
Scalability Analysis and Improvement of Hadoop Virtual Cluster
with Cost Consideration

Yanzhang He, Xiaohong Jiang, Zhaohui Wu, Kejiang Ye, Zhongzhong Chen
College of Computer Science, Zhejiang University

Hangzhou, China, 310027
{heyanzhang, jiangxh, wzh, yekejiang, doublezhongchen}@zju.edu.cn

Abstract—With the rapid development of big data and cloud
computing, big data analytics as a service in the cloud is
becoming increasingly popular. More and more individuals
and organizations tend to rent virtual cluster to store and
analyze data rather than building their own data centers.
However, in virtualization environment, whether scaling out
using a cluster with more nodes to process big data is better
than scaling up by adding more resources to the original
virtual machines (VMs) in cluster is not clear. In this paper, we
study the scalability performance issues of hadoop virtual
cluster with cost consideration. We first present the design and
implementation of VirtualMR platform which can provide
users with scalable hadoop virtual cluster services for the
MapReduce based big data analytics. Then we run a series of
hadoop benchmarks and real parallel machine learning
algorithms to evaluate the scalability performance, including
scale-up method and scale-out method. Finally, we integrate
our platform with resource monitoring module and propose a
system tuner. By analyzing the monitored data, we
dynamically adjust the parameters of hadoop framework and
virtual machine configuration to improve resource utilization
and reduce rent cost. Experimental results show that the scale-
up method outperforms the scale-out method for CPU-bound
applications, and it is opposite for I/O-bound applications. The
results also verify the efficiency of system tuner to increase
resource utilization and reduce rent cost.

Keywords-scalability; MapReduce; cloud computing; big
data; rent cost

I. INTRODUCTION

Big data [1] has recently received plentiful attention from
academia and industrial community due to the continuous
growth of data generated from various fields such as particle
physics, biomedical science, earth observation, etc.
Regardless of enormous opportunities brought by big data,
such as disease prevention, crime combat and real-time
roadway traffic query; it also faces challenges in the aspects
of data acquisition, storage and analytics [2]. Data-intensive
parallel computing is becoming increasingly common, and
has been facilitated by frameworks such as Dryad [3] and
Google’s MapReduce [4] which are paradigms that can
scale the big data parallel computing jobs across large-scale
cluster of commodity machines. Apache’s Hadoop [5] is the
open-source implementation of MapReduce which can
process hundreds of terabytes of data on at least 10,000
cores.

Cloud is a large shared resource pool of easily usable and
accessible storage and computation infrastructures, which

can be elastically configured to accommodate various kinds
of workloads. These large-scale shared resources are usually
exploited by a pay-as-you-go model, which means users are
only billed for procured storage and computation resources.
Virtualization technology (Xen [6], VMware [7], and KVM
[8]), as one of the most prominent technologies, provides an
abstraction of hardware resources enabling multiple
instances of operating system to run simultaneously on a
single physical machine (PM). Except for that, VM will be
the basic computation unit in the cloud computing environ-
ment, and it has the flexibility in dynamic configuration of
CPU, memory, disk and network capacity.

When we apply the virtualization technology in big data
analytics, there are several challenges to overcome due to
the virtualization overheads. For example, to ensure system
integrity, the virtualization hypervisor has to trap and
process privileged instructions from the guest VMs. This
overhead is especially obvious for I/O virtualization and is
not favored by data-intensive parallel computing applica-
tions where disk access and network communication
performance may be critical. Big data analytics which needs
to be processed on large-scale distributed platforms in
parallel with high efficiency is another big challenge.
Despite the above challenges, more and more individuals
and organizations will tend to rent virtual clusters in cloud
for big data analytics, and virtualization technology is
massively used in big data analytics as one of key techno-
logies of cloud computing. There are two reasons: (1) In
cloud era, VM will be the basic computation unit. The
hadoop virtual cluster can benefit from the advantages:
dynamic configuration, server consolidation, ease of
management and live migration. (2) Pay-as-you-go model is
a utility computing billing method that is adopted in cloud
computing. Cloud service user can simply rent a hadoop
virtual cluster from Amazon EC2 to run the MapReduce
applications without purchasing expensive PMs. In other
words, a pay-as-you-go user is just billed for procured
storage and computation resources.

