fea-
tures by transformations in a subspace. The aligned data can be learned by traditional 
machine learning methods. Subspace Alignment (SA) (Fernando et al. 2013) is a typical 
method to learn features in a statistical alignment way. In SA, a subspace is composed 
of p eigenvectors obtained by a PCA (Principal Component Analysis). First, the source 
data �� and target data �� are represented by their respective subspaces whose basis 
vectors �� and �� are derived from PCA. Namely, data in their respective subspaces 
can be formulated as ��

�
= ���� and ��

�
= ���� . SA learns a mapping function � that 

aligns the source subspace basis vectors with the target ones by finding:

where ‖ ⋅ ‖2
F
 is the Frobenius norm. Since �� and �� are generated from the first p eigenvec-

tors using PCA, they tend to be intrinsically regularized. Hence, there is no need to add 
a regularization term in (10). Thus, the closed-form solution of (10) can be obtained as 
�∗ = ��

�
�� . The new basis vectors of a source coordinate system are ���

�
�
�� , which is 

called “the target-aligned source coordinate system”.
SA is simple to implement with an efficient computational process, and is a represent-

ative method for subspace learning. Based on SA, Sun et  al. have proposed SDA (Sub-
space Distribution Alignment) (Sun and Saenko 2015) by adding probability distribution 

(8)��(ij) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

n
(c)

1
n
(c)

1

xi, xj ∈ ��
(c),

1

n
(c)

2
n
(c)

2

xi, xj ∈ ��
(c),

−
1

n
(c)

1
n
(c)

2

�
xi ∈ ��

(c), xj ∈ ��
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adaptation into SA. According to Sun and Saenko (2015), SA does not address the problem 
of distribution alignment. Assume that subspace transformation � can fully align source 
and target subspace bases. Yet the subspace distributions of ��

�
 and ��

�
 can be different, 

thereby leading to degraded performance of source-trained models since such distribution 
divergence affects the decision boundary. Hence in SDA, apart from a subspace transfor-
mation matrix, a probability distribution adaptation transformation is added such that the 
source and target distributions in the subspaces are aligned as well, thereby promoting TL 
performance.

Different from SA and SDA, which only perform first-order feature alignment between 
source and target domains, Sun et  al. have proposed CORAL (CORrelation Alignment) 
(Sun et al. 2017) to perform second-order feature alignment between these two domains. 
Assume that �� and �� are the covariance matrices of source and target domains respec-
tively. It learns a second-order feature transformation � to minimize the cross-domain fea-
ture distance, i.e.,

CORAL is very simple and efficient. It is applied to the neural networks and results in 
DeepCORAL (Sun and Saenko 2016). It calculates a CORAL metric to measure the loss of 
cross-domain distribution divergence in a neural network.

Many methods embed manifold learning in the process of subspace learning for differ-
ent domains. Manifold alignment aims to match source and target data from two different 
manifolds so that they are able to be mapped into a shared common space. As mentioned 
before, manifold alignment projects data into a (potentially large) set of intermediate sub-
spaces along the shortest geodesic path that links the source and target subspaces on the 
Grassmann manifold. The approach of Sampling Geodesic Flow (SGF) (Gopalan et  al. 
2011) is classic, and then Geodesic Flow Kernel (GFK) (Gong et al. 2012) is SGF’s exten-
sion and achieves enhanced performance. Hence, the latter is the representative work in the 
field of manifold alignment.

SGF is motivated by incremental learning and regards the generative subspaces of 
source and target domains as two points on the Grassmann manifold. Then, there is a geo-
desic path that connects source and target subspaces. SGF samples several points along this 
geodesic path to create intermediate subspaces, and then transform a source to a target in 
order of these sampled subspaces. Intuitively, these subspaces offer a meaningful descrip-
tion to model domain shift. Hence, a transfer is achieved by these intermediate representa-
tions between source and target domains. Concretely, SGF has the following steps: i) build 
a geodesic flow path bridging source and target domains on the Grassmannian manifold; 
ii) sample a certain number of subspaces along this geodesic path; iii) map original source 
and target feature vectors onto these subspaces and integrate them to form new feature vec-
tors; and iv) construct discriminative models based on new features of source and target 
data.

The work (Gong et al. 2012) points out several limitations of SGF, e.g., it is not clear 
how many subspaces should be sampled to ensure a successful transfer in SGF. To address 
this problem, it proposes GFK to model domain shift by integrating an infinite number of 
subspaces, which describes incremental changes between the source and target domains in 
a more elaborated way. GFK has four key steps: i) determine the best dimensionality of the 
subspaces to embed domains; ii) construct the geodesic flow that parameterizes the smooth 
changes from the source domain to the target one; iii) calculate their geodesic flow kernel; 
and iv) use the kernel to build a discriminative model with labeled data.

(11)�∗ = argmin
�

‖����� − ��‖2F
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Many methods combine subspace feature learning and distribution adaptation so as to 
improve their TL performance. For example, Domain Invariant Projection (DIP) (Baktash-
motlagh et al. 2013) integrates the marginal distribution alignment and manifold subspace 
learning, and Manifold Embedded Distribution Alignment (MEDA) (Wang et  al. 2018) 
performs dynamic distribution alignment in the Grassmann manifold and integrate a graph 
Laplacian regularization term in its objective.

As for the machinery applications based on feature matching transfer, Mao et al.  (2019) 
utilize TCA (Pan et al. 2010) to transfer features in the task of rolling bearings RUL pre-
diction. Qian et al. (2021) use MEDA (Wang et al. 2018) for rotating machine fault diag-
nosis under variable working conditions. Ma et al. (2020) present a diagnosis framework 
by extending TCA to weighted TCA (WTCA). To improve the separability of class labels, 
WTCA adds the objective function of linear discriminate analysis into the original TCA 
objective, which minimizes the within-class distance as well as maximizes the distance 
between different classes. It also considers the conditional distribution alignment in its 
objective, which is similar to TJM (Long et al. 2014). WTCA is validated by five transfer 
diagnosis tasks with varying experimental positions, fault severity levels, fault types, work-
ing conditions and experiment setups. To tackle the problem of class imbalance, Zhang 
et  al. (2020) enhance TJM by integrating a distance metric: maximum variance discrep-
ancy (MVD), and their method is verified by two case studies of bearing fault diagnosis. 
Note that, MMD matching reduces the domain distribution divergence concerning the first-
order statistics, while MVD matching achieves such goal from the perspective of the sec-
ond-order statistics. Zhang et al. (2020) present a GFK-based domain adaptation method 
for fault diagnosis and validate it with real-world gears and bearings datasets.

