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Background: The role of telomerase reverse transcriptase (TERT) in gliomagenesis has been recently further strengthened by the
frequent occurrence of TERT promoter mutations (TERTp-mut) in gliomas and evidence that the TERT SNP genetic rs2736100
influences glioma risk. TERTp-mut creates a binding site for Ets/TCF transcription factors, whereas the common rs2853669
polymorphism disrupts another Ets/TCF site on TERT promoter.

Methods: We sequenced for TERTp-mut in 807 glioma DNAs and in 235 blood DNAs and analysed TERT expression by RT-PCR in
151 samples. TERTp-mut status and TERTp polymorphism rs2853669 were correlated with histology, genomic profile, TERT mRNA
expression, clinical outcome and rs2736100 genotype.

Results: TERTp-mut identified in 60.8% of gliomas (491 out of 807) was globally associated with poorer outcome (Hazard ratio
(HR)¼ 1.50). We defined, based on TERTp-mut and IDH mutation status, four prognostic groups: (1) TERTp-mut and IDH-mut
associated with 1p19q codeletion, overall survival (OS)417 years; (2) TERTp-wt and IDH-mut, associated with TP53 mutation,
OS¼ 97.5 months; (3) TERTp-wt and IDH-wt, with no specific association, OS¼ 31.6 months; (4) TERTp-mut and IDH-wt, associated
with EGFR amplification, OS¼ 15.4 months. TERTp-mut was associated with higher TERT mRNA expression, whereas the
rs2853669 variant was associated with lower TERT mRNA expression. The mutation of CIC (a repressor of ETV1-5 belonging to the
Ets/TCF family) was also associated with TERT mRNA upregulation.

Conclusions: In addition to IDH mutation status, defining the TERTp-mut status of glial tumours should afford enhanced
prognostic stratification of patients with glioma. We also show that TERTp-mut, rs2853669 variant and CIC mutation influence Tert
expression. This effect could be mediated by Ets/TCF transcription factors.

The telomerase reverse transcriptase (TERT) gene encodes
a highly specialised reverse transcriptase, which adds
hexamer repeats to the 3’ end of chromosomes (Aubert and

Lansdorp, 2008; Cesare and Reddel, 2010). The increased
telomerase activity seen in cancer leads to preservation
of telomeres, allowing tumours to avoid induction of

*Correspondence: Dr M Sanson; E-mail: marc.sanson@psl.aphp.fr

Received 27 April 2014; revised 18 July 2014; accepted 12 September 2014

& 2014 Cancer Research UK. All rights reserved 0007 – 0920/14

FULL PAPER

Keywords: gliomas; TERT promoter mutation; prognostic impact; IDH mutation; gliomas molecular classification

British Journal of Cancer (2014), 1–9 | doi: 10.1038/bjc.2014.538

www.bjcancer.com | DOI:10.1038/bjc.2014.538 1Advance Online Publication: 14 October 2014

mailto:marc.sanson@psl.aphp.fr
http://www.bjcancer.com


senescence (Smogorzewska and de Lange, 2004; Shay and
Wright, 2011).

Somatic mutations of the TERT promoter (TERTp-mut) have
recently been documented in various cancers (Griewank et al,
2013; Horn et al, 2013; Huang et al, 2013; Liu et al, 2013), but
particularly in glioma (Aapola et al, 2000; Arita et al, 2013; Killela
et al, 2013; Liu et al, 2013). The two most common mutations in
TERT, C228T and C250T, map � 124 and � 146 bp, respectively,
upstream of the TERT ATG site (chr5, 1,295,228 C4T and
1,295,250 C4T, respectively), creating binding sites for Ets/TCF
transcription factors that are associated with a two- to four-fold
increased transcriptional activity (Brennan et al, 2013; Huang et al,
2013).

