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ABSTRACT

In this paper, we present a framework for extracting mutually-

salient landmark pairs for registration. Traditional methods

detect landmarks one-by-one and separately in two images.

Therefore, the detected landmarks might inherit low dis-

criminability and are not necessarily good for matching. In

contrast, our method detects landmarks pair-by-pair across

images, and those pairs are required to be mutually-salient,

i.e., uniquely corresponding to each other. The second

merit of our framework is that, instead of finding individ-

ually optimal correspondence, which is a local approach and

could cause self-intersection of the resultant deformation,

our framework adopts a Markov-random-field (MRF)-based

spatial arrangement to select the globally optimal landmark

pairs. In this way, the geometric consistency of the corre-

spondences is maintained and the resultant deformations are

relatively smooth and topology-preserving. Promising exper-

imental validation through a radiologist’s evaluation of the

established correspondences is presented.

Index Terms— Landmark Matching, Image Registration,

MRF, Mutual-Saliency

1. INTRODUCTION

Deformable image registration is one of the most challeng-

ing problems in medical imaging. The most natural clas-

sification of the prior work consists of iconic and geomet-

ric methods. Iconic (a.k.a. voxel-wise) methods define on

the observation space a similarity criterion (like mutual in-

formation) and then seek the transformation that optimizes

this criterion. These methods are efficient for intra-modal

registration but fail miserably for modalities that are not re-

lated through the underlying statistical assumption. Geomet-

ric (a.k.a. landmark/feature-based) methods are based on the

extraction of landmarks and the estimation of the correspond-

ing transformation that creates a mapping between them.

In most landmark-based non-rigid registration methods,

establishing landmark correspondences is a crucial compo-

nent. Traditionally, landmark correspondences are estab-

lished in two sequential and separate steps, namely, land-

mark detection (e.g., [1]) and landmark matching (e.g., [2]).

However, these two-step methods are usually limited in the

following two respects.

First, those salient landmarks separately detected in two

images might inherit low discriminability and therefore are

not necessarily good for matching. As pointed out in [3],

salient points in one image might not be present, or uniquely

present in the other image. Therefore, instead of detecting

landmarks one-by-one in two images separately, landmarks

should be detected pair-by-pair, preferably as those pairs

whose matching is unique across images.

Second, individually optimal correspondence for each

landmark is not necessarily globally optimal for the defor-

mation field. Most existing methods only consider landmark

correspondences individually. As a result, the displacement

vectors at two nearby landmarks might point to completely

opposite directions, causing self-intersections in the resul-

tant dense deformation field. To avoid this problem, an ideal

method should have a systematic way to simultaneously

consider the global smoothness when establishing landmark

correspondences.

This paper presents a landmark correspondence estab-

lishment framework to cope with the aforementioned issues.

To alleviate the first limitation, we simultaneously detect

and match a number of mutually-salient candidate landmark

pairs, i.e., pairs that are uniquely corresponding to each other

across images. This is largely built upon the mutual-saliency

measure [3], which quantifies the matching uniqueness of

a pair of voxels. To alleviate the second limitation and to

encourage global optimality of the correspondences, the cor-

respondence problem is solved in a global manner through

a Markov-random-field (MRF)-based formulation [4]. This

formulation combines content similarities with geometric

constraints (relative landmarks positions and displacement

consistency). As a result, consistent landmark displacements

are estimated, thereby avoiding potential self-intersections in

the resultant deformation field. Results are evaluated by radi-

ologists to demonstrate the necessities of the two components

in our framework.

In the remainder of this paper, we present our framework

in Section 2 and provide experimental validations in Section

3. The paper is discussed and concluded in Section 4.
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2. METHODS

In this section, we first briefly describe the definition of

mutual-saliency measure in section 2.1; interested readers

are referred to [3] for more details. Based on that, we will

elaborate the two components of our framework: the detec-

tion of mutually-salient landmark pairs in section 2.2, and the

MRF formulation to find globally optimal correspondences

in section 2.3.