How to spend the least money to achieve the required
calculation capacity is a main challenge. Whether scaling
out using a cluster with more nodes to process big data is
better than scaling up by adding more resources to the
original virtual machines (VMs) in cluster is not clear. The
motivation of our paper is to analyze which scalability
method is better of different workloads, and monitor
resource utilization for adjusting hadoop or VM configurat-

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.85

594

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.85

594

Figure 1. VirtualMR Cloud Platform for Big Data Analytics

ion parameters dynamically to reduce rent cost.
In summary, the main contributions of our work are

summarized as follows:

First, we propose and implement a new cloud platform
VirtualMR which can provide users with scalable
hadoop virtual cluster services for MapReduce based
big data analytics. User can dynamically adjust the
configuration of VMs include CPU, memory and disk
capacity or the total VM amount within the cluster
through a browser.

Then we perform a series of experiments to study the
scalability performance of hadoop virtual cluster with
different kinds of parallel computing applications.
Experimental results show that the scale-up method
outperforms the scale-out method for CPU-bound
applications, and it is opposite for I/O-bound applica-
tions.

Finally, we integrate our platform with resource
monitoring module and design a system configuration
parameter tuner. By analyzing the monitored data, we
adjust the hadoop framework parameters and VM
configuration to improve resource utilization and
reduce rent cost.

The rest of this paper is organized as follows. In section
II, we design and implement the cloud platform VirtualMR.
In section III, we study the scalability performance of
hadoop virtual cluster with different big data applications. In
section IV, by monitoring the cluster resource utilization,
we propose a system configuration parameter tuner to
improve performance and resource utilization and reduce
rent cost. In section V, we present the related work. Finally
we give our conclusion and future work in section VI.

II. VIRTUALMR PLATFORM AND KEY TECHNOLOGIES

In this section, we first describe the design and
implementation of VirtualMR platform, and then introduce
some key technologies of this platform.

A. Architecture of VirtulMR Platform
Figure 1 illustrates the architecture of VirtualMR

platform for big data analytics. It consists of four tiers from
bottom to top: Hardware resource pool, Virtualization
hypervisor, Parallel computing engine and Web user
interface. The parallel computing engine tier is the core
component in our paper, and it includes six modules:
Hadoop virtual cluster, User manager, Ganglia 1 monitor,
Cloud manager, System tuner and Pricing model. All the six
modules cooperate with each other to provide a scalable
hadoop virtual cluster for big data analytics.

Users apply for virtual clusters through browser, and then
the web user interface invokes the cloud manager to create
VMs upon the hardware resource pool. After the VMs
become running, users can automatically deploy (auto-
deploy) hadoop framework in their own virtual cluster and
submit data-intensive parallel computing applications. The
newly designed and developed auto-deploy algorithm integ-
rated in cloud manager is responsible for setting the initial
configuration files and start the hadoop daemons. The
configuration files include: masters, slaves, core-site.xml,
hdfs-site.xml and mapred-site.xml, etc. Using the auto-
deploy, cluster nodes can be easily added or removed as
needed. For example, to increase the storage capacity and
computation capability available to a cluster, we can add
new nodes. Conversely, sometimes we may wish to shrink a
cluster, we can remove nodes. The current version of
hadoop we use is 1.0.4 in VM image.

After data-intensive parallel computing applications
running in the cluster, both the Master node and Slave nodes
are monitored by Ganglia monitoring software. Ganglia is a
scalable distributed monitoring system for high performance
computing systems such as clusters and grids based on a
hierarchical design. It is responsible for monitoring the
resource utilization of all nodes in virtual cluster, including
CPU, memory, disk, and network. By analyzing the
monitored data, we can find the performance bottlenecks

1 http://ganglia.sourceforge.net/

595595

and adjust the hadoop framework parameters and VM
configuration by the system tuner which is responsible for
altering configuration parameters.

B. Key Technologies
1) Hadoop: The hadoop [5] project includes two main

modules: (1) Hadoop Distributed File System (HDFS)
which provides high-throughput access to application data,
and (2) MapReduce which is a YARN-based paradigm for
parallel processing of large-scale data sets. The architecture
of hadoop is based on Master-Slave mode which may result
in single node of failure.