In addition to the aforementioned transfer methods, many other approaches integrate time-
frequency analysis and matrix factorization into the transfer framework for machinery diagno-
sis or prognostics. Wang et al. (2021) propose a joint dictionary matrix factorization method 
to handle transferable regression tasks, i.e., RUL predictions of bearings under varying oper-
ating conditions. They use joint-domain projection dictionaries to construct a shared latent 
space for source and target data. Wang et al. (2016) present a transfer factor analysis (TFA) 
method for gearbox diagnosis under various operating conditions. TFA is built based on fac-
tor analysis that transforms data into a low-dimensional latent space where the key properties 
of original data are preserved. It also takes domain difference into consideration. Thus, TFA 
can capture the pivot features of the original source and target domain data, and can be used 
to reduce their domain divergence in the learned latent space. In TFA, the knowledge transfer 
between source and target domains is achieved by a shared factor loading matrix. TFA utilizes 
two different noise terms to represent domain differences, which are described by two dif-
ferent diagonal covariance matrixes. During the process of dimension reduction, the learned 
features can minimize domain differences as well as preserving data properties. Such features 
acquired by TFA can be fed into a machine learning model for classification. In Wang et al. 
(2016), experiments based on support vector machines are performed to validate that TFA can 
be effectively applied to gearbox diagnosis under different operating conditions. Shen et al. 
(2015) present a bearing fault diagnosis strategy by transferring knowledge from selective aux-
iliary data (also source data) to their target model. Single Value Decomposition (SVD) (Sun 
et al. 2021) is used for feature extraction, and the TrAdaboost transfer learning algorithm is 
applied to improve the classification accuracy. In Shen et al. (2015), in order to avoid negative 
transfer, each source sample is evaluated for transferability and possibility according to how 
similar it is to target samples. A similarity criterion is determined by the vector angle cosine of 
SVD features between target data and auxiliary source data. Experiments using datasets from a 
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bearing test system verify its effectiveness. Chen et al. (2021) also use the TrAdaboost transfer 
learning algorithm in their framework for wind turbine fault diagnosis.

3.2.2 � Deep methods

With the wide popularity of deep learning methods, more and more researchers are using 
deep neural networks for TL. Compared to traditional shallow TL methods (TCA, GFK, 
etc.), deep ones greatly improve learning performance on different tasks with more accu-
rate results. Moreover, because they learn directly from raw data, they have two additional 
advantages over shallow ones: automating the extraction of more discriminative features, 
and meeting the end-to-end needs of real-world applications.

In the previous section, we have answered why deep networks are transferrable and 
introduced the simplest form of deep network transfer: model and parameter transfer fol-
lowed by finetuning. In this section, feature matching techniques used in deep networks are 
explored. Note that, deep adversarial networks, as a promising and commonly-used method 
to perform the transfer, are introduced separately in the next section. We describe the basic 
ideas and core methods for matching features in general deep networks. It is worth noting 
that due to the vast development of research efforts in deep TL, it is impossible to cover 
all the latest methods. But their basic principles are similar. Therefore, we introduce some 
basic but representative methods.

Model and parameter transfer with fine-tune serves as the basis in deep transfer, which 
can save training time and also improve accuracy. But when source and target data samples 
are of different distributions, feature matching methods, such as distribution adaptation 
and subspace feature learning depicted in shallow methods, should be incorporated into 
deep transfer networks. Thereby, many deep learning methods develop adaptation layers 
to achieve cross-domain adaptation. Such adaptation layers can draw the data distributions 
of source and target domain closer to each other, so as to improve the transferability of 
networks. From the above analysis, it is concluded that self-adaptive deep networks mainly 
concentrate on two parts. The first part answers which layer can be self-adaptive. It deter-
mines the transferability of the networks. The second one answers what kind of adaptation 
methods should be used. This determines the generalization ability of transfer networks.

The most important issue in deep networks is to define network loss. Most methods 
adopt the following loss definition:

where l denotes the total network loss, lS(DS) is the source model loss on the labeled source 
data DS (which is the same as that in general deep networks), lA(DS,DT ) represents the 
adaptation loss between DS and DT , and coefficient � is used to trade off two network 
losses. The second part, i.e., adaptation loss, is unique to TL and not present in traditional 
deep networks. Its expression is the same as the distribution difference between source and 
target domains as discussed about shallow methods.

Domain adaptive neural network (DaNN) (Ghifary et  al. 2014) is an early work that 
integrates the distribution alignment into network training. But its structure is quite simple. 
The base networks in DaNN consist of only two layers: a feature extracting layer and a clas-
sification one. DaNN proposes to add an MMD adaptation layer after the feature extract-
ing layer, which is used to calculate the distance between source and target domains. Such 
distance is used as the adaptation loss in (12). However, due to the too-simple network 
architecture, DaNN’s capability to learn good representations is limited. Thus, it cannot 

(12)l = lS(DS) + �lA(DS,DT )
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effectively solve the problem of domain adaptation. Therefore, most subsequent research-
ers expand it by using deeper architectures, such as AlexNet (Krizhevsky et al. 2012), VGG 
(Simonyan and Zisserman 2014) and ResNet (He et  al. 2016), or replacing MMD with 
multi-kernel MMD (MK-MMD).

Deep Domain Confusion (DDC) (Tzeng et  al. 2014) follows the above ideas and 
employs pre-trained AlexNet to achieve deep transfer. As shown in Fig. 7, DDC fixes the 
first seven layers of AlexNet and takes features of the eighth layer (the layer before the clas-
sifier) to measure cross-domain distance.

Its distance metric adopts the widely used MMD criterion. DDC can be expressed as:

where Θ denotes all the network parameters (weights and bias), lS(�(��),��) is the loss 
between the predicted labels �(��) and true labels �� , lMMD(DS,DT ) computes the cross-
domain distance based on MMD. Noting that DDC only aligns marginal distributions, its 
extension (Tzeng et al. 2015) jointly aligns conditional and marginal distributions in CNN 
architecture for domain and task transfer.

Deep Adaptation Networks (DAN) (Long et al. 2015) extend DDC in two aspects. First, 
different from DDC that adds only one adaptive layer, DAN adds three adaptation layers 
(three fully connected layers before the classifier layer) and freezes the first five layers in 
AlexNet as shown in Fig. 8. Secondly, MK-MMD, which is considered to have better rep-
resentation ability than MMD, is adopted in DAN to replace plain MMD in DDC. The 
parameter learning of MK-MMD is integrated into the training of the deep network, which 
does not increase the extra network training time. DAN can achieve better classification 
performance than DDC on multiple tasks. It is written as

where l1 and l2 denote the start and end layers of adaption, and l1= 6 and l2= 8 in DAN. 
Joint Adaptation Network (JAN) (Long et al. 2017) extends DAN by adding conditional 
distribution alignment and proposes joint MMD.

Using the structure of DDC (Tzeng et al. 2014), Azamfar et al. (2020) present a deep 
domain adaptation methodology for ball screw fault diagnosis. Deebak and Al-Turj-
mann (2021) also take a DDC architecture for fault diagnosis, but their base network is 
a stacked sparse auto-encoder. Si et  al. (2021) add CORAL (Sun et  al. 2017) matching 
into DDC’s framework and use ResNet as a feature extractor in their fault diagnosis task. 
Replacing marginal MMD in DDC with conditional MMD and extracting multi-scale fea-
tures by multiple different convolution kernels, Wang et al. (2020) propose a multi-scale 
deep transfer method. Han et al. (2020) present a deep transfer network (DTN) for bearing 
fault diagnosis. As shown in Fig. 9, DTN embeds the idea of joint distribution adaptation 
(JDA) (Long et al. 2013) to ensure accurate distribution matching. It is built on the basis 
of DDC and extends it by replacing marginal MMD matching with joint MMD match-
ing, i.e., both marginal and conditional probability distributions are employed to reduce 
the domain divergence across domains. Three fault datasets, i.e., wind turbine, bearing and 
gearbox datasets, covering different operating conditions, fault severities and fault types, 
are used for validation. Based on such datasets, ten transfer tasks are used to evaluate the 
practicability and applicability of DTN. Similarly, Wu et al. (2020) integrate JDA in their 
deep transfer network, but they take the long-short term memory (LSTM) as the feature 

(13)min
Θ

l = lS(�(��),��) + �lMMD(DS,DT )

(14)min
Θ
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extractor network. Shen et al. (2021) and Liao et al. (2021) also utilize JDA for distribution 
alignment for bearing fault diagnosis, but they dynamically adjust the weight of conditional 
MMD matching. Yu et al. (2019) also integrate LSTM in their transfer framework, but they 
conduct RUL prediction (instead of extracting features) by LSTM due to its excellent abil-
ity to handle time-series data.

