Yao Ge

Yao Ge
  • Doctor of Philosophy
  • Research Fellow at University of Cambridge

Atmospheric Chemistry Modelling

About

12
Publications
1,057
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
96
Citations
Current institution
University of Cambridge
Current position
  • Research Fellow

Publications

Publications (12)
Article
Full-text available
Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistr...
Article
Full-text available
We used the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West) model version 4.34 coupled with WRF (Weather Research and Forecasting) model version 4.2.2 meteorology to undertake a present-day (2015) global and regional quantification of the concentrations, deposition, budgets, and lifetimes of atmos...
Article
Full-text available
Atmospheric volatile organic compounds (VOCs) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent chang...
Preprint
Full-text available
Atmospheric volatile organic compounds (VOC) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent change...
Article
Full-text available
The present work describes the implementation of the state of the art Cloud-J v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-J calculates photolysis rates and accounts for cloud and aerosol optical properties at model run time, replacing the old system based on tabulated values. The performance of Cloud-J i...
Preprint
Full-text available
The present work describes the implementation of the state of the art Cloud-J v7.3 photolysis rate calculation code in the EMEP MSC-W chemical transport model. Cloud-J calculates photolysis rates and accounts for cloud and aerosol optical properties at model run-time, replacing the old system based on tabulated values. The performance of Cloud-J is...
Article
Full-text available
The reduction of fine particles (PM2.5) and reactive N (Nr) and S (Sr) species is a key objective for air pollution control policies because of their major adverse effects on human health, ecosystem diversity, and climate. The sensitivity of global and regional Nr, Sr, and PM2.5 to 20 % and 40 % individual and collective reductions in anthropogenic...
Preprint
Full-text available
The reduction of fine particles (PM2.5) and reactive N (Nr) and S (Sr) species is a key objective for air pollution control policies because of their major adverse effects on human health, ecosystem diversity, and climate. The sensitivity of global and regional Nr, Sr, and PM2.5 to 20 % and 40 % individual and collective reductions in anthropogenic...
Preprint
Full-text available
We used the EMEP MSC-W model version 4.34 coupled with WRF model version 4.2.2 meteorology to undertake a present-day (2015) global and regional quantification of the concentrations, deposition, budgets, and lifetimes of atmospheric reactive N (Nr) and S (Sr) species. These are quantities that cannot be derived from measurements alone. In areas wit...
Preprint
Full-text available
Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistr...

Network

Cited By