2.1. Definition of Mutual-Saliency Measure

Given two images I1 : Ω1 �→ R and I2 : Ω2 �→ R in the 3D

image domains Ωi(i = 1, 2) ⊂ R3, a pair of voxels u ∈ Ω1

and v ∈ Ω2 is mutually-salient if they are similar to each

other and meanwhile not similar to any other voxels in the

neighborhood. In this case, as shown in Fig. 1, the similarity

map between u and all voxels in the neighborhood of v should

exhibit a delta-shaped function peaking at v.

Fig. 1. The idea of mutual-saliency measure.

In practice, the mutual-saliency between u and v, denoted

as ms(u, v), is approximated via dividing the mean similar-

ity in the central part of the neighborhood of v (denoted as

CN(v), by the mean similarity in the peripheral neighbor-

hood of v (denoted as PN(v)).

ms(u,v)
def
=

1
|CN(v)|

∑
w∈CN(v) [sim(u,w)]

1
|PN(v)|

∑
w∈PN(v) [sim(u,w)]

(1)

Here, central neighborhood CN(·) and peripheral neighbor-

hood PN(·) are defined as concentric rings around the voxel ·
and their radii are adaptive to the scales from which the multi-

scale attributes are extracted (see [3] for details). Also in Eqn.

1, the similarity sim(u, w) is defined on the d-dimensional

attribute vectors Ai(·) characterizing each voxel (i = 1, 2 for

image Ii), i.e.,

sim (u, w)
def
=

1
1 + 1

d‖A1(u) − A2(w)‖2
, (2)

that is, smaller difference in their attribute vectors indicates

higher similarity between the two voxels. Specifically, the

attribute vector Ai(·) in our framework is constructed by

incorporating the multi-scale and multi-orientation Gabor

attributes. Here Gabor attributes are used to characterize

each voxel because of their generally applicability in diverse

images, their demonstrated successful applications in vari-

ous tasks including image registration (e.g., [5, 3]), and their

multi-scale and multi-orientation nature, which is more likely

to describe each voxel distinctively than the intensity attribute

or other texture attributes [3, 1].

Fig. 2 shows examples of different voxel pairs having

different mutual-saliency values. Here, similarity maps (c-e)

are generated by calculating the attribute-based similarity be-

tween a specific voxel (denoted as red +, blue × and orange

�) in the subject image (a) and all voxels in the template image

(b). It is observed that, the red point and its correspondence

has the highest mutual-saliency (indicating most unique cor-

respondence), followed by the blue point and its correspon-

dence, and lastly the orange point and its correspondence.

Fig. 2. Examples of different voxel pairs having different mutual-

saliency values.

Note that, the mutual-saliency is defined on a pair of vox-

els, therefore it can be used to detect landmarks pair-by-pair,

as those having high matching uniqueness across images. In

this way, landmark detection and matching steps are natu-

rally merged into a single step. When a landmark is detected,

its correspondence is also automatically determined, which is

guaranteed to be relatively unique.

2.2. Detecting Mutually-Salient Landmark Pairs

Based on the aforementioned advantage of mutual-saliency

measure, this sub-section describes extracting a number of

mutually-salient landmark pairs. To encourage uniform regis-

tration accuracy in the image, it is desirable that the detected

mutually-salient landmark pairs are scattered within the im-

age space. Therefore, as sketched in Fig. 3, we regularly

partition the subject image space Ω1 into J regions, and in

each region we select K most mutually-salient landmark pairs

across images. That is, from the jth (j = 1, 2, . . . , J) re-

gion, we select K pairs (pk
j ∈ Ω1, qk

j ∈ Ω2)K
k=1, ranking

by the similarity weighted by the mutual-saliency value, i.e.,

[sim(·, ·) × ms(·, ·)]. Here sim(·, ·) encourages the detected

pair to be similar, and ms(·, ·) reflects the uniqueness of their

matching.

Fig. 3. Sketch of the detection of landmark pairs.
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Note in Fig. 3 that, the template image space Ω2 is not

partitioned, because at this stage, no transformation is con-

ducted, therefore no corresponding regions can be assumed.

