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Abstract—With the rapid development of big data and cloud 
computing, big data analytics as a service in the cloud is 
becoming increasingly popular. More and more individuals 
and organizations tend to rent virtual cluster to store and 
analyze data rather than building their own data centers. 
However, in virtualization environment, whether scaling out 
using a cluster with more nodes to process big data is better 
than scaling up by adding more resources to the original 
virtual machines (VMs) in cluster is not clear. In this paper, we 
study the scalability performance issues of hadoop virtual 
cluster with cost consideration. We first present the design and 
implementation of VirtualMR platform which can provide 
users with scalable hadoop virtual cluster services for the 
MapReduce based big data analytics. Then we run a series of 
hadoop benchmarks and real parallel machine learning 
algorithms to evaluate the scalability performance, including 
scale-up method and scale-out method. Finally, we integrate 
our platform with resource monitoring module and propose a 
system tuner. By analyzing the monitored data, we 
dynamically adjust the parameters of hadoop framework and 
virtual machine configuration to improve resource utilization
and reduce rent cost. Experimental results show that the scale-
up method outperforms the scale-out method for CPU-bound 
applications, and it is opposite for I/O-bound applications. The 
results also verify the efficiency of system tuner to increase 
resource utilization and reduce rent cost. 

Keywords-scalability; MapReduce; cloud computing; big 
data; rent cost 

I. INTRODUCTION

Big data [1] has recently received plentiful attention from 
academia and industrial community due to the continuous 
growth of data generated from various fields such as particle 
physics, biomedical science, earth observation, etc. 
Regardless of enormous opportunities brought by big data, 
such as disease prevention, crime combat and real-time 
roadway traffic query; it also faces challenges in the aspects 
of data acquisition, storage and analytics [2]. Data-intensive 
parallel computing is becoming increasingly common, and 
has been facilitated by frameworks such as Dryad [3] and 
Google’s MapReduce [4] which are paradigms that can 
scale the big data parallel computing jobs across large-scale 
cluster of commodity machines. Apache’s Hadoop [5] is the 
open-source implementation of MapReduce which can 
process hundreds of terabytes of data on at least 10,000 
cores. 

Cloud is a large shared resource pool of easily usable and 
accessible storage and computation infrastructures, which 

can be elastically configured to accommodate various kinds 
of workloads. These large-scale shared resources are usually 
exploited by a pay-as-you-go model, which means users are 
only billed for procured storage and computation resources. 
Virtualization technology (Xen [6], VMware [7], and KVM 
[8]), as one of the most prominent technologies, provides an 
abstraction of hardware resources enabling multiple 
instances of operating system to run simultaneously on a 
single physical machine (PM). Except for that, VM will be 
the basic computation unit in the cloud computing environ-
ment, and it has the flexibility in dynamic configuration of 
CPU, memory, disk and network capacity. 

When we apply the virtualization technology in big data 
analytics, there are several challenges to overcome due to 
the virtualization overheads. For example, to ensure system 
integrity, the virtualization hypervisor has to trap and 
process privileged instructions from the guest VMs. This 
overhead is especially obvious for I/O virtualization and is 
not favored by data-intensive parallel computing applica-
tions where disk access and network communication 
performance may be critical. Big data analytics which needs 
to be processed on large-scale distributed platforms in 
parallel with high efficiency is another big challenge. 
Despite the above challenges, more and more individuals 
and organizations will tend to rent virtual clusters in cloud 
for big data analytics, and virtualization technology is
massively used in big data analytics as one of key techno-
logies of cloud computing. There are two reasons: (1) In 
cloud era, VM will be the basic computation unit. The 
hadoop virtual cluster can benefit from the advantages:
dynamic configuration, server consolidation, ease of 
management and live migration. (2) Pay-as-you-go model is 
a utility computing billing method that is adopted in cloud 
computing. Cloud service user can simply rent a hadoop 
virtual cluster from Amazon EC2 to run the MapReduce 
applications without purchasing expensive PMs. In other 
words, a pay-as-you-go user is just billed for procured 
storage and computation resources.  