There is increasing evidence that TERT variation also
influences cancer susceptibility. Notably, the SNP rs2736100 is
associated with glioblastoma (GBM) risk, especially for IDH1
wild-type GBM (Shete et al, 2009; Simon et al, 2010; Di Stefano
et al, 2013). Recently, germline mutation of the TERT promoter
at position � 57 has been shown to cause familial melanoma
(Horn et al, 2013).

Here, we have (1) determined the prevalence and prognostic
impact of TERT promoter mutations, in 807 patients with glioma
(WHO grades II, III and IV). (2) examined the relationship
between TERT promoter mutation and tumour subtype and (3)
assessed the contribution of germline mutations in these patients
and in familial glioma and patients with glioma and melanoma.

PATIENTS AND METHODS

Patients and tissue samples. Collection of patient samples and
clinico-pathological information was undertaken with informed
consent and ethical board approval in accordance with the tenets
of the Declaration of Helsinki. Patients studied fulfilled the
following criteria: histologic diagnosis of primary glial tumour
according to the WHO classification; complete clinical data and
follow-up information available within in the neuro-oncology
database (Onconeurothèque Paris). Blood DNAs from 80 patients
with familial glioma requited through the Onconeurothèque
service were also studied. For controls we made use of data
previously generated on 1090 French individuals, which have been
described previously (Shete et al, 2009).

Molecular analysis. DNA was extracted from fresh-frozen
tumours or formalin-fixed paraffin-embedded (FFPE) tumours
using the QIAmp DNA minikit (Qiagen, Courtaboeuf, France) and
the iPrep ChargeSwitch Forensic kit (Life Technologies, Saint
Aubin, France), respectively, DNA was extracted from EDTA-
venous blood samples using a standard saline method. DNAs were
quantified using Nanodrop (Thermo Fisher Scientific, Villebon sur
Yvette, France).

Genomic profiling was performed by CGH-array analysis or
SNP array, as previously described (Idbaih et al, 2008; Gonzalez-
Aguilar et al, 2012). Mutational status of IDH1, IDH2 and TP53
was determined by Sanger sequencing, as described (Sanson et al,
2009). MGMT promoter methylation status was determined by
bisulphite modification and subsequent two-stage nested methyla-
tion-specific PCR (Everhard et al, 2006).

Mutation analysis of exons 1–20 of CIC was undertaken using
454 Sequencing Technology (Roche Applied Science, Meylan,
France). Details of PCR primers are shown in Supplementary
Table 1. All variations were then validated by Sanger sequencing
using the same primers.

Genotyping of rs2736100 has been previously described (Shete
et al, 2009).

The TERT promoter was amplified using GGCCGATTC
GACCTCTCT (GTCCTGCCCCTTCACCTT for FFPE samples)

and AGCACCTCGCGGTAGTGG primers and Sanger sequencing
performed using an ABI Prism 3730 DNA Analyzer (Applied
Biosystems, Villebon sur Yvette, France).

To determine TERT mRNA expression, tumours were lysed
using Lysing Matrix D tube and FastPrep instrument (MP
Biomedicals, Illkirch, France) and RNA extracted using the iPrep
Trizol Plus RNA Kit (Life Technologies). In all, 300 ng of RNA was
retrotranscribed with the Maxima First-Strand cDNA Synthesis Kit
(Thermo Scientific, Villebon sur Yvette, France). The cDNA
obtained was used as a template for the determination of TERT
mRNA expression by qPCR using a QuantiFast assay (Qiagen).
The DDCp method was applied to normalise to the expression of
TERT mRNA, using both the expression of b actin and a non-
tumour brain tissue sample.

Statistical analysis. The w2 test was used to compare the
distribution of categorical variables and unpaired t-test or
Mann–Whitney test associations with continuous variables.

Overall survival (OS) was defined as the time between the
diagnosis and death or last follow-up. Patients who were still alive
at last follow-up were considered as a censored event in the
analysis. Progression-free survival (PFS) was defined as the time
between the diagnosis and recurrence or last follow-up. Patients
who were recurrence free at last follow-up were considered as a
censored event in analysis. To identify clinical and/or genomic
factors associated with OS or PFS, survival curves were calculated
by the Kaplan–Meier method and differences between curves
assessed using the log-rank test. Variables with a significant P-
value were then used to develop a multivariate Cox model. In all
analyses a P-value of p0.05 (two-sided) was considered to be
statistically significant.