More importantly, from each region, we keep K top-

ranking pairs instead of simply choosing the highest ranking

pair. This is because the highest ranking pair is only a locally

optimal pair, not necessarily globally optimal for maintaining

the smoothness of the resultant deformation field. To find the

globally optimal pairs, a Markov-random-field (MRF)-based

optimization is formulated in the next sub-section.

2.3. Finding Globally Optimal Landmark Pairs by MRF
Formulation

Let us denote all the J × K landmark pairs detected in the

previous step as a set P = {(pk
j , qk

j )|j = 1, 2, . . . , J ; k =
1, 2, . . . , K}. One should note that K is not necessarily the

same number for different regions; while in practice, we keep

K = 10 top-ranking candidate pairs in each region.

Our goal in this section is to select one pair (out of

K pairs) from each region, i.e., P� = {(plj
j , qlj

j )|j =
1, 2, . . . ; lj ∈ {1, 2, . . . , K}}, such that they are globally

optimal, in that they altogether maintain high mutual-saliency

as well as the smoothness of the resultant deformation field.

We can formulate this task as a Markov-random-field

(MRF)-based labeling problem. That is, to find a set of op-

timal labels l� = (l1, . . . , lJ), where lj ∈ {1, 2, . . . , K} is

the label (or index) of the globally optimal pair out of K
candidate pairs in the jth region. For that purpose, we con-

struct a graph G = (V, E), where each node in V represents a

region and each edge in E expresses the constraint of a local

geometric compatibility between the landmark pairs.

In this formulation, our goal can be achieved by minimiz-

ing the following labeling energy on the graph,

l� = arg min
l

E(l1, . . . , lJ), (3)

where the energy E(l1, . . . , lJ) consists of two terms,

E(l1, . . . , lJ) = Edata(l1, . . . , lJ)+α Ereg(l1, . . . , lJ). (4)

Those two terms express the two criteria for selecting the

globally optimal landmark pairs. The first term, Edata, en-

courages the selected pair in each region to exhibit high sim-

ilarity weighted by high mutual-saliency,

Edata(l) =
J∑

j=1

exp

(
−ms(plj

j , qlj
j ) · sim(plj

j , qlj
j )

2σ2

)
, (5)

where σ is a scaling factor, estimated as the standard deviation

of the mutual saliency values of all the candidate pairs.

The second term, Ereg is a regularization term for the

goodness of resultant deformation field. The regularization

imposes constraints on both the spatial positions and the dis-

placement directions on the selected landmark pairs. Specif-

ically, spatial position constraint encourages those selected

pairs to scatter in the image space other than being close to

each other. Displacement direction constraint encourages dis-

placement vectors on adjacent pairs to be consistently ori-

ented, therefore avoiding self-intersection of the resultant de-

formation field. Those two constraints are similar to the dis-

tortion terms in [6] and [7]. Mathematically, those two con-

straints are expressed in a unified regularization term,

Ereg(l) =
∑

(m,n)∈E

∥∥(plm
m − pln

n ) − (qlm
m − qln

n )
∥∥ . (6)

One should note that such a framework is not invariant to

scale. However, since we have assumed that a rigid registra-

tion step was performed prior to the deformable fusion this

is not a main concern. We refer to [4] for a variant of this

concept that is also scale-invariant.

To implement the data and the regularization criteria, the

total energy in Eqn. (3) is minimized using the sequential

tree-reweighted message passing (TRW-S) algorithm [8] 1.

3. EXPERIMENTAL RESULTS

Our framework is applied to finding mutually-salient land-

mark pairs in brain and cardiac images. Results in the follow-

ing sub-sections aim to demonstrate the necessities of the two

components in our framework.

Results for Detecting Mutually-Salient Landmark Pairs. Fig.

4 shows a landmark pair detected across subjects based on the

mutual-saliency measure. Had we used image intensity only

to characterize each voxel and used existing methods (like

edge/corner detectors) to extract landmarks separately in two

images, this pair of voxels are less likely to be detected in the

first place, simply because they are not edges or corners or

surface boundaries. The detection of this pair in our frame-

work is largely due to 1) the use of Gabor attributes, which

characterize each voxel relatively distinctively identifiable,

as shown in similarity maps (c,d); and due to 2) the mutual-

saliency measure, which effectively quantifies the matching

uniqueness, as shown in similarity maps (e,f). Overall, this

example shows the advantage of detecting landmarks in pairs

other than one-by-one and separately from the two images.