How to spend the least money to achieve the required 
calculation capacity is a main challenge. Whether scaling 
out using a cluster with more nodes to process big data is 
better than scaling up by adding more resources to the 
original virtual machines (VMs) in cluster is not clear. The 
motivation of our paper is to analyze which scalability
method is better of different workloads, and monitor 
resource utilization for adjusting hadoop or VM configurat- 
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Figure 1. VirtualMR Cloud Platform for Big Data Analytics 

ion parameters dynamically to reduce rent cost.  
In summary, the main contributions of our work are 

summarized as follows: 

First, we propose and implement a new cloud platform 
VirtualMR which can provide users with scalable
hadoop virtual cluster services for MapReduce based 
big data analytics. User can dynamically adjust the 
configuration of VMs include CPU, memory and disk 
capacity or the total VM amount within the cluster 
through a browser.

Then we perform a series of experiments to study the 
scalability performance of hadoop virtual cluster with 
different kinds of parallel computing applications. 
Experimental results show that the scale-up method 
outperforms the scale-out method for CPU-bound 
applications, and it is opposite for I/O-bound applica-
tions.

Finally, we integrate our platform with resource 
monitoring module and design a system configuration 
parameter tuner. By analyzing the monitored data, we 
adjust the hadoop framework parameters and VM 
configuration to improve resource utilization and 
reduce rent cost.

The rest of this paper is organized as follows. In section 
II, we design and implement the cloud platform VirtualMR.
In section III, we study the scalability performance of 
hadoop virtual cluster with different big data applications. In 
section IV, by monitoring the cluster resource utilization,
we propose a system configuration parameter tuner to 
improve performance and resource utilization and reduce 
rent cost. In section V, we present the related work. Finally 
we give our conclusion and future work in section VI. 

II. VIRTUALMR PLATFORM AND KEY TECHNOLOGIES

In this section, we first describe the design and 
implementation of VirtualMR platform, and then introduce 
some key technologies of this platform. 

A. Architecture of VirtulMR Platform 
Figure 1 illustrates the architecture of VirtualMR

platform for big data analytics. It consists of four tiers from 
bottom to top: Hardware resource pool, Virtualization 
hypervisor, Parallel computing engine and Web user 
interface. The parallel computing engine tier is the core 
component in our paper, and it includes six modules: 
Hadoop virtual cluster, User manager, Ganglia 1  monitor, 
Cloud manager, System tuner and Pricing model. All the six 
modules cooperate with each other to provide a scalable 
hadoop virtual cluster for big data analytics. 

Users apply for virtual clusters through browser, and then 
the web user interface invokes the cloud manager to create 
VMs upon the hardware resource pool. After the VMs 
become running, users can automatically deploy (auto-
deploy) hadoop framework in their own virtual cluster and 
submit data-intensive parallel computing applications. The 
newly designed and developed auto-deploy algorithm integ-
rated in cloud manager is responsible for setting the initial 
configuration files and start the hadoop daemons. The 
configuration files include: masters, slaves, core-site.xml,
hdfs-site.xml and mapred-site.xml, etc. Using the auto-
deploy, cluster nodes can be easily added or removed as 
needed. For example, to increase the storage capacity and 
computation capability available to a cluster, we can add 
new nodes. Conversely, sometimes we may wish to shrink a 
cluster, we can remove nodes. The current version of 
hadoop we use is 1.0.4 in VM image. 

After data-intensive parallel computing applications 
running in the cluster, both the Master node and Slave nodes 
are monitored by Ganglia monitoring software. Ganglia is a 
scalable distributed monitoring system for high performance 
computing systems such as clusters and grids based on a 
hierarchical design. It is responsible for monitoring the 
resource utilization of all nodes in virtual cluster, including 
CPU, memory, disk, and network. By analyzing the 
monitored data, we can find the performance bottlenecks

1 http://ganglia.sourceforge.net/
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and adjust the hadoop framework parameters and VM 
configuration by the system tuner which is responsible for 
altering configuration parameters. 