Li et al. (2018) extend DDC in a different way. They present a deep distance metric learn-
ing for fault diagnosis. To improve the generalization ability of a transfer model, apart from 
domain adaptation by matching marginal MMD as in DDC, they propose a representation 
clustering method that minimizes the within-class distance of features and maximize the 
between-class distance of features. Hence, data from the same class can be mapped closer, 
while data in different classes are well-separated. The deep distance metric learning method 
in Li et al. (2018) has three steps: (1) the raw machinery vibration signal data are input to a 
deep learning network which functions as a feature extractor; (2) distance metric learning is 
deployed to handle the extracted high-level features. It consists of representation clustering 
and domain adaptation, and both of them utilize the top fully-connected layer as data repre-
sentations; and (3) a classifier is used for final fault classification. Kim et al. (2021) present a 
similar semantic clustering-based method for fault diagnosis of rotating machinery, but their 

Fig. 7   General framework of DDC (Tzeng et al. 2014)
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additional semantic clustering loss is computed at multiple feature levels, i.e., outputs from 
every pooling layer in a source feature extractor are used for calculating such clustering loss.

Based on the architecture of DAN (Long et al. 2015), Jin et al. (2021) achieve domain 
adaptation bearing fault diagnosis under different working conditions. Zhu et  al. (2019) 
build their transfer network on DDC and calculate domain loss by a linear combination of 
multiple Gaussian kernels. Ding et al. (2021) match MK-MMD between source and target 
features extracted by auto-encoders, and realize the cross-domain transfer for RUL predic-
tion, while Lu et al. (2021) match marginal and conditional MMD for deep feature adapta-
tion in fault diagnosis. By using DAN, Li et al. (2021) utilize DAN architecture and present 
an ensemble of twelve transfer networks with 12 different kernel MMD (such as linear ker-
nel, Gaussian kernel, polynomial kernel, and exponential kernel) such that diverse transfer-
able feature representations can be learned.

A feature-based transfer neural network (FTNN) (Yang et  al. 2019) is built on DAN 
but matches the marginal MMD in multiple layers (including two convolutional layers 
and two full-connected layers) as shown in Fig. 10. It utilizes two separated networks for 
source and target. Their network architectures are shared such that the multi-layer domain 
adaptation can be employed to reduce the cross-domain distribution divergence. There are 
three loss functions to be jointly minimized in FTNN: (1) source network loss between pre-
dicted labels for source samples and their true labels, (2) target network loss between pre-
dicted labels for target samples and their pseudo labels, and (3) multi-layer MMD between 
extracted features in source and target networks. FTNN is designed to transfer the diagno-
sis knowledge of laboratory bearings simulating both normal and faulty conditions to real-
case machines. Two fault diagnosis cases, i.e., transfer from laboratory motor bearings to 
real-world locomotive bearings and from laboratory gearbox bearings to real-world loco-
motive bearings, are used to verify the effectiveness of the FTNN model.

Especially, to deal with RUL prediction, Zhang et al. (2021) present a data alignment 
scheme to ensure that source and target data follow similar degradation trace in the learned 
subspace, thus facilitating prognostics knowledge transfer. The proposed data alignment 
scheme includes healthy state alignment, degradation direction alignment, degradation 
level regularization and degradation fusion. Features extracted by high-level layers are 

Fig. 8   General framework of DAN (Long et al. 2015)
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input to the proposed data alignment module. Other model architectures are similar to 
DAN.

Apart from popular CNN, an auto-encoder and its variants are widely used in deep transfer 
methods for machinery diagnosis. Studies (Li et  al. 2020; Lu et  al. 2016) employ an auto-
encoder as a feature extractor. In fault diagnosis tasks, they achieve domain adaptation by 
applying MMD to minimize the domain discrepancy when transferring a source model. The 
difference is that one auto-encoder is taken as a basic single-layer representation model in Lu 
et al. (2016), while a sparse auto-encoder is used in Wen et al. (2017). They both stack mul-
tiple layers to develop a deep network. Similarly, by stacking multiple layers of a denoising 
autoencoder (DAE) to extract features in various levels, the work (Wang et al. 2019) presents a 
hierarchical deep domain adaptation (HDDA) approach for fault diagnosis of a thermal system 
under varying operating conditions. A fault classifier trained by labeled source data collected 
under one working load is transferred to classify unlabeled target data acquired from another 
different load. In HDDA, both marginal and conditional CORAL (Sun et al. 2017) distances 
are used to minimize the distribution differences.

To conclude the feature matching-based transfer methods and their machinery applications, 
researchers achieve the transfer by reducing the feature distribution difference across domains 
via feature transformations. Both shallow and deep methods can be used for feature extrac-
tion and domain adaptation with the goal of drawing source and target features closer. Tech-
niques established in shallow methods, such as distribution adaptation and subspace learning, 
are integrated into deep transfer networks. Since deep transfer methods usually gain higher 
performance than shallow ones, most existing research tends to implement deep ones in their 
applications of machinery fault diagnosis or RUL prediction.

3.3 � Adversarial adaptation‑based methods

In recent years, Generative Adversarial Networks (GAN) (Liu et al. 2021; Han et al. 2020; 
Yang N et al., 2021), as the representative of adversarial learning, have attracted the attention 
of many researchers. Various kinds of GAN-based variants have emerged. They have greatly 
improved the learning performance compared to traditional deep neural networks. Therefore, 
GAN-based TL is also a popular research topic.

Fig. 9   General framework of DTN (Han et al. 2020)
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GAN is inspired by the idea of a two-player zero-sum game in game theory. It consists of 
two parts: a generative network and a discriminative one. The former, known as a generator, 
aims to generate fake samples that are as real as possible. The latter, called a discriminator, 
determines whether the samples are real or generated by the generator. The generator tries to 
confuse the discriminator, but the discriminator tries to not be fooled by the generator. As a 
consequence, their training objectives are adversarial. GAN is completed by playing the gen-
erators and discriminators against each other.