The HDFS module contains three kinds of node:
NameNode, DataNode and Client. The NameNode holds the
namespace of distributed file system, which is a hierarchy of
files and directories. Both file and directory are represented
by inode which records the attributes like permission,
modification, access time and disk space quota, etc. The
DataNode is responsible for the storage of file content itself.
When the file size exceeds the appointed block size, it will
be split into large blocks (typically 64 megabytes) which are
independently replicated on multiple DataNodes with three
replicas.

A MapReduce job is a unit of task that the user wants to
be performed: it consists of the input data, mapper function,
reducer function and job configuration information. There
are one jobtracker, a number of tasktrackers. After the users
upload input data to the HDFS and submit some parallel
computing jobs, the jobtracker coordinates all the jobs
running on the system by scheduling tasks to run on
different tasktrackers. Tasktrackers run tasks and send
heartbeats with progress report to the jobtracker, which
keeps a record of the overall progress of each job. The
underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, handles
machine failures, and schedules inter-machine communica-
tion to make efficient use of the disk and network.

Xen and OpenNebula: There are two basic kinds of
virtualization technology: full virtualization and paravirtua-
lization. Full virtualization is a complete simulation of the
underlying hardware, while paravirtualization provides a
software interface to VMs and the interface is similar but
not identical to that of the underlying hardware.

Xen [6] is an x86 virtualization hypervisor which allows
multiple commodity operating systems to share convention-
al hardware in a safe and resource managed fashion, and
without sacrificing either performance or functionality. It is
achieved by providing an idealized VM abstraction to which
operating systems such as Linux, BSD and Windows XP.
We currently use Xen 4.1 version in our platform.

With IaaS cloud service growing popularity, a lot of tools
and technologies are emerging that can transform an
organization’s existing infrastructures into a private or
hybrid cloud. OpenNebula [9] is an open source cloud
manager that deploys virtualized services on both a local

pool of resources and cross-domain clouds. It is responsible
for providing a uniform and homogeneous view of
virtualized resources, managing a VM’s full life cycle,
supporting configurable resource allocation policies to meet
the organization’s specific goals and adapting to an
organization’s flexible resource needs. We currently use
OpenNebula 3.8.1 version as the cloud manager in our
platform.

2) Scale-up and Scale-out Method: There are two
methods to add more resources for a particular application:
scale-up and scale-out. Scale-up method means adding more
resources to original nodes in a system, typically involving
the addition of CPU and memory to a single PM or VM
node. Scale-out method means adding more nodes to a
system, such as adding a new VM to a data-intensive
parallel computing cluster. Hundreds of small commodity
machines may be put together in a cluster to obtain
aggregate computing capacity that often exceeds the
traditional computers with a single processor.

However, there are tradeoffs between the above two
methods. Large numbers of nodes means increased
management complexity, as well as a more complex
programming model and high network communication
overheads between nodes; meanwhile, some applications do
not lead themselves to a distributed computing model. It’s
meaningful to find out which is more efficient to fullfil big
data analytics on a scale-up virtual cluster (with fewer
powerful nodes) or on a scale-out virtual cluster (with more
less powerful nodes), especially with the rent cost consider-
ation.

III. SCALABILITY PERFORMANCE ANALYSIS OF HADOOP
VIRTUAL CLUSTER

In this section, we study the scalability performance of
hadoop virtual cluster with different big data analytics
applications. We mainly compare the performance of the
scale-up method and scale-out method. After analyzing the
results, cloud users can choose effective scale method to add
more resources to his cluster for specific application.

A. Experimental Configuration
1) Hadoop Virtual Cluster Configuration

All the experiments are performed on Dell PowerEdge
R720 servers, with 2 Quad-core 64-bit Xeon processors E5-
2620 at 2.00GHz and 64GB DRAM. We use Ubuntu 12.04
in Domain 0, and Xen 4.1 as the virtualization hypervisor.
Each virtual machine is installed with Ubuntu12.04 as the
guest OS with the configuration of 1~4 vCPU and
3.75~15GB vMemory. According to the Amazon EC2 2

pricing model in Table I, we set the same price of VM with
them, but with small time granularity. In order to ensure the
data precision, each of the showed experimental results were
gained via running benchmarks three times with the same
configuration and use the average value.