B. Key Technologies 
1) Hadoop: The hadoop [5] project includes two main 

modules: (1) Hadoop Distributed File System (HDFS) 
which provides high-throughput access to application data, 
and (2) MapReduce which is a YARN-based paradigm for 
parallel processing of large-scale data sets. The architecture 
of hadoop is based on Master-Slave mode which may result 
in single node of failure. 

The HDFS module contains three kinds of node: 
NameNode, DataNode and Client. The NameNode holds the 
namespace of distributed file system, which is a hierarchy of 
files and directories. Both file and directory are represented 
by inode which records the attributes like permission, 
modification, access time and disk space quota, etc. The 
DataNode is responsible for the storage of file content itself. 
When the file size exceeds the appointed block size, it will 
be split into large blocks (typically 64 megabytes) which are 
independently replicated on multiple DataNodes with three 
replicas.  

A MapReduce job is a unit of task that the user wants to 
be performed: it consists of the input data, mapper function, 
reducer function and job configuration information. There 
are one jobtracker, a number of tasktrackers. After the users 
upload input data to the HDFS and submit some parallel 
computing jobs, the jobtracker coordinates all the jobs 
running on the system by scheduling tasks to run on 
different tasktrackers. Tasktrackers run tasks and send 
heartbeats with progress report to the jobtracker, which 
keeps a record of the overall progress of each job. The 
underlying runtime system automatically parallelizes the 
computation across large-scale clusters of machines, handles 
machine failures, and schedules inter-machine communica-
tion to make efficient use of the disk and network. 

Xen and OpenNebula: There are two basic kinds of 
virtualization technology: full virtualization and paravirtua-
lization. Full virtualization is a complete simulation of the 
underlying hardware, while paravirtualization provides a 
software interface to VMs and the interface is similar but 
not identical to that of the underlying hardware.  

Xen [6] is an x86 virtualization hypervisor which allows 
multiple commodity operating systems to share convention-
al hardware in a safe and resource managed fashion, and 
without sacrificing either performance or functionality. It is 
achieved by providing an idealized VM abstraction to which 
operating systems such as Linux, BSD and Windows XP. 
We currently use Xen 4.1 version in our platform. 

With IaaS cloud service growing popularity, a lot of tools 
and technologies are emerging that can transform an 
organization’s existing infrastructures into a private or 
hybrid cloud. OpenNebula [9] is an open source cloud 
manager that deploys virtualized services on both a local 

pool of resources and cross-domain clouds. It is responsible 
for providing a uniform and homogeneous view of 
virtualized resources, managing a VM’s full life cycle, 
supporting configurable resource allocation policies to meet 
the organization’s specific goals and adapting to an 
organization’s flexible resource needs. We currently use 
OpenNebula 3.8.1 version as the cloud manager in our 
platform. 

2) Scale-up and Scale-out Method: There are two 
methods to add more resources for a particular application: 
scale-up and scale-out. Scale-up method means adding more 
resources to original nodes in a system, typically involving 
the addition of CPU and memory to a single PM or VM 
node. Scale-out method means adding more nodes to a 
system, such as adding a new VM to a data-intensive 
parallel computing cluster. Hundreds of small commodity 
machines may be put together in a cluster to obtain 
aggregate computing capacity that often exceeds the 
traditional computers with a single processor.

However, there are tradeoffs between the above two 
methods. Large numbers of nodes means increased 
management complexity, as well as a more complex 
programming model and high network communication 
overheads between nodes; meanwhile, some applications do
not lead themselves to a distributed computing model. It’s
meaningful to find out which is more efficient to fullfil big 
data analytics on a scale-up virtual cluster (with fewer 
powerful nodes) or on a scale-out virtual cluster (with more 
less powerful nodes), especially with the rent cost consider-
ation. 

III. SCALABILITY PERFORMANCE ANALYSIS OF HADOOP 
VIRTUAL CLUSTER

In this section, we study the scalability performance of 
hadoop virtual cluster with different big data analytics 
applications. We mainly compare the performance of the 
scale-up method and scale-out method. After analyzing the 
results, cloud users can choose effective scale method to add 
more resources to his cluster for specific application. 

