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Abstract Penta-O-galloyl-D-glucose (PGG) is a simple

hydrolysable tannin in plants. PGG exists in two anomeric

forms, a-PGG and b-PGG. While b-PGG can be found in a

wide variety of plants, a-PGG is rather rare in nature.

Numerous studies with b-PGG revealed a wide variety of

biological activities, such as anti-microbial and anti-cancer

functions. Until recently, studies with a-PGG were limited

by the lack of its availability. Since the development of an

efficient chemical synthesis of the compound, several

investigations have revealed its anti-diabetic, anti-cancer,

and anti-platelet-coagulation functions. Based on struc-

ture–activity-relationship (SAR) studies with a-PGG, a

variety of a-PGG-related novel compounds were synthe-

sized and some of them have been shown to possess

promising therapeutic activities. In this review, the authors

will survey and evaluate the biological functions of PGG

with a focus on a-PGG and its derivatives.

Keywords Hydrolysable tannin � Diabetes � Cancer �
Glucose transport � Insulin � Gallotannin

Introduction to PGG

Tannins are polyphenolic secondary metabolites in higher

plants with a broad molecular weight distribution com-

monly ranging between 500 and 20,000 Da [1]. They are

found in a wide variety of species and are considered to be

part of the plant’s natural defense system against envi-

ronmental stressors [2]. The antinutritive and toxic effects

of tannins are well-documented [2, 3]. The biological

functions of tannins depend largely on their protein-pre-

cipitating properties mediated by hydrophobic forces and

hydrogen bonds [2, 3]. In addition to the originally iden-

tified antinutritive and toxic effects, tannins possess
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multiple bioactivities that are beneficial to human health,

such as immune modulatory activities [4], antioxidant

activities [5], anticarcinogenic activities [4], and antimi-

crobial activities [4, 6]. For example, tannins in red wine

have been shown to be related to the health beneficial

effects in preventing heart-related diseases. The expression

levels of endothelin-1, a major protein responsible for

cardiovascular diseases, were found to be reduced in pro-

portion with the tannin content of specific red wines [7].

Tannins can be divided into gallotannins, ellagitannins,

condensed tannins, and complex tannins [8]. The first two

of these classes are often combined and referred to as hy-

drolysable tannins because of the presence of ester bonds

that are easily hydrolyzed to yield carboxylic acids such as

gallic and ellagic acid. Hydrolysable tannins are found in

the human diet, including fruits and beverages. For

example, ellagitannins are found in pomegranate [9] and

whisky [10] while gallotannins are found in many plants

such as Tara pods (Caesalpinia spinosa), gallnuts from

Rhus semialata or Quercus infectoria, as well as oak and

chestnut wood [11]. They are the primary reasons for the

astringent taste of these fruits and beverages. Hydrolysable

tannins have multiple beneficial effects. For example, hy-

drolysable tannins were shown to be effective in lowering

blood glucose levels in diabetic patients [12].

The structure of gallotannins is usually simpler than the

structure of other tannins. It consists of gallic acid mole-

cules that are bound to a central carbohydrate core (usually

D-glucose) via ester bonds [1]. Most of the isolated natural

gallotannins are b-anomers. Penta-O-galloyl-D-glucose

(PGG) constitutes a prominent example. The structures of

the two PGG anomers are shown in Fig. 1.

b-PGG can be found in many plants such as Rhus

chinensis MILL, Paeonia suffruticosa and Pelargonium

inquinans Ait [13, 14], while a-PGG rarely occurs naturally

[15, 16]. Both compounds are available via relatively

simple chemical syntheses [17–19]. Highly purified mate-

rial is available after crystallization.