2 http://aws.amazon.com/cn/ec2/

596596

TABLE I. AMAZON EC2 PRICING MODEL

VM Type vCPU vMemory Price
m1.xsmall 1 1GB 0.030$/h
m1.small 1 1.7GB 0.060$/h

m1.medium 1 3.75GB 0.120$/h
m1.large 2 7.5GB 0.240$/h

m1.xlarge 4 15GB 0.480$/h
2) Hadoop benchmark
In our experiments, we choose -put/-get FsShell comm-

ands to test the performance of HDFS and four typical
hadoop benchmarks which include the real parallel machine
learning algorithms to test the performance of MapReduce.
Table II shows the details of benchmarks.

TABLE II. THE DESCRIPTION OF BENCHMARKS

Name Category Description
Put/Get HDFS Write/read local file to/from

the hadoop distributed file
system

WordCount MapReduce Reads text files and counts
how often each word occur

RegexMatch MapReduce Used in pattern matching
with strings, or string matc-
hing

TeraSort MapReduce Sorts amount of data as fast
as possible, and validates
the accuracy of the result

Mahout MapReduce Machine learning library,
including clustering, classi-
fication and recommendati-
on

The WordCount benchmark reads text files and counts
how often words occur. Each mapper takes a line as input
and partitions it into words. It then emits a key/value pair of
the word and 1. Each reducer sums the counts for each word
and outputs a single key/value with the word and sum.

In RegexMatch benchmark, we use -grep command which
is used for searching plain-text data sets for lines matching a
regular expression.

The TeraSort benchmark is to sort amount of data as fast
as possible. A full TeraSort benchmark consists of the
following three steps: (1) Generating the input data via
TeraGen. (2) Running the actual TeraSort on the input data.
(3) Validating the sorted output data via TeraValidate.

The Mahout3 library is an open-source machine learning
library based on hadoop. Currently mahout supports mainly
three kind algorithms: clustering, classification and recom-
mendation. In this paper, we choose some clustering
algorithms, including k-Means clustering, Fuzzy k-Means
clustering and Canopy clustering, to test the performance of
our VirtualMR platform.

3 http://mahout.apache.org/

The k-Means clustering offered by mahout library is an
iterative algorithm implemented as a series of MapReduce
rounds. It aims to partition n objects into k clusters in which
each object belongs to the cluster with the nearest distance,
serving as a prototype of the cluster. The input to the
algorithm is a set of objects represented as d-dimensional
vectors, and an initial set of cluster centers. The Fuzzy k-
Means clustering is an improvement of k-Means, while k-
Means creates hard clusters where a object belong to only
one cluster, Fuzzy k-Means is a more statically formalized
method and creates soft clusters where a particular object
can belong to more than one cluster with certain probability.
The Canopy Clustering is a very simple, fast and accurate
method for grouping objects into clusters. Canopy
Clustering is often used as an initial step in more rigorous
clustering techniques, such as k-Means Clustering.

B. Performance Comparison of Scale-up and Scale-out
Method

In the experiments, we create two clusters to compare and
analyze the scalability performance of hadoop virtual cluster
with cost consideration. In cluster A (scale-up), we create 4
VM nodes (1 Master and 3 Slaves), each node with 4 vCPU
and 15GB vMemory, and set map task slot number=8,
reduce task slot number=4. In cluster B (scale-out), we
create 16 VM nodes (1 Master and 15 Slaves), each node
with 1 vCPU and 3.75GB vMemory, and set map task slot
number=2, reduce task slot number=1. The total number of
vCPU and vMemory is equal in two clusters. According to
Table I, we realize the rent cost per hour (or minute) of
cluster A and cluster B is equal. When the parallel comput-
ing execution time is short, the rent cost will be low.