A. Experimental Configuration 
1) Hadoop Virtual Cluster Configuration 

All the experiments are performed on Dell PowerEdge 
R720 servers, with 2 Quad-core 64-bit Xeon processors E5-
2620 at 2.00GHz and 64GB DRAM. We use Ubuntu 12.04 
in Domain 0, and Xen 4.1 as the virtualization hypervisor. 
Each virtual machine is installed with Ubuntu12.04 as the 
guest OS with the configuration of 1~4 vCPU and 
3.75~15GB vMemory. According to the Amazon EC2 2

pricing model in Table I, we set the same price of VM with 
them, but with small time granularity. In order to ensure the 
data precision, each of the showed experimental results were 
gained via running benchmarks three times with the same 
configuration and use the average value. 

2 http://aws.amazon.com/cn/ec2/
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TABLE I. AMAZON EC2 PRICING MODEL

VM Type vCPU vMemory Price
m1.xsmall 1 1GB 0.030$/h
m1.small 1 1.7GB 0.060$/h

m1.medium 1 3.75GB 0.120$/h
m1.large 2 7.5GB 0.240$/h

m1.xlarge 4 15GB 0.480$/h
2) Hadoop benchmark 
In our experiments, we choose -put/-get FsShell comm-

ands to test the performance of HDFS and four typical 
hadoop benchmarks which include the real parallel machine 
learning algorithms to test the performance of MapReduce. 
Table II shows the details of benchmarks. 

TABLE II. THE DESCRIPTION OF BENCHMARKS

Name Category Description
Put/Get HDFS Write/read local file to/from 

the hadoop distributed file 
system

WordCount MapReduce Reads text files and counts 
how often each word occur

RegexMatch MapReduce Used in pattern matching 
with strings, or string matc-
hing

TeraSort MapReduce Sorts amount of data as fast 
as possible, and validates 
the accuracy of the result

Mahout MapReduce Machine learning library,
including clustering, classi-
fication and recommendati-
on

The WordCount benchmark reads text files and counts 
how often words occur. Each mapper takes a line as input 
and partitions it into words. It then emits a key/value pair of 
the word and 1. Each reducer sums the counts for each word 
and outputs a single key/value with the word and sum. 

In RegexMatch benchmark, we use -grep command which 
is used for searching plain-text data sets for lines matching a 
regular expression. 

The TeraSort benchmark is to sort amount of data as fast 
as possible. A full TeraSort benchmark consists of the 
following three steps: (1) Generating the input data via 
TeraGen. (2) Running the actual TeraSort on the input data. 
(3) Validating the sorted output data via TeraValidate. 

The Mahout3 library is an open-source machine learning 
library based on hadoop. Currently mahout supports mainly 
three kind algorithms: clustering, classification and recom-
mendation. In this paper, we choose some clustering 
algorithms, including k-Means clustering, Fuzzy k-Means 
clustering and Canopy clustering, to test the performance of 
our VirtualMR platform.  

                                                          
3 http://mahout.apache.org/

The k-Means clustering offered by mahout library is an 
iterative algorithm implemented as a series of MapReduce 
rounds. It aims to partition n objects into k clusters in which 
each object belongs to the cluster with the nearest distance,
serving as a prototype of the cluster. The input to the 
algorithm is a set of objects represented as d-dimensional 
vectors, and an initial set of cluster centers. The Fuzzy k-
Means clustering is an improvement of k-Means, while k-
Means creates hard clusters where a object belong to only 
one cluster, Fuzzy k-Means is a more statically formalized 
method and creates soft clusters where a particular object 
can belong to more than one cluster with certain probability. 
The Canopy Clustering is a very simple, fast and accurate 
method for grouping objects into clusters. Canopy 
Clustering is often used as an initial step in more rigorous 
clustering techniques, such as k-Means Clustering. 