RESULTS

Somatic and constitutional TERTp-mut status. Tumours from
807 patients (451 male; median age at diagnosis 51.0 years, range,
17.3–89.1; 206 grade II, 206 grade III and 395 grade IV) were
screened for TERTp-mut. Complete patient characteristics are
shown in Supplementary Table 2.

Tumours from 491 of the 807 patients (60.8%) were TERTp-
mut–355 C228T (72.3%) and 136 C250T (27.7%). One GBM and
two grade II oligodendrogliomas carried both C250T and
C228T. These three cases were considered as TERT C228T
mutant in all subsequent analyses. To confirm the mutations were
somatic, we screened germline DNA of 91 of the cases. No
mutation was detectable in germline DNA. We also investigated for
the presence of TERTp-mut, in 80 familial glioma patients and 64
glioma patients with a second cancer � 14 with melanoma
(Supplementary Table 2). In none of the cases was a � 149, � 124
or � 57 mutation identified.

rs2853669 genotypes were available for 385 of the tumours. The
distribution of genotypes showed no significant departure from
HWE (39 CC, 161 CT, 185 TT P¼ 0.650). There was no difference
in the distribution of genotypes between the TERTp mut and the
TERTp wt cases (TT 45.8 vs 53.5%, CT 44.3 vs 36.0% and CC: 10.0
vs 10.5%, respectively).

We then investigated a purported association between somatic
TERTp-mut and rs2736100 genotype in 518 glioma patients,
finding no association in the whole group (allele A frequency 371
out of 616¼ 60% vs 249 out of 420¼ 59%, P¼ 0.9) or when
stratifying by IDH status and tumour class (Supplementary
Table 3).

Case–control comparison of showed a stronger association with
rs2736100 with IDH-wt gliomas but not with TERTp-mut gliomas
(Supplementary Table 4). Collectively, these data imply there is no
association between TERTp-mut and rs2736100 genotype. In
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addition, we did not find any significant association between TERT
promoter mutation and the other gliomas susceptibility SNPs
rs11979158, rs2252586, rs4295627, rs4977756, rs498872 and
rs6010620 (data not shown).

TERTp-mut is associated with GBM and EGFR amplification,
and with oligodendroglioma, 1p19q codeletion and CIC muta-
tion. TERTp-mut was associated with an older age at diagnosis in
all gliomas (median age 56.1 years for TERT mutated patients vs
40.0 years; t-test Po0.0001) and when stratified by grade (median
age at diagnosis 40.4 years vs 36.1 for grade II, P¼ 0.008; 53.3 vs
37.8 for grade III, Po0.0001 and 59.6 vs 53.6 years for grade IV,
Po0.0001).

TERTp-mut was more frequent in GBM than in grade II or III
tumours (299 out of 395¼ 75.8% vs 189 out of 412¼ 45.9%; w2 test
Po10� 17), more frequent in oligodendrogliomas than in astro-
cytomas/oligoastrocytomas for grade III (52 out of 81¼ 64.2% vs

46 out of 125¼ 30.7%: w2 test P¼ 0.0001) and for grade II (70 out
of 119¼ 58.8% vs 21 out of 87¼ 24.1%; w2 test Po10� 6).
Additionally, there was no difference in the ratio of C228T/
C250T mutations among the different grades (Table 1).