b-PGG

b-PGG is one of the key intermediates in the biosynthesis

of almost all hydrolysable tannins in plants. Functional

studies have revealed multifunctional characteristics of b-

PGG: (a) b-PGG interferes with lipid layers [20]; (b) b-

PGG strongly inhibits the activity of a variety of enzymes

including human placenta aldose reductase [21],

Na(?),K(?)-ATPase [22], salivary a-amylase [23],

metalloproteinase-9 [24], nitric oxide synthase [25],

cyclooxygenase-2 [25], angiotensin-converting enzyme

[26], b-oxoacyl-ACP reductase [27], endopeptidase [26],

aminopeptidase N [26], elastase [28], hyaluronidase [28],

and DNA polymerase [29]; (c) b-PGG alleviates oxidative

stress [14, 30]; (d) b-PGG prevents nephrolithiasis and

urolithiasis [31]; (e) b-PGG modulates immune reactions

through, for instance, decreasing IL-8 expression [32],

down-regulating mast cell surface FcepsilonRI expression

[33], and suppressing chemokine production [34]; (f) b-

PGG protects neuronal cells against ischemia, neurode-

generation and Alzheimer’s amyloid b protein aggregation

[35–37]; (g) b-PGG also protects animal hosts from

infection by bacteria such as Staphylococcus aureus [38],

and viruses such as influenza virus [39], herpes virus [40],

HSV-1 [41], and HBV [42]; (h) b-PGG has anti-coagulant

functions [43]; (i) b-PGG activates the insulin receptor

signaling and stimulates glucose transport [12, 44]; (j) b-

PGG inhibits adipogenesis, a process through which

mature fat cells are generated from preadipocytes [16]; and

(k) b-PGG has beneficial effects in the treatment of various

cancers including, but not limited to, renal cancer [45],

prostate cancer [46, 47], breast cancer [48–51], liver cancer

[51, 52], and melanoma [24, 53]. It executes the anti-tumor

effect by inducing apoptosis [53], preventing mutation, and

inhibiting tumor proliferation [52], angiogenesis [54], and

metastasis [24]. In several studies, it has been found that b-

PGG inhibits growth of prostate [47] and breast cancer

cells [50] by inducing cell cycle arrest. b-PGG also

Fig. 1 a-PGG derivatives with their respective glucose uptake stimulatory activities
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significantly reduced growth of triple-negative breast can-

cer in a mouse model [50].

A detailed review of b-PGG functions was prepared by

Zhang et al. [55]. Although b-PGG has been extensively

studied biochemically, biologically, and biomedically, the

detailed mechanisms of action are far from fully

elucidated.

a-PGG

Since there are no efficient ways to extract a-PGG from

natural sources, studies of this compound have been rare

and largely delayed compared to those on b-PGG. Until

recently only little was known about the bioactivities of a-

PGG. In an early report, it was shown that a-PGG increases

the adhesion between opposing phosphatidylcholine

bilayers [56]. Within a narrow concentration range, it

collapses the inter-bilayer fluid space from about 15 to 5 Å

[56].

The number of studies increased only after a recent

report that described the chemical synthesis and purifica-

tion of a-PGG [17, 18]. The procedure allows for the

preparation of a 96:4 mixture of a- and b-PGG. Upon

recrystallization, a-PGG with a purity of [99 % is

obtained [17, 44]. Using a glucose uptake assay which

monitors the total amount of glucose transported into adi-

pocytes (3T3-L1 cells), it was shown that the chemically

synthesized a-PGG possesses an insulin-like glucose

transport stimulatory activity similar to b-PGG [44].