B. Performance Comparison of Scale-up and Scale-out 
Method 

In the experiments, we create two clusters to compare and 
analyze the scalability performance of hadoop virtual cluster 
with cost consideration. In cluster A (scale-up), we create 4 
VM nodes (1 Master and 3 Slaves), each node with 4 vCPU 
and 15GB vMemory, and set map task slot number=8, 
reduce task slot number=4. In cluster B (scale-out), we 
create 16 VM nodes (1 Master and 15 Slaves), each node 
with 1 vCPU and 3.75GB vMemory, and set map task slot 
number=2, reduce task slot number=1. The total number of 
vCPU and vMemory is equal in two clusters. According to 
Table I, we realize the rent cost per hour (or minute) of 
cluster A and cluster B is equal. When the parallel comput-
ing execution time is short, the rent cost will be low. 

Figure 2 shows the write/read performance as the file size 
ranges from 400MB to 2400MB of different clusters. It is 
obvious that the write/read time is short when the file size is 
relatively small, and increases gradually as the file size 
scales. From the Figure 2(a), we can see that the scale-up 
method has lower performance than scale-out. The reason is 
that there are more VMs in cluster B which can provide 
higher cumulative disk and network I/O bandwidth. The I/O 
contention and interference between task slots in cluster A is 
more serious. From the Figure 2(b), we can observe the read 
time increases with the nodes number scales. In read process, 
the client chooses the nearest DataNodes to read data. The 
data volume of read process is one-third of write process, so 
the I/O will not be the bottleneck in read process. The main 
time is cost by the NameNode to choose which DataNodes 
to read the block replicas, and more VMs cost more time. 

Figure 3(a) represents the WordCount performance when 
running on different clusters. The input data of WordCount 
is chosen from the TOEFL reading materials with the file 
size ranging from 400MB to 2400MB. From the figure, it is 
obvious that the running time increases as the size of input 
data scales. Further, the MapReduce performance of scale-
out method outperforms scale-up method. It is because the 
WordCount belongs to I/O-bound application and more 
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Figure 2. (a) Write Performance of Different Cluster (b) Read Performance of Different Cluster 
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concurrent nodes provide more total disk and network I/O 
bandwidth. Generally, I/O-bound refers to a condition in 
which the time it takes to complete a computation is 
determined principally by the period spent waiting for 
input/output operations to be completed. 

Figure 3(b) shows the performance of Grep which is 
CPU-bound application when running on different clusters.
An application is called CPU-bound when task execution 
time is determined principally by the speed of the central 
processor: processor utilization is high, perhaps at 100% 
usage for many seconds or minutes. From the figure, we 
find the performance of scale-up method is better than scale-

out method. The reason is that the CPU capability is equal 
for cluster of A and B, but cluster B needs to transfer more 
intermediate data in the shuffle phase. 

Figure 4(a) illustrates the sort time of TeraSort 
benchmark which belongs to both I/O-bound and CPU-
bound application. It can be used to sort different sizes of 
input data. In our experiments, we consider the data size of 
0.5GB, 1GB, 1.5GB, 2.0GB, 2.5GB and 3GB. From the 
figure, we can see that the data sort time is nearly 
proportional with the data size, and the performance of 
scale-out method outperforms scale-up method which is 
similar to the phenomenon of Figure 3(a). 
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Figure 4(b) illustrates the performance of real parallel 
clustering algorithms, including k-Means, Fuzzy k-Means 
and Canopy. The data set is the USCensus19904 which was 
derived from the USCensus1990raw data set. It includes 68 
categorical attributes, and many of the less useful attributes 
in the original data set have been dropped. Similar to 
WordCount and TeraSort benchmark, the scale-up method 
is worse than scale-out method. The reason is that the 
clustering is an iterative algorithm implemented as a series 
of MapReduce rounds which causes lots of I/O operations. 

Discussion: Since the total disk and network I/O 
bandwidth of cluster A is lower than cluster B, the file write 
performance and I/O-bound parallel computing applications 
has serious I/O contention and interference between each 
task slot and results in worse performance. For CPU-bound 
parallel computing applications, we find the performance of 
scale-up method is better than scale-out method which 
means the MapReduce performance can be obviously 
affected by the shuffle process of the intermediate result. 
The above experiment results merely based on two clusters 
with fixed configuration, and we will analyze the perform-
ance with dynamic adjustment of the hadoop framework 
parameters and VM configuration in section IV. 