TERTp-mut was identifiable in 87.9% (94 out of 107 of gliomas
with 1p19q codeletion (90 oligodendrogliomas, 17 oligoastrocyto-
mas; 26 (24.3%) on C250T and 68 (63.6%) on C228T) as compared
with 58.8% of non-codeleted gliomas (341 out of 580, w2 test
Po0.0001). EGFR amplification was present in 183 tumours (142
GBM) and was mutually exclusive with 1p19q codeletion: 163
(89.1%) having TERTp-mut (121, C228T) as compared with 51.8%
(323 out of 624) of EGFR non-amplified tumours (w2 test
Po0.0001). The association of TERT promoter mutations with
other molecular alterations commonly seen in glioma is detailed in
Supplementary Table 5 and Supplementary Figure 1. We
investigated whether there was a relationship between CIC
inactivating mutations and TERTp-mut in grades II and III. CIC
mutation was associated with TERTp-mut in 85% of the cases (28
out of 33), compared with 61% (25 out of 41) in CIC-wt tumours
(w2 test Po0.04).

TERTp-mut is associated with increased TERT mRNA expres-
sion. We investigated the transcriptional consequences of TERTp-
mut in 153 tumours for which mRNA was available. We found a
three-fold increase in mRNA expression between TERTp-mut and
non-mutated groups (mean±s.e.m. 1.03±0.37 vs 3.44±0.88 AU;
Mann–Whitney test Po0.0001. Figure 1A).

Since the presence of the rs2853669 -C allele disrupts an Ets2
binding site (Rachakonda et al, 2013), we investigated the effect of
rs2853669 genotype on TERT mRNA expression. Tumours
harbouring the variant allele (CCþCT) showed a two-fold
reduction in TERT expression, as compared with TT homozygotes
(respective means±s.e.m. 2.97±1.01 and 6.57±2.04 AU;
Mann–Whitney test P¼ 0.005). This relationship was also
seen in the TERTp mutant cohort, however we did not
evidence any significant association in TERTp wt tumours
(Figure 1B and C).

Table 1. Distribution of TERT promoter mutations in gliomas
according to WHO histological classification

C250T
mutations (%)

C228T
mutations (%)

All TERT
mutations (%)

Grade II 26/206 (12.5) 65/206 (31.4) 91/206 (44.0)

AII 0/13 (0.0) 1/13 (7.7) 1/13 (7.7)

OAII 7/74 (9.5) 13/74 (17.6) 20/74 (27.0)

OII 19/119 (16.0) 51/119 (42.9) 70/119 (58.8)

Grade III 30/206 (14.6) 68/206 (33.1) 98/206 (47.8)

AII 0/30 (0.0) 12/30 (40.0) 12/30 (40.0)

OAIII 15/95 (15.8) 19/95 (20.0) 34/95 (35.8)

OIII 15/81 (18.5) 37/81 (45.7) 52/81 (64.2)

Grade IV GBM 77/395 (19.5) 222/395 (56.2) 299/395 (75.7)

Abbreviations: AII¼diffuse astrocytoma; AIII¼ anaplastic astrocytoma; GBM¼
glioblastoma; OII¼oligodendroglioma; OIII¼ anaplastic oligodendroglioma; OAII¼
oligoastrocytoma; OAIII¼ anaplastic oligoastrocytoma; TERT¼ telomerase reverse tran-
scriptase; WHO¼world health organisation.
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Figure 1. Expression of TERT mRNA in gliomas. The Mann–Whitney test was used to compare the expression of the different groups.
(A) Expression of TERT mRNA according to TERT promoter mutation status. TERTp mutation (C228T n¼88 or C250T n¼ 30) is associated with
higher TERT mRNA expression compared with TERTp-wt group (n¼35) (Pp 0.0001 in both cases). (B) Expression of TERT mRNA according to
rs2853669 status. Variant allele carriers (n¼70) present a lower TERT expression than TT homozygotes (n¼66) (P¼ 0.0053). (C) Expression of TERT
mRNA according to TERTp and rs2853669 status. TERT mRNA expression is lower for the variant allele carriers (n¼ 62) compared with TT (n¼56)
in TERTp-mut subgroup (P¼0.0079). For TERTp-wt group, only seven CCþCT samples and eight TT samples were available. (D) Expression of
TERT mRNA according to CIC mutation status. TERT mRNA expression is increased in CIC mutant tumours (n¼ 18) compared with CIC wild type
(n¼11; P¼0.043). (E) Impact of rs2853669 and CIC mutational status TERT expression. In the CIC-wt cohort, TERT expression was lower in
CCþCT subgroup, as compared with TT subgroup (P¼0.0159). For the variant allele carriers (CCþCT), expression of TERT was increased in the
CIC mutant group (n¼ 8), as compared with CIC wt (n¼ 5) (P¼0.0016). *Po0.05; **Po0.01; ***Po0.0001.
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Since Ets/TCF transcription factors, including ETV1-4 tran-
scription factors are controlled by CIC (Dissanayake et al, 2011),
we also investigated a specific relationship with CIC mutation. We
found TERT mRNA expression was two-fold higher in CIC mutant
tumours, compared with CIC wild-type gliomas (Mann–Whitney
test P¼ 0.043) for the whole group (Figure 1D), and for the
carriers of the variant allele (Figure 1E). The variant allele C was
also associated with a decrease in TERT mRNA expression in the
CIC wt group.