Figure 2 shows the write/read performance as the file size
ranges from 400MB to 2400MB of different clusters. It is
obvious that the write/read time is short when the file size is
relatively small, and increases gradually as the file size
scales. From the Figure 2(a), we can see that the scale-up
method has lower performance than scale-out. The reason is
that there are more VMs in cluster B which can provide
higher cumulative disk and network I/O bandwidth. The I/O
contention and interference between task slots in cluster A is
more serious. From the Figure 2(b), we can observe the read
time increases with the nodes number scales. In read process,
the client chooses the nearest DataNodes to read data. The
data volume of read process is one-third of write process, so
the I/O will not be the bottleneck in read process. The main
time is cost by the NameNode to choose which DataNodes
to read the block replicas, and more VMs cost more time.

Figure 3(a) represents the WordCount performance when
running on different clusters. The input data of WordCount
is chosen from the TOEFL reading materials with the file
size ranging from 400MB to 2400MB. From the figure, it is
obvious that the running time increases as the size of input
data scales. Further, the MapReduce performance of scale-
out method outperforms scale-up method. It is because the
WordCount belongs to I/O-bound application and more

597597

800 1600 2400
0

10

20

W
rit

e
Pe

rfo
rm

an
ce

 (S
)

File Size (MB)

 Scale-up
 Scale-out

800 1600 2400
0

7

14

R
ea

d
Pe

rfo
rm

an
ce

 (S
)

File Size (MB)

 Scale-up
 Scale-out

Figure 2. (a) Write Performance of Different Cluster (b) Read Performance of Different Cluster

800 1600 2400
0

500

1000

Ru
nn

in
g

tim
e

(S
)

File Size (MB)

 Scale-up
 Scale-out

800 1600 2400
0

20

40

60

Ru
nn

in
g

tim
e

(S
)

File Size (MB)

 Scale-up
 Scale -out

Figure 3. (a) WordCount Performance of Different Cluster (b) Grep Performance of Different Cluster

4-node 8-node 16node

80

160

240

1 2 3
0

60

120

180

240

300

360

420

480

Ru
nn

ing
 tim

e
(S

)

File Size (GB)

 Scale-up
 Scale-out

Ru
nn

ing
 tim

e
(S

)

Cluster Size

 k-Means
 Fuzzy k-Means
 Canapy

Figure 4. (a) TeraSort Performance of Different Cluster (b) Parallel Clustering on USCensus1990 Data Set of Different Cluster

concurrent nodes provide more total disk and network I/O
bandwidth. Generally, I/O-bound refers to a condition in
which the time it takes to complete a computation is
determined principally by the period spent waiting for
input/output operations to be completed.

Figure 3(b) shows the performance of Grep which is
CPU-bound application when running on different clusters.
An application is called CPU-bound when task execution
time is determined principally by the speed of the central
processor: processor utilization is high, perhaps at 100%
usage for many seconds or minutes. From the figure, we
find the performance of scale-up method is better than scale-

out method. The reason is that the CPU capability is equal
for cluster of A and B, but cluster B needs to transfer more
intermediate data in the shuffle phase.

Figure 4(a) illustrates the sort time of TeraSort
benchmark which belongs to both I/O-bound and CPU-
bound application. It can be used to sort different sizes of
input data. In our experiments, we consider the data size of
0.5GB, 1GB, 1.5GB, 2.0GB, 2.5GB and 3GB. From the
figure, we can see that the data sort time is nearly
proportional with the data size, and the performance of
scale-out method outperforms scale-up method which is
similar to the phenomenon of Figure 3(a).

598598

Figure 4(b) illustrates the performance of real parallel
clustering algorithms, including k-Means, Fuzzy k-Means
and Canopy. The data set is the USCensus19904 which was
derived from the USCensus1990raw data set. It includes 68
categorical attributes, and many of the less useful attributes
in the original data set have been dropped. Similar to
WordCount and TeraSort benchmark, the scale-up method
is worse than scale-out method. The reason is that the
clustering is an iterative algorithm implemented as a series
of MapReduce rounds which causes lots of I/O operations.