The original GAN is mostly used for generating samples, which seems to have no relation 
with TL. But its adversarial structure is exactly suitable for transfer. In GAN, the generator 
tries to produce samples that are similar to the real samples, while in TL the source and tar-
get features are also supposed to be similar. In adversarial adaption-based transfer, there is no 
need to generate samples, and thus we take features of a source or target domain as the output 
of a generator, i.e., “generated samples”. Then the discriminator is used to tell the difference 
between source and target features. Therefore, the generator in adversarial adaption tasks does 
not function as a sample generator, but it is used for extracting features. Its goal is to learn 
the features of one domain such that the discriminator cannot distinguish them from features 
of the other domain. In this way, the original generator can also be called a feature extractor. 
Similar to deep transfer networks, the loss of an adversarial adaptation network consists of two 
components: the loss of network training loss lS and domain discriminative loss ld , i.e.,

A Domain-Adversarial Neural Network (DANN) (Ganin et  al. 2016) is the first one 
to applying an adversarial mechanism into the transfer network. It promotes features in 
two ways. First, the learned features are discriminative for the primary learning task on a 
source domain. Secondly, they are indiscriminate in terms of the domain shift, i.e., the fea-
tures are domain-invariant and transferable. As shown in Fig. 11, DANN consists of three 
parts: a deep feature extractor Gf (⋅;�f ) with parameter �f  , a deep label predictor Gy(⋅;�y) 

(15)l = lS(DS) + �ld(DS,DT )

Fig. 10   General framework of FTNN (Yang et al. 2019)
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with �y and a domain classifier Gd(⋅;�d) with �d . The feature extractor Gf  and label predictor 
Gy form a standard feed-forward path. Along this path, the labeled source data can be input 
and used for training. A standard network training for Gf  and Gy is achieved by minimiz-
ing the label prediction loss and back-propagating corresponding gradients. As for domain 
adaptation, DANN uses a gradient reversal layer (GRL) to connect the domain classifier 
and feature extractor. As its name implies, GRL multiplies back-propagated gradients by a 
negative constant. As a consequence, the domain classifier has an adversarial impact on Gf  
compared to that in the training path of Gf  and Gy . The domain classifier Gd is designed to 
distinguish source and target features by minimizing its loss. With GRL, the feature extrac-
tor network maximizes such loss such that Gd cannot tell the difference between source and 
target domains.

To conclude, (1) when training Gf  and Gy , both of them are optimized to minimize the 
prediction error on source data, which can learn discriminative features that can be accu-
rately classified; (2) when training Gf  and Gd , Gd is to minimize the discrimination loss but 
Gf  is to maximize such loss, which ensures the features of two domains are similar such 
that domain-invariant features are learned. In DANN, for sample xi , the network training 
loss Li

s
 and domain discriminative loss Li

d
 are formulated as:

where di is the binary domain indicator for the i-th sample. It is 0 if xi comes from a source 
domain and 1 if it is from a target domain.

The overall objective in DANN can be written as:

where � is a coefficient to balance Ls and Ld . As analyzed previously, the optimal param-
eters satisfy

Following the gradient descent rule, parameters in (19) and (20) can be updated as:
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where � is the learning rate.
Different from DANN where source and target data share the same feature extractor, 

Tzeng et al. propose Adversarial Discriminative Domain Adaptation (ADDA) (Tzeng et al. 
2017) that uses separated feature extractors networks MS and MT for source and target data, 
respectively. ADDA is a representative method that directly uses the architecture of GAN. 
According to Tzeng et al. (2017), the optimization in DAAN corresponds to the minimax 
objective in GAN, but such optimization setting tends to face the problem of vanished gra-
dients because its discriminator converges quickly at the early stage of training. Therefore, 
instead of utilizing such objective function, the work (Tzeng et al. 2017) trains its generator 
via a standard loss function with inverted labels.

As shown in Fig.  12, first, as a source CNN, MS is pre-trained based on samples of 
labeled source images, and a source classifier C is well-trained. During the pre-training, the 
loss of source classifier lS(XS, YS) is optimized over MS and C based on the labeled source 
data (XS, YS) , i.e.,

Next, as a target CNN, MT is trained to confuse discriminator D such that it cannot 
reliably predict domain labels of source and target features, i.e., target data are mapped 

(23)�d ← �d − ��
�Li

d

��d

(24)min
MS ,C

lS(��,��) = min
MS ,C

−E(xs ,ys)∼(��,��)

K∑
k=1

�[k==ys] logC(MS(xs))

Fig. 11   General framework of DANN (Ganin et al. 2016)
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to a shared feature space where they are similar to source features. Note that, the net-
work parameters of MS are fixed during adversarial training, which mimics the original 
GAN setting where the real distribution remains fixed, and the generated distribution is 
updated to match it. As mentioned previously, the objective of D is to correctly identify 
the binary domain labels of source features MS(xs) and targets features MT (xt) . Thus the 
domain discrimination loss lD(XS,XT ,MS,MT ) is expressed as:

The generator, i.e., target CNN MT , is trained by the standard loss function with inverted 
labels, i.e.,

Note that, (26) is in the same form as the first term in (25) except that it uses target data 
while (25) applies source data. This indicates that target features are trained to close to 
source features. Hence, the adversarial adaptation is successfully performed. Last, the tar-
get image is input into the learned target CNN MT and classified by the source classifier C.

DANN and ADDA represent two general frameworks, and many existing approaches 
can be considered as their extensions. Based on them, Generative Adversarial Distribu-
tion Matching (Kang et  al. 2020) and Dynamic Adversarial Adaptation Networks (Yu 
et al. 2019) integrate well-established techniques in distribution alignment and/or sub-
space learning. Moreover, some studies are motivated by the advanced development in 
GAN, then borrow their ideas to refine the deep adversarial transfer network by add-
ing more components (Liu and Tuzel 2016), e.g., feature extractor, label predictor and 
domain classifier and designing more effective architectures, e.g., such as residual con-
nections (Cai et al. 2019).

Han et  al. (2019) propose a deep adversarial CNN for intelligent diagnosis of 
mechanical faults. Its adversarial learning framework shares the same architecture as 
DANN, and mechanical signals of source and target datasets are regarded as inputs. 
Such application is verified on a wind turbine fault dataset and a gearbox fault one. Da 
Costa et al. (2020) predict RUL by utilizing the architecture of DANN with LSTM as 
a feature extractor. Michau and Fink (2021) adopt DANN and introduce a novel multi-
dimensional scaling loss for unsupervised anomaly detection tasks. Han et  al. (2021) 
extend DANN to the scenario of sparse target data by adding multiple domain adver-
sarial discriminators, such that it can realize convincing feature distribution alignment. 
Guo et al. (2018) also consider the distribution alignment. But different from Han et al. 
(2021), they integrate the techniques in the feature matching method and present a 
deep convolutional transfer learning network (DCTLN) for machine fault diagnosis. As 
shown in Fig.  13. It has two modules: condition recognition (blue part) and domain 
adaptation (orange part). The former is constructed by a feature extractor that utilizes 
CNN to learn features from the input of one-dimensional sensor data, and a health con-
dition classifier that recognizes different health states of machines. The latter learns 
domain-invariant features along two directions: a domain classifier to maximize domain 
recognition errors, and a distribution matching term that takes MMD as distribution dis-
crepancy metric and minimizes the probability distribution distance between extracted 
source and target features. Note that DCTLN constructs its framework based on DANN, 
and extends it by adding distribution matching into DANN. In DCTLN, three bearing 
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datasets collected from different machines (motor bearing, shaft support bearing and 
railway locomotive bearing) are used to construct six transfer fault diagnosis experi-
ments. Since these machines are operated under different speeds and loads, their data 
distributions are with obvious divergence. Experimental results with regards to the clas-
sification of bearing health conditions indicate that accuracies of DCTLN are about 
32.1% higher than traditional methods without TL.