Prognostic impact of TERTp-mut is dependent on tumour
grade. For patients with grade III and IV gliomas TERTp-mut
was associated with a significantly shorter PFS and OS (Figure 2;
Supplementary Table 6). For example in grade III gliomas,
median OS of TERT promoter normal patients was twice longer
(62.6 vs 29.4 months) than OS of TERT promoter mutated (log-
rank test P¼ 0.013). This was in sharp contrast with low-grade
gliomas, where OS was better for patients with TERTp-mut
(416 years vs 97.5 months, P¼ 0.013). There was no difference
in outcome between C228T and C250T TERTp-mut in any of the
analyses.

In a multivariate Cox model analysis incorporating IDH
mutation, age at diagnosis, 1p19q codeletion, MGMT promoter
methylation, Karnofsky performance status, WHO grade and
extension of surgery (Table 2) TERTp-mut was seen to be an
independent negative prognostic factor for OS (Hazard ratio
(HR)¼ 1.50; 95% CI: 1.07–2.09, P¼ 0.018).

TERTp-mut is associated with specific prognostic and molecular
subgroups. Given TERTp-mut is associated with both 1p19q
codeletion and EGFR amplification, which are mutually exclusive
alterations with opposite prognostic effects and TERTp-mut had
a different effect in low- and high-grade gliomas, prompted us to
refine our survival analysis (Figure 3). Gliomas can be stratified
into four distinct prognostic groups according to IDH and
TERTp-mut status: (1) TERTp-mut and IDH-mut, highly
associated with 1p19q codeletion (83.9%, 94 out of 11), OS4
17 years; (2) TERTp-wt and IDH-mut, associated with TP53
mutation (67.7%, 67 out of 99, OS¼ 97.5 months); (3) TERTp-wt
and IDH-wt, with no specific association (all negative), OS¼ 31.6
months; (4) TERTp-mut and IDH-wt, highly associated with
EGFR amplification (44.1%, 161 out of 365, OS¼ 15.0 months)
(Figure 4).