Discussion: Since the total disk and network I/O
bandwidth of cluster A is lower than cluster B, the file write
performance and I/O-bound parallel computing applications
has serious I/O contention and interference between each
task slot and results in worse performance. For CPU-bound
parallel computing applications, we find the performance of
scale-up method is better than scale-out method which
means the MapReduce performance can be obviously
affected by the shuffle process of the intermediate result.
The above experiment results merely based on two clusters
with fixed configuration, and we will analyze the perform-
ance with dynamic adjustment of the hadoop framework
parameters and VM configuration in section IV.

IV. CASE STUDY OF SYSTEM TUNER

In this section, we integrate our platform with resource
monitoring module and design a system configuration
parameter tuner. The monitored data are transferred to the
Utilization Analyzer, and the analyzer will give some
configuration adjustment strategies for us. We choose one
strategy and adjust the hadoop framework parameters or
VM configuration to reduce job execution time and improve
resource utilization. At the same time, we can reduce the
rent cost of our clusters. We choose TeraSort benchmark
running on cluster B as an example to verify the efficiency
of system tuner.

A. Tuning the Hadoop Framwork Parameters
According to the monitored data when TeraSort is

running on the hadoop virtual cluster, we observe that the
CPU utilization is relatively high and memory utilization is
extremely low. Figure 5 shows the performance of tuning
map task slot capacity per node and JVM heap size of each
map task. We use the system tuner to reset the reduce task
slot number=1 and scale the number of map task slot from 3
to 5, and we find that as the number of map task slot scales,
the running time changes slightly from Figure 5(a). It is
because that the CPU utilization is already high enough and
more concurrent task slots will not decrease the running
time. The next optimization adjusts the heap size of JVM to
be optimal. By default each hadoop map and reduce task run
in a JVM with 200MB heap size within which they allocate
buffers for in-memory data. When the buffers are full, data
is spilled to storage, adding overheads. According to the

4 http://archive.ics.uci.edu/ml/datasets.html

Ganglia monitor, we note that 128MB per task leaves
substantial amounts of memory unused on VMs. In the
experiment, we use the system tuner to increase the JVM
heap size from 128MB to 512MB, and observe that the
performance with 256MB heap size is the best from the
Figure 5(b). However, when the heap size reaches 512MB,
the performance descends instead due to the garbage
collection overheads.

B. Tuning the VM Configuration
In addition to adjusting the hadoop framework

parameters, we also can dynamically tune the VM
configuration to improve resource utilization and reduce the
cluster rent cost with the web user interface. We use the
Dynamic Memory Control (DMC) technology to change the
amount of host physical memory assigned to any running
VM without rebooting it, and use the xm vcpu-set command
to change the vCPU amount of VM.

Figure 6 shows the TeraSort performance and cluster
rent cost with different VM memory. Due to the low
utilization of VM memory, we shrink the memory size of
each VM from 4GB to 1GB for comparing the performance.
From the Figure 6(a), we find the performance variation
between different scenarios is relatively small. However,
according to Table I, we can calculate the rent cost of
clusters with different memory size of VM, and see the
reduction is apparent by 68.8% average between 4GB and
1GB from the figure 6(b).

C. Discussion of System Tuner
By running multiple data-intensive parallel computing

applications and observing the results of performance
change of system tuner, we get some tips for improving the
performance of data processing. (1) For CPU-bound
applications, if the CPU utilization of the virtual machine is
not full, you are suggested to increase the map and reduce
task slot capacity per node and decrease the number of
nodes in you virtual cluster. (2) For I/O-bound applications,
if the I/O utilization is low, you can maximize the disk and
network throughput by allocating enough map tasks in each
node to access as many files in parallel. (3) For Memory-
bound applications, if the memory is not being fully utilized,
you may benefit from increasing the JVM heap size or
decreasing the total memory of each VM.