A structure similar to DCTLN is utilized in Zhu et al. (2020) for RUL prediction and in 
Huang et al. (2021) and Jiao et al. (2020) for fault diagnosis. There are some differences: 
Huang et al. (2021) takes the dense convolutional neural network (Dense-net, Huang et al. 
2017) for extracting features and replaces MMD metric with CORAL (Sun et  al. 2017) 
metric, and Jiao et  al. (2020) takes residual network as a feature extractor and replaces 
MMD metric with joint MMD. Besides, Miao and Yu (2021) present a similar adversarial 
framework for RUL prediction, but they take the selective convolutional recurrent neural 
networks as a feature extractor to learn both temporal and spatial features from raw vibra-
tion signal. Motivated by DAN (Long et al. 2015), they utilize MK-MMD to measure the 
cross-domain distribution discrepancy. Li et  al. (2021) extend DCTLN by adding data 
structure alignment. In their domain adversarial framework for fault diagnosis, apart from 
fault classifier and domain discriminator, they construct graph generation layers to model 
the relationship of structure characteristics, and then MMD matching is used to minimize 
the structure difference between such instance graphs from different domains. Xia et  al. 
(2021) use the same framework as DCTLN, but integrate fault information and ensem-
ble multiple LSTMs to capture different degradation patterns resulting from varying faults, 
thus enhancing RUL prediction performance.

Weighted Adversarial Transfer Network (WATN) (Li et  al. 2020) pays attention to a 
more real-world transfer problem in machinery fault diagnosis. Most existing methods 
assume that source and target domains share identical label space. But in practice, there is 
a situation where small target data only cover a subset of classes in relatively larger source 
data. To address this partial transfer issue, WATN introduces a weighting learning strat-
egy by adopting an additional pair of G/D (i.e., Generator/Discriminator) modules, i.e., the 
pink parts in Fig. 14. Since source data include more categories that are not shown in target 
data, WTAN filters out irrelevant source data such that they do not impact transfer perfor-
mance. A weighting strategy is designed to assess the transferability of samples in source 
domain, which assigns them different weights according to their contributions to addi-
tional G/D modules. Concretely, WTAN utilizes an additional pair of a source classifier 

Fig. 12   General framework of ADDA (Tzeng et al. 2017)
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and domain discriminator to quantify sample weights. If the additional discriminator gives 
a large probability to a source sample, it means that this sample can be easily recognized 
as source data, which indicates that such sample is far away from the target domain and 
may belong to the outlier classes. On the contrary, a small probability value means that 
the source sample is closer to the target domain and is more likely drawn from the shared 
label space. Thus, for a source sample, if its output probability by additional G/D modules 
is small, a larger weight is assigned, and vice versa. Except that WATN adds auxiliary 
networks to identify and filter out some irrelevant samples in the source domain, its basic 
network architecture is similar to DANN, i.e., it applies the minimax adversarial training 
to learn both class-discriminative and domain-invariant features. Two sets of experiments 
based on a rolling element bearing dataset and a gearbox dataset are carried out, and differ-
ent diagnosis tasks under partial transfer setting are presented to verify the effectiveness of 
WATN. Experimental results show that it can achieve promising performance by matching 
source and target distributions in their shared label space. Similarly, Li et al. (2020) present 
class-weighted adversarial networks for partial TL in machinery cross-domain fault diag-
nostics. Its network architecture is the same as DANN, and the probability outputs of its 
domain discriminator are used to determine of the corresponding weights.

Based on ADDA, Li et al. (2021) present knowledge mapping-based adversarial domain 
adaptation for fault diagnosis. Zhao et  al. (2021) propose a joint distribution adaptation 
network in ADDA’s adversarial learning framework, and an improved joint MMD (which 
directly calculates the joint probability by using Bayesian theorem rather than approxi-
mation) is used to match cross-domain features for bearing fault diagnosis. Ragab et  al. 
(2020) indicate that in transfer tasks of RUL prediction, conventional domain adaptation 
approaches focus on learning domain invariant features, but fail to consider target spe-
cific information, which leads to uncomplete feature learning and limited transfer perfor-
mance. To address this problem, they extend ADDA by presenting a Contrastive Adver-
sarial Domain Adaptation (CADA) method for cross-domain RUL prediction under 
various working conditions. Their framework extends ADDA with a contrastive loss. As 
presented in Fig. 15, CADA adds an InfoNCE module in ADDA, such that it can preserve 

Fig. 13   General framework of DCTLN (Guo et al. 2018)
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target-specific information when learning domain-invariant features. The contrastive loss 
in CADA takes InfoNCE (Henaff 2020) as a metric to measure the mutual information 
between the extracted features of the target domain and original data. By maximizing 
InfoNCE, task-specific information is preserved. Aero-engines datasets are used to con-
struct 12 cross-domain scenarios, and experiments of predicting their RUL are conducted 
to validate the performance of CADA. Experimental results show that when compared to 
other state-of-the-art methods, CADA achieves over 21% and 38% improvements in terms 
of root mean square error (RMSE) in a regression task, and score metric that imposes pen-
alties for late RUL predictions (A late RUL prediction refers to a situation where a machine 
has already failed before the predicted time, which usually causes large economic loss).

Besides, Ragab et  al. (2020) estimate RUL based on ADDA and utilize multi-layer 
bidirectional LSTM as a feature encoder. Wu et  al. (2020) also take LSTM as a feature 
extractor, and conduct the adversarial strategy by applying maximum classifier discrep-
ancy (MCD)  (Saito et al. 2018), so as to conduct rolling bearing fault diagnosis under few 
labeled data. Similarly, Li et al. (2020) take advantage of MCD to present an adversarial 
multi-classifier optimization method for machinery fault diagnostics.

In closing, adversarial adaptation-based transfer is achieved by learning domain-invari-
ant features during the adversarial training of a generator and discriminator. In adversarial 
adaptation transfer, the generator is not used for generating samples but functions as a fea-
ture extractor; and the discriminator aims to distinguish the difference between extracted 
source and target features. Due to their satisfactory transfer performance, deep adversar-
ial adaptation methods are widely used for machinery applications (especially for fault 
diagnosis). Many studies extend the general adversarial framework by integrating feature 
matching techniques such as distribution alignment and advanced development in GAN.

3.4 � Discussion

In Tables  4 and  5, we summarize the model performance of existing methods. Table  4 
presents the classification accuracy results of different transfer fault diagnosis methods on 

Fig. 14   General framework of WATN (Li et al. 2020)
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CWRU Dataset. Table 5 shows RMSE results of different transfer fault diagnosis methods 
on C-MAPSS Dataset.

From the review of the research about cross-domain transfer for machinery diagnostics 
and prognostics, it is clear that most of researchers prefer to deploy a deep transfer method 
for their applications instead of using a shallow one. The wider range of applications of 
deep TL methods is probably because they have an unbeatable advantage over traditional 
shallow ones in terms of accuracy. It should be noted that the transfer technique devel-
oped in shallow methods, such as distribution alignment and subspace feature learning 
with manifold, are integrated into the deep transfer models to improve their performance. 
Moreover, the training of deep networks requires sufficient data, expensive GPU resources 
and a long time, which may be unsuitable for machinery tasks with a small dataset and lim-
ited computation resources. For example, although the idea of edge computing (Silva et al. 
2021; Yuan and Zhou 2020) is a recent research hotspot, engineers face some difficulties to 
deploy a deep transfer model for machines in the edge.