Strikingly, though, a-PGG demonstrated a 20–30 % con-

sistently higher activity in stimulating glucose transport in

adipocytes compared to b-PGG in vitro [17, 44]. Studies

with high-fat diet-induced diabetic and obese mice models

indicated that a-PGG is also effective in vivo. It reduced

blood glucose levels and improved glucose tolerance while

being well-tolerated by the animals [44]. Because a-PGG

can induce glucose uptake like insulin, it was hypothesized

that a-PGG may act on the insulin receptor signaling. A

mechanistic study using 3T3-L1 adipocytes showed that

inhibitors for the insulin receptor and for the PI3 kinase,

both of which block the insulin receptor signaling and,

thus, inhibit the insulin-mediated glucose transport, could

completely stop the glucose transport induced by a-PGG

[44]. Detailed cell studies about the effect of a-PGG on the

insulin receptor signaling revealed that a-PGG induces

tyrosine phosphorylation of the insulin receptor, followed

by activation of PI3 kinase and Akt, and stimulation of the

translocation of glucose transporter 4 (Glut4, an insulin

responsive glucose transporter) from the cytosolic com-

partment to the cytoplasm membrane [44]. Therefore, it

appears that a-PGG stimulates glucose transport by acti-

vating the insulin receptor signaling. In vitro receptor

binding assays suggest that a-PGG binds directly to the a-

subunit of the insulin receptor at a site different from the

insulin binding site because the binding of a-PGG to the

insulin receptor reduces maximal insulin binding without

significantly altering the binding affinity of insulin to the

insulin receptor [44]. Apparently, although the exact

binding site on the receptor differs from insulin, a-PGG

can still induce the insulin receptor to change to a con-

formation sufficient for the activation of the downstream

signaling pathways in insulin responsive cells. The finding

that both a-PGG and b-PGG activate the insulin receptor

while b-PGG inhibits a series of proteins/enzymes studied

by other groups [21–29] is striking and scientifically

important. It is much more common for a natural com-

pound to inhibit an enzyme rather than to activate it. The

question arises as to how the activating interactions of a-

PGG and b-PGG with the insulin receptor differ from their

inhibiting effects on all other enzymes examined.

The potential beneficial effects of a-PGG in the treat-

ment of diabetes are not only based on its ability to activate

the insulin receptor signaling, but also on its capability to

alleviate the weight gain problem in diabetes. In an animal

study with high-fat diet-induced diabetes and obesity mice

models, moderate weight loss caused by a-PGG was

observed (Cao and Chen, unpublished observation). One of

the explanations for this non-insulin-like weight reduction

effect of a-PGG is that a-PGG is a tannin that can decrease

nutrient absorbance at certain levels [57, 58]. Another

explanation is that, like b-PGG, a-PGG may inhibit adi-

pogenesis [16]. Insulin exerts its biological functions

through two types of actions: a rapid insulin receptor

activation resulting in Glut4 translocation and glucose

uptake within minutes, and a much slower action promot-

ing adipogenesis involving gene expressions that take days

to complete [59]. The a-PGG’s rapid action which leads to

Glut4 translocation is insulin-like while its slower action

which results in inhibition of adipogenesis is non-insulin-

like or anti-insulin. It would be highly desirable to eluci-

date how a-PGG mediates these two types of activities at

molecular and gene levels. Regardless of what the under-

lying mechanisms are, the non-insulin-like adipogenesis

inhibitory activity of a-PGG could be beneficial for obese

individuals. Because diabetes and obesity are highly

associated, this weight reduction effect suggests that a-

PGG may exert long-term benefits to diabetic subjects.

The a-PGG was initially intensively studied as an anti-

diabetic compound. However, its biological function is not

at all limited to being anti-diabetic. Since numerous studies

have shown that b-PGG, the anomer of a-PGG, possesses

anti-cancer cytotoxic activities, it was hypothesized that a-

PGG could exhibit similar activities. Indeed, it was found

that a-PGG induces apoptosis in multiple human cancer

cell lines including colon cancer RKO cells, breast cancer

MCF7 cells, cervical cancer Hela cells, and lung cancer
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H1299 cells after 48-h treatments at a concentration of