V. RELATED WORK

MapReduce and virtualization technology has been
widely studied respectively in the recent years. Generally,
there are two methods to improve the performance of
MapReduce: (1) Adjusting the hadoop framework and job
configuration parameters to increase the resource utilization
and improve the single job execution performance, and (2)
modifying the open source code to avoid some bottlenecks
or adapt to some specific applications. Chen et al. [10]

599599

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

100

200

300

400

Ru
nn

in
g

tim
e

(S
)

File Size (GB)

 2-mapper
 3-mapper
 4-mapper

1 2 3
0

100

200

300

400

Ru
nn

in
g

tim
e

(S
)

File Size (GB)

 JVM-128MB
 JVM-256MB
 JVM-512MB

Figure 5. (a) TeraSort Performance with Different Map Task Slot Numder and (b) JVM Heap Size

0 1 2 3
0

200

400

0 1 2 3
0

20

40

Ru
nn

in
g

tim
e

(S
)

File Size (GB)

 4GB
 2GB
 1GB

Re
nt

 c
os

t (
$)

File Size (GB)

 4GB
 2GB
 1GB

Figure 6. (a) TeraSort Performance and (b) Cluster Rent Cost with Different VM memory

performed multiple experiments on different benchmarks
for MapReduce performance evaluations. Kavulya et al. [11]
analyzed 10-months MapReduce job execution logs from
the M45 supercomputing cluster. Rizvandi et al. [12] studied
CPU utilization time patterns of several MapReduce
applications, and used the Dynamic Time Warping (DTW)
to predict the probable execution patterns of unknown
applications. Rizvandi et al. [13] also proposed an analytical
method to model the dependency between configuration
parameters and total execution time of MapReduce
applications. Lin et al. [14] constructed models to describe
the effects of task granularity, slot count and workload type
on the performance from both the single job and system
perspectives. The papers [15-16] introduced some self-
tuning systems for big data analytics, and our work is a little
similar to them, but they have not taken the VM configura-
tion adjustment into consideration.

All the above works focus on PM cluster, and there are
also some studies of MapReduce on virtual cluster. Ibrahim
et al. [17] conducted a series of experiments to measure and
compare the performance of hadoop on VMs and PMs. Ye et
al. [18] proposed the vHadoop which is a scalable hadoop
virtual cluster platform for MapReduce based parallel
machine learning. Zhang et al. [19] used the hadoop
framework to develop a user application to process
scientific data on clouds. Amazon provides a cloud service

of EMR5 to individuals and organizations to process big
data. To reduce the contention and interference of disk
access and network communication among VMs, Fang et al.
[20] explored the relationship between I/O scheduling in a
virtualization hypervisor and performance of MapReduce
applications running on the VMs. Geng et al. [21] defined
metrics to analyze the data allocation problem in virtual
environment theoretically and designed a location-aware file
block allocation strategy which retains compatibility with
the native hadoop to reduce data transfer between nodes.

However, most of the previous work has not taken the
scalability method and the incurred cost into consideration
when running parallel computing applications in cloud. In
cloud computing era, pay-as-you-go model is popular
billing method. Due to the current market trading
mechanism is inflexible, and the price is not reasonable
enough in some situation, Shang et al. [22] defined a double
auction Bayesian Game-based pricing model for the
suggested cloud market and discussed how to develop an
optimal pricing strategy for this model. Kambatla et al. [23]
studied the ability to provide dynamical resource provision
of MapReduce based applications to minimize the rent cost,
while obtaining the best performance.

5 http://aws.amazon.com/cn/elasticmapreduce/

600600

VI. CONCLUSION AND FUTURE WORK

With the rapid development of big data and cloud
computing, more and more individuals and organizations
tend to rent virtual cluster in clouds for big data analytics.
This paper focuses on the scalability performance analysis
with cost consideration, and constructs a cloud platform
VirtualMR which can provide users with scalable virtual
cluster for the MapReduce based big data analytics. We first
present the design and implementation of VirtualMR
platform. Then we perform a series of hadoop benchmarks
and real parallel machine learning algorithms to analyze the
scalability performance, including scale-up method and
scale-out method. Finally, we integrate our platform with
resource monitoring and propose a system configuration
parameter tuner. By analyzing the monitored data, we can
dynamically adjust the hadoop framework parameters and
VM configuration to improve resource utilization and
reduce cluster rent cost. Experimental results show that: (1)
the disk and network I/O are main bottlenecks of VirtualMR
platform due to the shared resource contention and
interference; (2) the scale-up method outperforms the scale-
out method for CPU-bound applications, and it is opposite
for IO-bound applications; (3) by tuning the system
parameters, we can increase resource utilization and reduce
rent cost to a large extent. For example, we can reduce rent
cost by 68.8% through shrinking the memory size from 4GB
to 1GB for TeraSort benchmark.