Moreover, based on the survey of existing machinery applications, it is worth noting 
that fault diagnosis tasks draw more attention than RUL prediction tasks. Two reasons can 
account for it: (1) limitation of available datasets. Many open-source datasets are collected 
for fault classification, but there are fewer RUL datasets because it is hard and much more 
time-consuming to collect the complete data of machines’ full life cycles, and (2) limitation 
of deep models. Deep network architectures are fit for classification tasks and can achieve 
high accuracy, but for regression tasks, their training process tends to be unstable and it is 
not easy to obtain satisfactory prediction results. Most TL models are originally designed 
for classification tasks and thus not always effective for regression tasks (Ding et al. 2021). 
Nevertheless, the RUL prediction tasks, which contribute to maintenance planning and 
avoidance of large economic loss, are quite important for real-world industrial machines.

Among the previously discussed TL or domain adaptation methods, MMD is the 
most widely-used metric for measuring the distribution distance between a source and 
target. Apart from MMD, there are many other distance metrics. For example, Maxi-
mum Density Divergence (Li et  al. 2020), Kullback-Leibler divergence (Qian et  al. 

Fig. 15   General framework of CADA (Ragab et al. 2020)
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2019; Sun et  al. 2018) and Wasserstein distance (Cheng et  al. 2020; Jiao et  al. 2020; 
Yang B et al. 2021; Shen et al. 2018 and Chen et al. 2018) can be used for cross-domain 
distance metrics. But such advanced development in TL has yet been widely applied to 
machinery tasks of diagnostics and prognostics.

4 � Open‑source machinery datasets

Most machinery datasets are based on the sensor data (such as speed, vibration and 
load) and other environmental data (e.g., temperature and humidity). Monitoring sys-
tems record and store such data every day. Therefore, most datasets are constituted by 
time-series data that covers sensor records in a certain period. It is noted that image 
datasets are also used in the machinery area. But there are no open-source image data-
sets, to our best knowledge. Some research (Ko and Kim 2019; Shao et  al. 2018; Si 
et al. 2021; Wen et al. 2017; Hasan et al. 2019; Saufi et al. 2020; Oh et al. 2017) pro-
duces their own image datasets by converting original sensor data into time-frequency 
images, or two-dimensional images with variable and time axes, or acoustic spectral 
images. Besides, some work (Shao et  al. 2020; Janssens et  al. 2018; Janssens et  al. 
2017; Nasiri et al. 2019) uses an infrared camera to take thermal images and then trains 
deep learning models to process these images. However, according to our best knowl-
edge, no such image-based machinery datasets are online available. Therefore, in this 
paper, we introduce ten widely-used time-series datasets in machinery diagnostics and 
prognostics, including CWRU (2003), Gearbox Dataset (2018) by Southeast University, 
Paderborn University Dataset (2016), PHM09 Gearbox Dataset (2009), DIRG (Daga 
et  al. 2019), MFPT (2013), FEMTO (2012) (PRONOSTIA Dataset), IMS (Qiu et  al. 
2006), C-MAPSS (Saxena et al. 2008) and N-CMAPSS (Chao et al. 2021). As shown in 
Table 6, most of them are used for the classification tasks of fault diagnostics. FEMTO 
(PRONOSTIA), IMS, C-MAPSS and N-CMAPSS datasets are for the regression task 
of RUL prediction. More prognostic datasets can be found in the Prognostics Data 
Repository (http://​ti.​arc.​nasa.​gov/​proje​ct/​progn​ostic-​data-​repos​itory) which is collected 
by NASA and includes various kinds of run-to-failure data, such as battery usage data 
(Bole et al. 2014) and capacitor degradation data (Renwick et al. 2015).

4.1 � CWRU dataset

CWRU dataset (2003) is a bearing dataset collected by Case Western Reserve Uni-
versity. Many types of data are included in this dataset, but here we detailed the most 
widely used data which are for carrying out transfer experiment(the same for other data-
sets). CWRU is composed of data from both normal and faulty bearings with single-
point drive end defects or fan end defects. Three positions in bearing, i.e., the inner 
raceway, rolling element (i.e., ball) and outer raceway, are with different faults. There 
are three kinds of single-point faults with fault diameters of 0.007, 0.014, and 0.021 
inches. Faulted bearings are reinstalled into the test motor with loads of 0 to 3 horse-
power (motor speeds of 1797 to 1730 rpm), as in Table  7. Vibration signals data (as 
shown in Fig. 16) are collected and then processed in a Matlab environment. Therefore, 

http://ti.arc.nasa.gov/project/prognostic-data-repository
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all data files in CWRU dataset are in *.mat format. Each file includes fan vibration data, 
drive end vibration data, motor rotational speed, and time information.

4.2 � Gearbox dataset

Gearbox Dataset (2018) is from Southeast University, China, and can be found at mlme-
chanics.ics.uci.edu. This dataset is divided into two sub-datasets: bearing data and gear data, 
which are both acquired on Drivetrain Dynamics Simulator (DDS). Figure  17 shows the 
experimental setup of the test rig. All the data are the original vibration signals acquired by 
sensors. For the bearing dataset, besides the normal healthy working state, there are four 
types of faults, i.e., ball fault, inner ring fault, outer ring fault and a combination fault with 
both inner ring and outer ring. Gear data also contain four faults: chipped tooth, missing 
tooth, root fault and surface fault. Both are collected under two kinds of working conditions. 
For the names of data files, their suffix “20-0” or “30-2” represents the “rotating speed-load” 
working configuration. All files in this dataset are in the format of *.csv. Within each file, for 
each row of record, there are eight variables that represent different vibration signals.

4.3 � Paderborn university dataset

Paderborn University Dataset (2016) provides the data of rolling bearings. A general view 
of the test rig is presented in Fig.  18a. There are 26 faulty bearing states and 6 healthy 
states. Among the faulty states, both 12 artificially damaged states and 14 real damages 
exist at the inner and outer ring of the ball bearing. As shown in Fig. 18b, artificial faults 
are introduced by manually drilling, electric discharge and engraving. Besides, acceler-
ated lifetime tests are performed to acquire the real bearing damages. For the experiment, 
the test rig is operated under four operating conditions with three different main operation 
parameters, i.e., the rotational speed of the drive system, radial force onto the test bearing 
and the load torque in the drive train. For each setting, 20 measurements in every 4 seconds 
are recorded. All data files are restored via Matlab and saved as *.mat files.

