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Statistical evaluation of the feasibility of satellite-retrieved cloud
parameters as indicators of PM2.5 levels
Chao Yu1,2,3, Larry Di Girolamo4, Liangfu Chen1, Xueying Zhang2 and Yang Liu2

The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter o2.5 mm in aerodynamic diameter) are
increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-
driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this
study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data
from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000–2010. We found that both satellite-
retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and
meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle
generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are
significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically
significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters
have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.
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INTRODUCTION
Numerous epidemiological studies have shown that fine particles
(PM2.5, particles with aerodynamic diameter o2.5 mm) are
associated with cardiovascular and respiratory morbidity and
mortality.1,2 Accurate PM2.5 exposure estimates are crucial to air
quality assessment and environmental health research. Measure-
ments from ground-monitoring sites, which have high accuracy
and reliable temporal coverage regardless of meteorological
conditions, have been used in many epidemiological studies.3

However, ground monitors are costly to operate, therefore have
limited spatial coverage.

In 1999 and 2002, the National Aeronautics and Space
Administration (NASA) launched its first two Earth Observing
System satellites Terra and Aqua into polar orbits.4,5 Since then,
an increasing body of literature showed that ground-level PM2.5

can be quantitatively estimated from satellite-retrieved column
aerosol optical depth (AOD), after accounting for the impact of
land use and meteorological parameters on the PM2.5–AOD
relationship.6–10 However, a major issue of applying satellite data
in PM2.5 exposure modeling is missing data owing to cloud cover,
as satellite-retrieved AOD values are only available in regions with
little or no cloud cover. For example, MODIS-Terra AOD data were
available only about 50% of the time owing to cloud cover and
unfavorable surface conditions.11 Missing data severely reduce the
statistical power of PM2.5 epidemiological models and can limit
the choices of model structure (e.g., lag structure in PM2.5 expo-
sure estimates is difficult to implement), particularly as there is

no reason to expect PM2.5 to be the same for cloudy and clear
days simply based on the meteorological controls on cloud
formation and air pollution.10 Spatial smoothing techniques with
land use parameters, such as highway length and emission source
locations, have been proposed to fill the data gaps.12 However,
these parameters are not temporally varying, and therefore
cannot reflect the dynamic effect of cloud on daily PM2.5

levels. Moreover, as spatial interpolation assumes a smooth and
continuous transition of PM2.5 levels from cloud-free regions
to cloudy regions, it is likely that the resulted interpolated
surfaces are overly smoothed and underestimate the true spatial
variability in PM2.5, especially when ground-level monitoring data
are sparse.13

Previous studies showed that PM2.5 level is probably related to
cloud properties. Dawson et al.14 found increases in cloud liquid
water content, optical depth, and cloudy area led to decreases
in simulated PM2.5 concentrations over land in January and July
in Pittsburgh and Atlanta, respectively, although the negative
impacts were not significant. Tai et al.15 showed a negative
correlation between column cloud cover and total PM2.5 concen-
trations in the Southeastern United States. Although Christopher
et al.11 reported that cloud cover is not a major problem for
inferring monthly to annual PM2.5 from space-borne sensors, their
results indicated that mean PM2.5 values under available satellite-
derived AOD conditions are higher than from all ground measure-
ments. Liu et al.9 developed a two-stage generalized additive
model to estimate daily PM2.5 concentrations in cloud-free and
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cloudy regions separately, and found significant differences in the
spatial pattern of predicted PM2.5 concentrations between cloud-
free and cloudy regions.