Future work will include analyzing more characteristics
of different kinds of MapReduce job, and creating an
machine learning based automatic system tuner which can
dynamically change the hadoop framework parameters and
VM configuration of data-intensive parallel computing
applications (I/O-bound, CPU-bound and Memory-bound).

ACKNOWLEDGMENT

This work is supported by National High Technology
Research 863 Major Program of China (NO.2011AA01
A207) and National Natural Science Foundation of China
(NO.61272128)

REFERENCES

[1] C. Lynch, “Big data: How do your data grow?,” Nature, vlo. 455, no.
7209, 2008, pp.28-29.

[2] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with
big data,” in Proceedings of the VLDB Endowment , 2012, pp.2032-
2033.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp.59-
72.

[4] J. Dean, and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, 2008,
pp.107-113.

[5] T. White, Hadoop: the definitive guide. O'Reilly, 2012.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, ... and
A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, 2003, pp.164-177.

[7] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” ACM SIGOPS Operating Systems Review, vol. 36, 2002,
pp.181-194.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux virtual machine monitor,” in Proceedings of the Linux
Symposium , Vol. 1, 2007, pp.225-230.

[9] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet
Computing, 13(5), 2009, pp.14-22.

[10] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for
evaluating MapReduce performance using workload suites,”
in Proceedings of IEEE 19th International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011, pp.390-399.

[11] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production mapreduce cluster,” in Proceedings of 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), 2010, pp.94-103.

[12] N. Babaii Rizvandi, J. Taheri, and A. Y. Zomaya, “On using pattern
matching algorithms in mapreduce applications,” in Proceedings of
IEEE 9th International Symposium on Parallel and Distributed
Processing with Applications (ISPA), 2011, pp.75-80.

[13] N. Babaii Rizvandi, A. Y. Zomaya, A. Javadzadeh Boloori, and J.
Taheri, “On Modeling Dependency between MapReduce Configura-
tion Parameters and Total Execution Time,” 2012.

[14] L. Yin, C. Lin, and F. Y. Ren, "Analysis and Improvement of
Makespan and Utilization for MapReduce."

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A Self-tuning System for Big Data Analytics,”
InCIDR, Vol. 11, 2011, pp.261-272.

[16] S. Babu, “Towards automatic optimization of MapReduce programs,”
in Proceedings of the 1st ACM symposium on Cloud computing, 2010,
pp.137-142.

[17] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, “Evaluating
mapreduce on virtual machines: The hadoop case,” in Cloud
Computing, 2009, pp.519-528.

[18] K. Ye, X. Jiang,Y. He, X. Li, H. Yan, and P. Huang, “vHadoop: A
Scalable Hadoop Virtual Cluster Platform for MapReduce-Based
Parallel Machine Learning with Performance Consideration,” in
Proceedings of IEEE International Cenference on Cluster Computing
Workshops (CLUSTER WORKSHOPS), 2012, pp.152-160.

[19] C. Zhang, H. De Sterck, A. Aboulnaga, H. Djambazian, and R.
Sladek, “Case study of scientific data processing on a cloud using
hadoop,” in High performance computing systems and applications,
2010, pp.400-415.

[20] J. Fang, S. Yang, W. Zhou, and H. Song, “Evaluating I/O scheduler in
virtual machines for mapreduce application,” in Proceedings of 9th
International Conference on Grid and Cooperative Computing
(GCC), 2010, pp.64-69.

[21] Y. Geng, S. Chen, Y. Wu, R. Wu, G. Yang, and W. Zheng, W. ,
“Location-aware mapreduce in virtual cloud,” in Proceedings of
International Conference on Parallel Processing (ICPP), 2011, pp.
275-284.

[22] Q. Zhu, and G. Agrawal, “Resource provisioning with budget
constraints for adaptive applications in cloud environments,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, 2010, pp.304-307.

[23] K. Kambatla, A. Pathak, and H. Pucha, Towards optimizing hadoop
provisioning in the cloud,” in Proceedings of the First Workshop on
Hot Topics in Cloud Computing, 2009, pp. 118.

601601