25 lM [60]. It was also found in the cell studies that a-

PGG targets cancer cells without significantly affecting

their normal counterparts [60]. Using RKO as a model cell

line for in vitro mechanistic studies, a-PGG was shown to

induce apoptosis through increasing p53 levels and

inducing the activation of p53, Bax, and caspase 3, three

major players in the apoptosis pathway [60]. Surprisingly,

a-PGG’s ability to elevate p53 levels is diminished once

the insulin receptor level or function was decreased by an

siRNA or a specific inhibitor [60]. Further studies revealed

that MEK, a downstream signaling factor of the insulin

receptor, is activated by a-PGG in RKO cells [60]. Inhi-

bition of MEK activity leads to the suppression of a-PGG-

induced p53 and Bax elevation [60]. Therefore, the insulin

receptor signaling pathway, particularly the insulin recep-

tor-MEK pathway, which is traditionally considered as a

survival or oncogenic pathway, mediates a-PGG-induced

biological and biochemical changes in p53 levels and

apoptosis in tumor cells [60]. This discovery of the con-

nection between the activation of the insulin receptor sig-

naling and the onset of p53 elevation and apoptosis was

supported by a recent finding that the insulin receptor is a

dependence receptor, functioning to either promote sur-

vival or induce apoptosis depending on the availability and

characteristics of ligands [61]. Also, a-PGG was previously

found to bind the insulin receptor at a site different from

the insulin binding site, suggesting that it is possible that a-

PGG may elicit untypical insulin receptor-mediated bio-

logical effects [44]. The two activities of a-PGG described

above are likely to be extensions of the rapid and slow

actions of a-PGG in fat cells, respectively. The uniqueness

of a-PGG as both an insulin receptor signaling activator

and an apoptosis inducer, may indicate a path to a new

therapeutic strategy in the treatment of cancers. Patients

with both diabetes and cancer may benefit from a treatment

with a-PGG-like insulin mimetics. The elevated insulin

receptor signaling results in more glucose transport in fat

and muscle cells while simultaneously leading to apoptosis

in cancer cells. The development and application of a-

PGG-like insulin mimetics is promising based on the cell

study results reported. On the other hand, the anti-cancer

activity and mechanisms of a-PGG have to be further

evaluated in animal models. Also, other possible anti-

cancer mechanisms of a-PGG could be explored. For

example, it would be desirable to learn more about the

effects of a-PGG on glucose uptake in cancer cells. The a-

PGG is known to induce glucose uptake in insulin-

responsive cells [44]. However, the effect of a-PGG on

cancer cell glucose uptake, which relies on mechanisms

different from insulin-responsive cells, has not been fully

studied. Preliminary results suggest that a-PGG inhibits

cancer cell glucose uptake (Cao and Chen, unpublished

observation), which could indicate the presence of another

mechanism contributing to the anti-cancer activity of a-

PGG.

In addition to the insulin-like anti-diabetic and non-

insulin-like anti-cancer cytotoxic activities, a-PGG pos-

sesses insulin-like anti-platelet-coagulation properties

in vitro and in vivo [62]. Incubation of human platelets

in vitro with a-PGG induced the phosphorylation of the

insulin receptor and the insulin receptor substrate-1 [62].

At least in part due to its action on the insulin receptor

signaling, a-PGG blocks ADP, collagen, and thrombin-

induced platelet aggregation [62]. Further in vitro and

in vivo studies revealed that a-PGG inhibits agonist-stim-

ulated platelet aggregation by preventing agonist-induced

reduction of cyclic AMP levels. It increases cytosolic

calcium levels and induces phosphorylation of Akt [62].

The a-PGG also prevents thrombin-induced release of

P-selectin and secretion of ATP [62]. The insulin-like

activities of a-PGG in platelets may lead to an effective

treatment of patients with cardiovascular and/or platelet-

related diseases.

6Cl-TGQ and other derivatives of a-PGG

The structure–activity-relationship (SAR) studies of a-

PGG and some structurally related compounds have led to

the synthesis and identification of novel compounds with

stronger biological activities. The 6-chloro-1,2,3,4-tetra-O-

galloyl-a-D-quinovopyranose (6Cl-TGQ) (Fig. 1) is

remarkable for its more potent glucose uptake stimulatory

activity than a-PGG [17, 63].