Results for Finding Globally Optimal Landmark Pairs. To

demonstrate the necessity of MRF-based regularization, land-

mark pair detections without and with the MRF regularization

are compared. They are respectively denoted as Method 1

(M1) and Method 2 (M2) in the following comparisons.

The first comparison is in terms of the smoothness of the

resultant dense deformation field (based on thin-plate-spline

interpolation). The avoidance of self-intersection of the defor-

mation field in Fig. 5(b) demonstrates the need for a global

MRF-based optimization as we described in Section 2.3.

1The code is available on the author’s webpage.
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Fig. 4. An example landmark pair (denoted by red and blue crosses)

detected based on mutual-saliency measure. (a) Subject image I1;

(b) Template image I2. Similarity maps are generated (c) between

the red cross point and all voxels in Ω1; (d) between the blue cross

point and all voxels in Ω2; (e) between the red point and all voxels

in Ω2; and (f) between the blue cross point and all voxels in Ω1.

Figure 5. Dense deforma-

tion fields generated by (a)

M1 – no MRF regulariza-

tion and (b) M2 – with MRF

regularization.

The second comparison involves the radiologist’s eval-

uation on the landmark correspondences finally determined

without and with MRF regularization (M1 v.s. M2). Four

datasets are used: Dataset1 (size 256 × 256 × 171) and

Dataset2 (size 192 × 236 × 171) for two different sets of

intra-modality brain MR images across-subjects; Dataset3
(size 192 × 236 × 171) for a pair of multi-modality brain

MR images across-subjects; and Dataset4 (size 150 × 150 ×
49) for a pair of intra-modality cardiac MR images across-

subjects. For each dataset, 25 random pairs out of all the

finally selected pairs (typically hundreds) are evaluated in

terms of uniqueness and accuracy of correspondences. Eval-

uation results in Table 1 demonstrate the advantage of incor-

porating MRF regularization (M2) in all datasets.

4. CONCLUSION

This paper presents a framework for detecting mutually-

salient landmark pairs. The work is built upon the mutual-

saliency measure that quantifies the matching uniqueness

between a pair of voxels. Our framework conducts landmark

detection and matching simultaneously. In this way, land-

marks are detected pair-by-pair, and when they are detected,

their correspondences are naturally determined with match-

ing uniqueness. A second contribution is the incorporation

Table 1. Radiologist’s evaluation on results generated by two meth-

ods (M1 and M2 for without and with MRF optimization). � (or �)

means ”obviously better (or worse)”, > (or <) means ”slightly better

(or worse)”, and ≈ means ”almost equivalent”.

M1 � M2 M1 > M2 M1 ≈ M2 M1 < M2 M1 � M2

Dataset1 68% 12% 20%

Dataset2 4% 80% 16%

Dataset3 4% 4% 68% 20% 4%

Dataset4 4% 60% 24% 12%

of the MRF-based regularization. The MRF formulation sys-

tematically finds landmark correspondences that altogether

maintain mutual saliency and the smoothness of the resul-

tant dense deformation field. Experimental results on brain

and cardiac images have demonstrated the necessity of both

components in our framework.

To further demonstrate the advantage of detecting land-

marks pair-by-pair than one-by-one and separately from two

images, more comparisons with classic landmark detection

methods (such as SIFT [9]) are needed.

Future work also includes the handling of missing corre-

spondences. It is possible that even if individual landmark

content can be very similar, the correspondence problem can-

not be solved for them within the global framework. This

limitation can be addressed by introducing to the MRF the

notion of missing correspondences. Furthermore, the combi-

nation of geometric and iconic registration methods through

a graphical model is a very promising direction, where both

problems can mutually benefit from their corresponding so-

lutions. The ability to simultaneously and consistently solve

both the landmark correspondences and the dense registration

problems in a unified framework can be a major breakthrough

in the field of deformable image fusion.
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