IV. CASE STUDY OF SYSTEM TUNER

In this section, we integrate our platform with resource 
monitoring module and design a system configuration 
parameter tuner. The monitored data are transferred to the 
Utilization Analyzer, and the analyzer will give some 
configuration adjustment strategies for us. We choose one 
strategy and adjust the hadoop framework parameters or 
VM configuration to reduce job execution time and improve 
resource utilization. At the same time, we can reduce the 
rent cost of our clusters. We choose TeraSort benchmark 
running on cluster B as an example to verify the efficiency 
of system tuner. 

A. Tuning the Hadoop Framwork Parameters 
According to the monitored data when TeraSort is 

running on the hadoop virtual cluster, we observe that the 
CPU utilization is relatively high and memory utilization is 
extremely low. Figure 5 shows the performance of tuning 
map task slot capacity per node and JVM heap size of each 
map task. We use the system tuner to reset the reduce task 
slot number=1 and scale the number of map task slot from 3 
to 5, and we find that as the number of map task slot scales, 
the running time changes slightly from Figure 5(a). It is 
because that the CPU utilization is already high enough and 
more concurrent task slots will not decrease the running 
time. The next optimization adjusts the heap size of JVM to 
be optimal. By default each hadoop map and reduce task run 
in a JVM with 200MB heap size within which they allocate 
buffers for in-memory data. When the buffers are full, data 
is spilled to storage, adding overheads. According to the 

                                                          
4 http://archive.ics.uci.edu/ml/datasets.html

Ganglia monitor, we note that 128MB per task leaves 
substantial amounts of memory unused on VMs. In the 
experiment, we use the system tuner to increase the JVM 
heap size from 128MB to 512MB, and observe that the 
performance with 256MB heap size is the best from the 
Figure 5(b). However, when the heap size reaches 512MB, 
the performance descends instead due to the garbage 
collection overheads. 

B. Tuning the VM Configuration 
In addition to adjusting the hadoop framework 

parameters, we also can dynamically tune the VM 
configuration to improve resource utilization and reduce the 
cluster rent cost with the web user interface. We use the 
Dynamic Memory Control (DMC) technology to change the 
amount of host physical memory assigned to any running 
VM without rebooting it, and use the xm vcpu-set command 
to change the vCPU amount of VM. 

Figure 6 shows the TeraSort performance and cluster
rent cost with different VM memory. Due to the low 
utilization of VM memory, we shrink the memory size of 
each VM from 4GB to 1GB for comparing the performance. 
From the Figure 6(a), we find the performance variation 
between different scenarios is relatively small. However, 
according to Table I, we can calculate the rent cost of 
clusters with different memory size of VM, and see the 
reduction is apparent by 68.8% average between 4GB and 
1GB from the figure 6(b). 

C. Discussion of System Tuner 
By running multiple data-intensive parallel computing 

applications and observing the results of performance 
change of system tuner, we get some tips for improving the 
performance of data processing. (1) For CPU-bound 
applications, if the CPU utilization of the virtual machine is 
not full, you are suggested to increase the map and reduce 
task slot capacity per node and decrease the number of 
nodes in you virtual cluster. (2) For I/O-bound applications, 
if the I/O utilization is low, you can maximize the disk and 
network throughput by allocating enough map tasks in each 
node to access as many files in parallel. (3) For Memory-
bound applications, if the memory is not being fully utilized, 
you may benefit from increasing the JVM heap size or 
decreasing the total memory of each VM. 