4.4 � PHM09 gearbox dataset

PHM09 Gearbox Dataset (2009) comes from the IEEE PHM (Prognostics and Health 
Management) 2009 Challenge Competition. It is a representative of generic industrial gear-
box data with gear faults (crack in gear, cracked/broken tooth, and excessive wear or clear-
ance), bearing faults (bearing race defect, and excessive bearing clearance) and shaft faults 
(rotor imbalance, shaft misalignment, and mechanical looseness). Figure 19a shows the test 
rig and three examples of gears (Left to right: normal, missing tooth, chipped tooth). Two 
kinds of gear are used, i.e., a spur gear and a spiral cut (helical) gear. Moreover, data are 
collected at five different shaft speeds (30, 35, 40, 45 and 50 Hz) under high and low loads. 
In addition, data from different repeated runs are presented in this dataset. There are a total 
of 560 runs. For each run, data are restored in a *.csv file that has three columns (input 
voltage, output voltage and tachometer).
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Fig. 16   Examples of vibration signals (time v.s. vibration amplitude) under different faults in CWRU (2003)

Table 7   Overview of CWRU 
dataset

Operating 
condition

Speed (rpm) Load (hp) Number of 
health condi-
tions

Number 
of total 
samples

L0 1797 0 10 10000
L1 1772 1 10 10000
L2 1750 2 10 10000
L3 1730 3 10 10000
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4.5 � DIRG dataset

The DIRG dataset Daga et  al. (2019) is acquired on the rolling bearing test rig of the 
Dynamic and Identification Research Group (DIRG). Figure 20a presents its general view. 
There are two different experiments. The first one reports the vibration data of bearings 
operating with different damage and different speed and load combinations (speed: 0, 100, 
200, 300, 400, 500Hz; load: 0, 1000, 1400, 1800N). It can be used for the classification 
task of fault diagnostics. The second one presents the vibration data of a single damaged 
bearing tested at constant speed and load for a long period of time (about 330 hours). It 
monitors the damage evolution, which can be used for the regression task of RUL predic-
tion. Apart from the healthy state, three types of faults are produced to cause a conical 
indentation on the inner ring or on a single roller. The faults are of different severities, and 
the diameter of the resulting circular indentation is 150, 250 and 450 �m , respectively. Six 
channels of vibration signals are recorded. They correspond to the outputs of accelerom-
eters placed in axial and radial points in x, y, and z directions. Data are recorded in Matlab 
*.mat files.

Fig. 17   General view of the test rig in Gearbox dataset (2018)

Fig. 18   Examples in Paderborn University dataset (2016)
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4.6 � MFPT dataset

The MFPT dataset (2013) is from the Society for Machinery Failure Prevention Technol-
ogy (MFPT). It records vibration data of rolling bearing. Besides normal healthy condi-
tions, two faulty conditions (outer race fault and inner race fault under various loads) are 
introduced in a bearing test rig. Three healthy datasets are provided and serve as the base-
line condition (270 lbs of load, input shaft rate of 25 Hz, sample rate of 97656 sps for 
6 seconds). Under the same condition, three datasets with outer race faults are provided. 
Besides, under a sample rate of 48,828 sps for 3 seconds, seven more outer race fault data-
sets are provided with seven different loads (25, 50, 100, 150, 200, 250 and 300 lbs), and 
seven inner race fault datasets are provided with seven different loads (0, 50, 100, 150, 200, 
250 and 300 lbs). All data are stored in Matlab *.mat files. Additionally, three real-world 
examples are also presented in MFPT dataset: an intermediate shaft bearing from a wind 
turbine, a planet bearing fault, and an oil pump shaft bearing from a wind turbine. Fig-
ure 20b shows an example of the vibration signal under the inner race fault in this dataset.

4.7 � FEMTO dataset

FEMTO Dataset (2012) includes vibration data of bearings. It is from FEMTO-ST Institute 
(Franche-Comté Electronics Mechanics Thermal Science and Optics-Sciences and Tech-
nologies). This dataset is used for estimation of the RUL of bearings and served as the data 
in the IEEE PHM 2012 Challenge Competition. Its data are acquired from experiments 
carried on a laboratory experimental platform called PRONOSTIA (Nectoux et al. 2012). 
So, it is also known as PRONOSTIA Dataset. The test rig is shown in Fig. 20c.

This dataset has two sub-datasets: training one with 6 bearings and test one with 11 
bearings. The former is acquired from run-to-failure experiments, and the latter is set to 
include truncated experimental data. Note that, the specific faulty type is not declared in 
each dataset. Consequently, most methods (Sutrisno et al. 2012; Mosallam et al. 2013; Li 
and Wang 2013; Sloukia et al. 2013) use this dataset for estimating the remaining useful 
life of ball bearings. It data are collected under three different operation conditions as sum-
marized in Table 8. Vibration and temperature signals are measured to monitor the health 
of the test bearings. Every record is stored as a *.csv file. Each bearing data filecontains 
268 to 3269 records. As mentioned in Sutrisno et al. (2012), there are multiple challenges 
in analyzing such data, i.e., limited training samples, no information about failure modes, 
no fixed failure threshold, and a wide range of failure times.

Fig. 19   Examples in PHM09 dataset (2009)
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4.8 � IMS dataset

IMS (Intelligent Maintenance System) Dataset (Qiu et al. 2006) is used for the RUL pre-
diction of bearings. It has three datasets under test-to-failure experiments that run at 2000 
rpm rotation speed with a radial load of 6000 lbs. There are eight channels of vibration data 
in Dataset 1 and four channels in Datasets 2 and 3. Each dataset describes a test-to-failure 
experiment and includes multiple individual files (*.txt files in the ASCII format) that are 
1-second vibration signal snapshots recorded at specific intervals. There are 2156, 984 and 
4448 files in Datasets 1-3, respectively. At the end of the test-to-failure experiment, there 
is an inner race defect in bearing 3 and roller element defect in bearing 4 in Dataset 1, an 
outer race failure in bearing 1 in Dataset 2, and outer race failure in bearing 3 in Dataset 3. 
As mentioned in Zhang et al. (2020), IMS Dataset is particularly appropriate for the RUL 
prediction of rolling bearing because it contains the complete records of vibration signals 
from the beginning to the failure of tested bearings and its records have time stamps.

4.9 � C‑MAPSS and N‑CMAPSS datasets

C-MAPSS (Saxena et  al. 2008) and N-CMAPSS (Arias Chao et  al. 2021) Datasets 
originate from NASA Commercial Modular Aero-Propulsion System Simulation, and 
they include a great number of run-to-failure data of aircraft turbofan engine. C-MAPSS 
(Saxena et  al. 2008) was released in 2008, and N-CMAPSS (Arias Chao et  al. 2021) 
was online available in 2021. C-MAPSS (Saxena et al. 2008) has four sub-datasets col-
lected under different operation conditions (represented by altitude, flight mach number 
and throttle resolver angle). Different faults occur in these datasets, leading to varying 
life spans. Each record shows the degradation process of an engine, which starts from 

Fig. 20   Examples in DIRG and MFPT datasets, and an overview of PRONOSTIA platform
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varying wears and runs in a healthy state for a while and then degrades to the end of 
record time. 21 sensor data are recorded. All files are provided in the *.txt format.

Different from C-MAPSS that only records data from standard cruise conditions, 
N-CMAPSS (Arias Chao et  al. 2021) considers a more complete flight cycle that 
includes climbing, cruise and descend flight conditions in different flight routes. It also 
provides additional information: flight class (1, 2, or 3) determined by flight length and 
the number of flights, which is used for representing operating history, thus allowing 
a degradation model to be built with more fidelity. Additionally, a binary health state 
label (faulty or healthy) is included in the dataset. There are 8 sub-datasets from vary-
ing flight classes and fault modes. More sensor data are provided, i.e., 14-dimension 
measured signals, 14-dimension virtual sensors data and 10-dimension engine health 
parameters (efficiency and flow for five rotating sub-components). All data are stored in 
*.h5 files.