The results of a 60-min glucose uptake assay using 3T3-

L1 adipocytes demonstrated recently that the glucose

uptake induced by 6Cl-TGQ was much higher than the

uptake induced by a-PGG, and almost as high as the one

induced by insulin [17, 63]. Equally important, 6Cl-TGQ is

stable, rapid-acting, long-lasting and orally deliverable.

Oral administration of 6Cl-TGQ at 5–10 mg/kg activated

insulin receptor signaling and lowered blood glucose levels

in both type 1 and type 2 diabetic mice [63]. Furthermore,

6Cl-TGQ demonstrated low acute and chronic toxicity

in vivo [63]. Strikingly, 6Cl-TGQ was shown to be one of

the few agents that can differentiate insulin receptors from

IGF1 receptors. It activates the former without activating

the latter in cell studies [63]. The insulin receptor is highly

homologous with the IGF1 receptor. Insulin receptor sig-

naling and IGF1 receptor signaling share many similarities.

However, IGF1 receptor activation is much more mito-

genic than insulin receptor activation [64], and IGF1

receptor signaling activation is intimately associated with

the development of various cancers [65–68]. Therefore,

insulin receptor agonists that are not affecting IGF1 are

highly desirable [69–71]. The ability of 6Cl-TGQ to
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differentiate insulin receptor from IGF1 receptor is con-

sistent with the finding that a-PGG induced MEK and p53

activation through the insulin receptor but not the IGF1

receptor [60]. Overall, 6Cl-TGQ was shown to be a

selective and more potent anti-diabetic agent than a-PGG

with some moderate anticancer activity [63]. It is also

worth mentioning that 6Cl-TGQ was observed to possess

mild anti-adipogenesis activity (Cao and Chen, unpub-

lished observation).

The same study that led to the isolation of 6Cl-TGQ

also identified other compounds with significant, but

lower biological activity (Fig. 1). Glucose uptake in

adipocytes was found to be stimulated by a-PGG

derivatives that have modified substituents on carbon 5

of the glucose core. The removal of galloyl groups in

any other position than carbon 6 led to inactive com-

pounds. Likewise, derivatives in which one or two of the

hydroxyl functions on the galloyl groups were removed

did not stimulate glucose uptake.

An extended SAR study focusing on the anti-cancer

function of a-PGG has resulted in the synthesis of a group

of anti-cancer compounds possessing glucose transporter 1

(GLUT1) and basal glucose uptake inhibitory activities

[72, 73]. These compounds have been shown to induce cell

cycle arrest, senescence and necrosis in cancer cells by

reducing glucose transport and glycolysis [74]. Further-

more, one of the leading GLUT1 inhibitors that emerged

from the study, WZB117 (Fig. 2), is effective in inhibiting

tumor growth in a nude mouse model with grafted human

lung cancer cells without significant side effects [74]. The

SAR study indicated that the PGG-lead structure can be

significantly simplified for the glucose transport inhibitory

activity. It was shown that the glucose core could be

replaced by an aromatic ring. In addition, high activity was

induced even when only two monohydroxylated benzoyl

groups were connected to the core via ester bonds [72].

Furthermore, a replacement of the ester bonds with more

stable and rigid amide linkages led to compounds with a

considerably lower activity (Qian and Chen, unpublished

observation).

Considering the success of the two SAR studies men-

tioned above, it seems likely that the ongoing research in a-

PGG and related compounds will lead to the identification

of more promising therapeutic agents.