TERTp-mut confers a poor prognosis except if associated with
1p19q codeletion. We considered the prognostic impact of the
above classification in grades II, III and IV (Figure 5;
Supplementary Table 7). In grades II and III, TERTp-mut was
predictive of a longer survival in the IDH mutated group, but
shorter survival in the IDH wt group. This finding can be explained
by the fact that 94 out of 114 of TERTp-mut-IDH-mut are 1p19q
codeleted. Indeed in the GBM group that do not include any 1p19q
codeletion, TERTp-mut is associated with a particularly poor
prognosis in IDH-wt tumours (OS¼ 13.8 vs16.5 months,
P¼ 0.006) but surprisingly also in IDH-mut (OS¼ 13.8 vs 29.1
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Figure 2. Prognostic impact of TERT promoter mutation status on overall survival and PFS, according to grade. Survivals were compared using
the log-rank test (Mantel Cox). In grade II gliomas (n¼ 206), TERTp mutation is associated with better survival (median 416 years vs 97.5 months;
P¼0.013). There is also a trend for better PFS (median 41.3 vs 33.3 months; P¼0.068) (A) whereas in grade III (B; n¼206) and grade IV gliomas
(C; n¼ 395), TERTp mutation is associated with poorer survival (median 29.4 vs 62.6 months P¼0.013 and 13.8 vs 18.4 months Po0.0001)
and PFS (median 15.1 vs 22.4 months P¼0.006 and 8.3 vs 10.4 months Po0.0001).
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months, P¼ 0.022) (Figure 6). In contrast TERTp-mut was
associated with a poorer outcome in IDH-wt gliomas irrespective
of grade (OS: 76.2 vs 94.8 months in grade II P¼ ns; 18.0 vs 36.5
months in grade III P¼ 0.007; 13.7 vs 17.5 months in grade IV
P¼ 0.006).

DISCUSSION

Given that 60% of tumours being TERTp-mut, TERT is the most
frequently mutated gene in gliomas thus far identified (Arita et al,
2013; Killela et al, 2013; Liu et al, 2013). We found TERTp-mut
glioma patients were older, consistent with previous reports of
other malignancies (Griewank et al, 2013; Killela et al, 2013).

Unlike melanomas, in which germline TERTp mutations have been
reported to cause familial melanoma (Horn et al, 2013), we found
no evidence that TERTp-mut contributes substantially to predis-
position to gliomas or the glioma/melanoma syndrome.

Our data showed that TERTp-mut is generally associated with
poorer outcome in high-grade gliomas, consistently with previous
data, on glioma (Killela et al, 2013, 2014), and other tumours
(Rachakonda et al, 2013). In contrast, however we observed a trend
for better outcome in low-grade gliomas. Stratifying tumours by
both IDH1/2 and TERTp-mut status provides insight into this
apparent paradox, identified four molecular subtypes of gliomas
with distinct prognosis, In IDH mutated tumours, TERTp-mut is
largely confined to 1p19q codeleted oligodendroglial tumours that
have the best outcome (Kaloshi et al, 2007; van den Bent et al,
2013). Mutation of CIC, recently identified (Bettegowda et al, 2011;

Table 2. Cox model for overall survival and progression-free survival

Overall survival Progression-free survival

Parameters HR 95% CI for HR P HR 95% CI for HR P
Age at diagnosiso60 years 0.631 0.470–0.848 0.002 0.798 0.610–1.044 0.0991

IDH mutation 0.586 0.369–0.930 0.023 0.707 0.473–1.056 0.090

1p19q codeletion 0.182 0.076–0.436 o0.0001 0.433 0.257–0.730 0.002

Surgery vs biopsy 0.586 0.435–0.791 o0.0001 0.896 0.682–1.178 0.432

MGMT promoter methylation 0.652 0.497–0.855 0.002 0.691 0.539–0.887 0.004

KPS470 0.553 0.404–0.757 o0.0001 0.567 0.421–0.763 o0.0001

Grade 1.850 1.400–2.444 o0.0001 1.215 0.989–1.494 0.064

TERT promoter mutation 1.497 1.071–2.092 0.018 1.766 1.299–2.401 o0.0001

Abbreviations: CI¼ confidence interval; HR¼hazard ratio: IDH¼ isocitrate dehydrogenase; KPS¼Karnofsky Performance Status; TERT¼ telomerase reverse transcriptase. The analysis was
conducted on 362 tumours with all parameters available.
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Yip et al, 2012) is also primarily a feature of this group (Figure 3).
In contrast, if TERTp-mut is associated with IDH1/2 wild-type
tumours, then it is mainly seen in the context of GBM (276 out of
340) with almost half of them (124 out of 276) having an EGFR
amplification which is associated with poor outcome. In our study,
this subgroup also included 54 grade III gliomas that had a
particularly poor OS of 20.1 months. Taken together, our data
show that the prognostic impact of TERTp-mut is highly
contextual and depends on the histologic and genomic background
of the tumour.