V. RELATED WORK

MapReduce and virtualization technology has been 
widely studied respectively in the recent years. Generally, 
there are two methods to improve the performance of 
MapReduce: (1) Adjusting the hadoop framework and job 
configuration parameters to increase the resource utilization 
and improve the single job execution performance, and (2) 
modifying the open source code to avoid some bottlenecks 
or adapt to some specific applications. Chen et al. [10]
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performed multiple experiments on different benchmarks 
for MapReduce performance evaluations. Kavulya et al. [11]
analyzed 10-months MapReduce job execution logs from 
the M45 supercomputing cluster. Rizvandi et al. [12] studied 
CPU utilization time patterns of several MapReduce 
applications, and used the Dynamic Time Warping (DTW) 
to predict the probable execution patterns of unknown 
applications. Rizvandi et al. [13] also proposed an analytical 
method to model the dependency between configuration 
parameters and total execution time of MapReduce 
applications. Lin et al. [14] constructed models to describe 
the effects of task granularity, slot count and workload type 
on the performance from both the single job and system 
perspectives. The papers [15-16] introduced some self-
tuning systems for big data analytics, and our work is a little 
similar to them, but they have not taken the VM configura-
tion adjustment into consideration. 

All the above works focus on PM cluster, and there are 
also some studies of MapReduce on virtual cluster. Ibrahim 
et al. [17] conducted a series of experiments to measure and 
compare the performance of hadoop on VMs and PMs. Ye et 
al. [18] proposed the vHadoop which is a scalable hadoop 
virtual cluster platform for MapReduce based parallel 
machine learning. Zhang et al. [19] used the hadoop 
framework to develop a user application to process 
scientific data on clouds. Amazon provides a cloud service 

of EMR5 to individuals and organizations to process big 
data. To reduce the contention and interference of disk 
access and network communication among VMs, Fang et al.
[20] explored the relationship between I/O scheduling in a 
virtualization hypervisor and performance of MapReduce 
applications running on the VMs. Geng et al. [21] defined 
metrics to analyze the data allocation problem in virtual 
environment theoretically and designed a location-aware file 
block allocation strategy which retains compatibility with 
the native hadoop to reduce data transfer between nodes. 

However, most of the previous work has not taken the 
scalability method and the incurred cost into consideration 
when running parallel computing applications in cloud. In 
cloud computing era, pay-as-you-go model is popular 
billing method. Due to the current market trading 
mechanism is inflexible, and the price is not reasonable 
enough in some situation, Shang et al. [22] defined a double 
auction Bayesian Game-based pricing model for the 
suggested cloud market and discussed how to develop an 
optimal pricing strategy for this model. Kambatla et al. [23]
studied the ability to provide dynamical resource provision 
of MapReduce based applications to minimize the rent cost, 
while obtaining the best performance. 

5 http://aws.amazon.com/cn/elasticmapreduce/
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VI. CONCLUSION AND FUTURE WORK

With the rapid development of big data and cloud 
computing, more and more individuals and organizations 
tend to rent virtual cluster in clouds for big data analytics. 
This paper focuses on the scalability performance analysis 
with cost consideration, and constructs a cloud platform 
VirtualMR which can provide users with scalable virtual 
cluster for the MapReduce based big data analytics. We first 
present the design and implementation of VirtualMR
platform. Then we perform a series of hadoop benchmarks 
and real parallel machine learning algorithms to analyze the 
scalability performance, including scale-up method and 
scale-out method. Finally, we integrate our platform with 
resource monitoring and propose a system configuration 
parameter tuner. By analyzing the monitored data, we can 
dynamically adjust the hadoop framework parameters and 
VM configuration to improve resource utilization and 
reduce cluster rent cost. Experimental results show that: (1) 
the disk and network I/O are main bottlenecks of VirtualMR
platform due to the shared resource contention and 
interference; (2) the scale-up method outperforms the scale-
out method for CPU-bound applications, and it is opposite 
for IO-bound applications; (3) by tuning the system 
parameters, we can increase resource utilization and reduce 
rent cost to a large extent. For example, we can reduce rent 
cost by 68.8% through shrinking the memory size from 4GB 
to 1GB for TeraSort benchmark.

Future work will include analyzing more characteristics
of different kinds of MapReduce job, and creating an 
machine learning based automatic system tuner which can 
dynamically change the hadoop framework parameters and 
VM configuration of data-intensive parallel computing 
applications (I/O-bound, CPU-bound and Memory-bound). 
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