5 � Challenges and future research

Figure 21 presents the overlook of TL machinery applications, including emerging chal-
lenges in yellow boxes and future directions in green boxes.

5.1 � Emerging challenges

5.1.1 � Generalized knowledge transfer

Most of the existing transfer diagnostics approaches are performed among strongly similar 
domains, e.g., different operating states of the same machine. A more general knowledge 
transfer, i.e., learning cross-domain knowledge from data in very different domains, remains to 
be explored. For example, how to transfer between different machine components (e.g., bear-
ings vs. gearboxes) is yet to be investigated. It is considered as a difficult generalized transfer 
task. Moreover, many failure data are not available in practice, and hence the existing open-
source datasets are obtained from simulation experiments. Laboratory simulations do not fully 
simulate complex scenarios such as working environments and disturbances in real industrial 
applications, and thus there are large differences in their data distribution. Hence, how to 
effectively transfer the laboratory simulation to the real-world application remains open.

Table 8   Overview of FEMTO 
dataset

Operating 
condition

Speed (rpm) Load (N) Number 
of training 
datasets

Number 
of test 
datasets

C1 1800 4000 2 5
C2 1650 4200 2 5
C3 1500 5000 2 1
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5.1.2 � Few‑shot incremental data

In fault detection tasks, data that records machinery failure in industrial scenarios are usu-
ally in a smaller size (i.e., few-shot) when compared to data recording normal operation 
states. Thus, there is an issue of data imbalance when building diagnostics models (Zhang 
et al. 2020; Wang et al. 2021; Zhang et al. 2020; Liu et al. 2019; Wang et al. 2016; Han 
et  al. 2022). Moreover, as the machine runs hour by hour and day by day, its operation 
data is continuously accumulated and updated. Some previously never-seen failures may 
occur in such an incremental data stream, which means such new failure data are inev-
itably scarce. In addition, without human supervision, such failure data are unknown to 
algorithms and models. Namely, labeled data are very limited in such an incremental data 
stream, leading to insufficient discriminative information. Therefore, there is no sufficient 
new data to train a satisfactory TL model. In sum, it is very difficult to perform knowledge 
transfer with few-shot incremental data. This calls for more studies.

5.1.3 � Label‑noise

The existing methods usually assume that data labels are completely correct. However, 
in practical applications, the mechanical data are not always labeled correctly due to the 
influence of various factors, e.g., working environment noise, human mistakes and digi-
talization/instrument errors. Manual checking and re-calibration of these labels are costly 
and sometimes it is impossible. Wrong label information brings wrong gradient informa-
tion, which inevitably degrades the performance of a diagnosis and prediction model. More 
importantly, label-noise tends to cause negative transfer. So, it is of critical importance 
to deal with such issue of noisy labels, such that effective and robust transfer can be per-
formed to assist the task of machinery diagnostics and prognostics.

Fig. 21   Overlook of transfer learning for machinery applications
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5.2 � Future directions

5.2.1 � Combining promising techniques

The field of machine learning has been developing rapidly in recent years, and research-
ers are refining related promising theories step by step. Many emerging algorithms and 
models, such as meta learning, continual learning, incremental learning, and evolutionary 
learning, can be applied to important fields, e.g., computer vision and natural language 
processing. However, at present, their applications in traditional industries are very limited. 
If we further combine them when applying TL in tasks of mechanical fault diagnosis and 
RUL prediction, advanced approaches can be obtained. These technologies can empower 
the model with self-learning ability. With meta learning, the model can automatically learn 
from which machine data to transfer knowledge; With continual learning, a diagnostic/pre-
diction model learns continuously and achieves online dynamic monitoring; With incre-
mental learning, a model learns how to deal with the constantly updated incremental sensor 
data in industrial sites; With evolutionary learning (Deng et al. 2022), it can automatically 
search a network architecture and achieve better optimization results. The application of 
these emerging technologies can greatly enhance the self-adaptive capability of TL mod-
els, which enables cost-effective industrial applications (Shi et al. 2022).

5.2.2 � Supporting complex applications

Many of the current investigations focus on the classical standard settings of transfer tasks, 
i.e., homogeneous, feature-aligned, and closed-set. As for labels in the target domain, TL 
methods have been well elaborated to handle unsupervised learning problems. But in many 
machinery diagnosis and prediction experiments, their target mechanical datasets still use 
fully or partially labeled data. Obviously, this is a relatively simple task setting. However, 
the situation may be more complex in real scenarios. For example, feature dimensions are 
different when transferring (Qin et al. 2021), and labels of fault types are not exactly con-
sistent between source and target domains (Li et al. 2020; Chai et al. 2021). The data in 
complex application cases do not conform to the above task assumptions, thus limiting the 
application of some transfer methods in diagnosis and prediction. Current research on such 
transfer tasks is scarce and needs in-depth exploration.

5.2.3 � Leveraging prior knowledge

Existing fault diagnosis and prediction approaches for mechanical components usually bor-
row ideas from well-established TL methods that have been developed in other fields. Nev-
ertheless, how to design specific transfer methods for mechanical diagnosis that integrate 
its task characteristics when transferring, remains a question to be answered. Prior knowl-
edge about fault failure information and expert insights in related fields can be used to 
instruct data preprocessing, such as extracting representative features based on some pro-
fessional understanding such that they well characterize different types of faults. Beyond 
that, how to take advantage of prior knowledge and expert insights in the process of trans-
ferring across domains and how to maximize the useful information embedding in the prior 
knowledge needs further research.
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5.2.4 � Augmenting high‑quality data

Mechanical data often face the situation of sparse data and scarce labels, which is very 
unfavorable for the training and learning of transfer models. Employing data augmenta-
tion techniques to generate more available samples is a feasible solution to such issue. 
Data generation methods based on GAN and auto-encoder have achieved desired results 
in the image processing field, which inspires researchers to apply them in the industrial 
field. They can be applied to generate sufficient data needed for transfer model training. 
Especially, when failure data is scarce and with noisy labels as discussed above, generative 
models can be used to augment useful data and produce more high-quality training sam-
ples, so as to ensure the model performance.

6 � Conclusion

This survey comprehensively explains different cross-domain transfer methods applied in 
machinery diagnostics and prognostics, which are summarized into three categories: model 
and parameter transfer, feature matching (including shallow and deep methods), and adver-
sarial adaptation. Main ideas, typical algorithms and models of representative methods in 
each category are introduced in detail. More importantly, their application to machinery 
diagnosis and prognostics are presented in the context of recent related investigations, e.g., 
deep transfer methods are a research hotspot in machinery diagnostics and prognostics, and 
diverse transfer architectures are developed for different application tasks. Although many 
studies place more emphasis on the classification task of machinery fault diagnostics, the 
regression task of remaining useful life prediction (Chen et al 2021; Jiao et al 2021; Lin 
et al 2021) is of equal importance in the industrial field. Besides, ten widely-used open-
source machinery datasets are briefly introduced in this survey. At last, according to the 
previous discussions, emerging challenges of applying transfer learning in machinery diag-
nostics/prognostics and potential directions are given.
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