Summary

The PGG anomers and their derivatives are potentially

beneficial to human health [75–77]. Table 1 summarizes

the major anti-diabetic-related and anti-cancer-related

biological activities of a-PGG, b-PGG and their derivative

6Cl-TGQ in comparison with those of insulin. All three

gallotannins are insulin mimetics since they share the pri-

mary function of insulin, the binding and activation of the

insulin receptor. On the other hand, these compounds are

different from insulin in that they do not induce

Fig. 2 Chemical structure of anticancer glucose transport inhibitor

WZB117

Table 1 Major anti-diabetic-related and anti-cancer-related activities

of a-PGG, b-PGG, and 6Cl-TGQ in comparison with insulin

Compound Insulin

receptor

activation

Adipogenic

activity

IGF1

receptor

activation

mitogenic

activity (cancer

growth-

promoting)

b-PGG ? -

inhibitory

ND -

anti-cancer

a-PGG ?? -

inhibitory

-/? -

anti-cancer

6Cl-TGQ ??? -

mildly

inhibitory

-/? -

mildly anti-

cancer

Insulin ????? ??? ??? ?

(possible)

‘‘?’’ for insulin receptor inducing activity using insulin’s activity as

the highest, ‘‘-’’ for mitogenic inhibitory activity. The more negative,

the stronger is the mitogenic inhibitory (anticancer cytotoxic) activity

ND not determined

Fig. 3 Schematic presentation of anti-diabetic and anti-cancer

mechanisms of a-PGG or 6Cl-TGQ
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adipogenesis, a major undesirable ‘‘side effect’’ of insulin

in the era of the obesity epidemic. Instead, they inhibit

adipogenesis. Furthermore, unlike insulin, at least two of

the compounds do not activate the IGF1 receptor or its

signaling pathway, preventing the promotion of cancer

development [68–72]. Even more strikingly, all three gal-

lotannins exhibit anti-cancer activities [60, 63]. The acti-

vation of the insulin receptor without activating the IGF1

receptor constitutes a major advantage of PGG and 6Cl-

TGQ over insulin. The anti-diabetes and anti-cancer

mechanisms of a-PGG and/or 6Cl-TGQ are schematically

presented in Fig. 3. It clearly illustrates that the two

mechanisms are mediated by totally different signaling

pathways.

Future directions

The a-PGG was demonstrated to be a very good model

compound for the study of the pharmacological activities

of gallotannins and for the development of more effective

therapeutics with lower side effects. The a-PGG and 6Cl-

TGQ were determined to possess roles in insulin and IGF1

receptor signaling. However, the evaluation of the biolog-

ical functions of a-PGG is still at an early stage. Only the

effects on lipid interactions, diabetes and cancer develop-

ment, and platelet functions have been studied more thor-

oughly. Since it has been found that some of the most

important biological functions of both PGG anomers and

their derivatives are associated with insulin receptor bind-

ing and insulin receptor-mediated signaling, future studies

should continue to focus on these areas. The following

directions may be particularly interesting and productive:

(a) In diabetes-related research, the use of genetic methods

to alter the sequence and structure of the insulin receptor

could be adopted in PGG binding studies to determine in

more detail where and how PGG and its derivatives bind to

the insulin receptor and subsequently activate it. The

completion of this study could lead to the development of

small molecules with higher insulin receptor binding

affinity and activating capability. (b) In cancer-related

research, it would be most valuable to identify the detailed

mechanism by which a-PGG induces insulin receptor-

mediated apoptosis in cancer cells. The success of this

study would provide valuable information on how a-PGG

can mediate glucose transport and apoptosis, two appar-

ently incompatible activities, through the same receptor.

(c) It is equally important to determine how a-PGG and

6Cl-TGQ differentiate the insulin receptor from the IGF1

receptor. The completion of this study should significantly

enhance our understanding of how these compounds rec-

ognize and bind to the insulin receptor, as well as activate

the insulin receptor-mediated signaling pathway without

inducing IGF1 receptor-mediated signaling. This could

contribute to the development of anti-diabetic therapeutics

with low carcinogenic potential as well as anticancer

agents. (d) Studies on the adipogenesis inhibitory activity

of PGG anomers and derivatives should explore the anti-

obesity activity of the compounds. (e) Last but not least,

synthesis and SAR studies of new PGG derivatives should

continue in order to identify and develop novel agents and

therapies in the treatment of diabetes and cancer.
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