From a mechanistic point of view, TERTp mutation leads to the
creation of a putative binding site for Ets/TCF transcription factors
(Huang et al, 2013), leading to a two- to four-fold higher
expression of telomerase (Arita et al, 2013; Huang et al, 2013;
Nault et al, 2013; Rachakonda et al, 2013). The activity of
telomerase reverse transcriptase is closely correlated with TERT
mRNA level. The expression of TERT is regulated by many
transcription factors binding motives located in its promoter and

by epigenetic and chromatin remodelling mechanisms (Kyo et al,
2008; Zhu et al, 2010). Among the complex regulation of
telomerase expression, rs2853669 has been shown to modulate
both TERT expression and impact on prognosis in bladder cancer
(Rachakonda et al, 2013). Indeed, the presence of the variant allele
disrupts a pre-existing Ets2 binding site and results in the decrease
of TERT expression in our series. However, unlike bladder cancer,
rs2853669 variant does not modify the prognostic impact of
TERTp mutation in our glioma series (data not shown). Our data
also suggest a link between CIC mutation and TERT expression in
the context of glial tumours. Indeed, the presence of the variant
allele of rs2853669 did not result in a reduction of TERT expression
in the CIC mutant subgroup.

Among the 40% gliomas lacking TERTp mutation, B50%
harbour an IDH mutation (mostly astrocytomas (43 out of 180)
and oligoastrocytomas (91 out of 180), which are frequently TP53
mutated. In this group, mutations in the ATRX gene (alpha
thalassaemia/mental retardation syndrome X-linked), or in its
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partner death domain-associated protein (DAXX), which are
involved in alternative lengthening telomere (ALT) phenotype,
have been frequently documented (Jiao et al, 2012; Kannan et al,
2012; Liu et al, 2012; Killela et al, 2013) and are mutually exclusive
with telomerase reactivation. The IDH-wt and TERTp-wt group
includes mostly GBM tumours (58%, 66 out of 114). The ‘triple
negative’ low-grade gliomas, characterised by a poorer outcome
also conform to these categories (Metellus et al, 2010). Telomere

maintenance mechanism has not been investigated yet in this
subgroup.

A more detailed analysis shows the four group classification,
recently reported (Killela et al, 2014) is an oversimplification (see
Supplementary Figure 2 and Figure 5); for example, the TERTp-
mut-IDH-mut is indicative of better outcome for grades II and III
with an OS417 years, but is associated with a poorer outcome in
GBM (OS¼ 13.8 months), whereas in GBM the best group
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prognostic is those patients with TERTp-wt-IDH-mut group
(OS¼ 29.1 vs 13.8 months for the TERTp-mut-IDH mut group).
This discrepancy is unlikely to be solely explained by the
relationship between TERTp mutation and 1p19q codeletion,
present in 89% (94 out of 106) of our TERTp-mut-IDH-mut grades
II and III, but none of our grade IV tumours. In fact, the survival of
patients with TERTp-mut-IDH-mut grades II and III, without
1p19q codeletion was not significantly different from those with
1p19q codeleted tumours (median OS¼ 10 years) (Supplementary
Figure 3).

In conclusion, our data confirm the high frequency
of TERTp-mut in glioma and show that these mutations
clusterise into specific entities, with distinct clinical significances.
TERTp mutations are mostly associated with poor outcome,
except for 1p19q codeleted grade II and grade III, and for EGFR
amplified grade III and grade IV (Supplementary Figure 2A
and B, respectively). A telomere maintenance mechanism (either
TERTp mutation or ATRX/DAXX mutations) is involved in
480% of gliomas and appears therefore as a unique feature in
these tumors, offering the prospect of new therapeutic
approaches.
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