Operational satellite aerosol remote sensing algorithms first
identify pixels as ‘‘clear’’ or ‘‘cloudy’’ before attempting retrieval
of aerosol microphysical or optical property. Retrieval of aerosol
properties such as AOD is attempted on those pixels identified as
‘‘clear’’, and retrieval of cloud properties is attempted on those
pixels identified as ‘‘cloudy’’. As such, the presence of satellite
cloud data often signals missing AOD data, so they have the
potential to fill the data gap left by satellite AOD in PM2.5 statistical
models. However, there has been little research to date on the
association between cloud parameters and PM2.5, and how to
use this information in PM2.5 exposure modeling. In this analysis,
we explored the statistical associations of satellite-retrieved cloud
properties with PM2.5 mass and constituent concentrations using
11 years of data in the Southeastern United States. In this region,
secondary ionic species and organic matter (OM) formed by
photochemical reactions in the atmosphere contributed to 450%
of the PM2.5 mass.16–18 The persistently high temperature (Temp)
from May to October, accompanied by increased biogenic volatile
organic compound emissions and sulfate precursor emissions
result in highly active secondary production of PM2.5.17 Cloud
cover might negatively affect PM2.5 mass concentrations through
the attenuation of photochemical reactions. Our objective is to
evaluate the feasibility of satellite cloud parameters as statistical
predictors of PM2.5 concentrations in order to improve the
spatial and temporal coverage of satellite-driven PM2.5 statistical
models.

MATERIALS AND METHODS
Cloud Data
The cloud data used in this study is Collection 5.1 Level-2 cloud products
(MOD06), retrieved from the moderate resolution imaging spectro-
radiometer (MODIS) sensor aboard NASA’s Terra satellite. We used daytime
Terra MODIS cloud data with best quality and processing flags (usefulness
flag¼ 1 and confidence flag¼ 3) in this study.19 Cloud parameters
processed for the current analysis include cloud fraction (CF) and cloud
optical thickness (COT) (Table 1). In our preliminary analysis, the correla-
tions of PM2.5 mass concentrations with CF and COT are more significant
than other parameters such as cloud phase and cloud water path.

CF is calculated from each 5� 5 group of 1-km resolution cloud mask
pixels and has a 5-km spatial resolution at nadir, representing the fraction
of a 25 km2 area covered by clouds as observed from above by MODIS. For
each PM2.5 ground-monitoring site, mean CF is calculated from the 5� 5
group of CF pixels, that is, a 25� 25 km2 area centered at the site. COT is
derived from MODIS 0.645 mm, 2.13mm, and 3.75mm bands over land, and
represents the optical thickness of clouds at visible wavelengths.19 COT
data were resampled from its original 1-km resolution to 5-km resolution
to match the spatial resolution of CF data, then mean COT was calculated
from the 5� 5 pixel group centered at each ground PM2.5 monitoring site.
This method is often used to reduce uncertainties in the instantaneous
satellite observations when compared with more accurate and time-
averaged, ground-based measurements.11 The choice of a 25� 25 km2

area also avoids overlapping of CF and COT calculation areas between
neighboring PM2.5 sites, except for Pensacola (PNS) and outlying landing
field no.8 (OLF) (Figure 1), which are very close to each other.

We also obtained 11 years of Terra MODIS Collection 5.1 Level-2
aerosol products (MOD04) and examined a 5� 5 group of the 10-km

pixels centered at each site (Table 1). The larger AOD matching
area (50� 50 km2) used to calculate mean AOD value for each ground
site ensures clear separation of AOD coverage from cloud coverage.
We divided the satellite-ground matched data records into three groups
based on aerosol and cloud data availability at each site: Group 1 includes
data records with only AOD retrievals and no cloud retrievals; Group 2
includes data records with both AOD and cloud retrievals; and Group 3
includes data records with only cloud retrievals and no AOD retrievals.
The number of data records and mean values of PM2.5 concentrations,
AOD, and CF of each group are shown in Table 2, which shows that MODIS-
Terra AOD data matched to the ground PM2.5 sites were only available in
48.5% of the time. Because we are interested in how to use information
provided by MODIS cloud products to supplement AOD data in PM2.5

exposure models, Group 1 data records were excluded from further
analysis. Table 2 also shows that nearly 25% of the PM2.5 measurements
are matched with both AOD and cloud retrievals. Having this subset may
significantly increase the number of data records in small CF bins.
However, the interaction between aerosols and clouds is complex. Satellite
measurements of aerosols in the vicinity of clouds are influenced by
several factors including aerosol hygroscopic growth in the humid air
surrounding clouds, cloud-related particle changes, and 3-D radiative
effects.20,21 Because this is the first attempt to study the association
between ground PM2.5 levels and MODIS cloud parameters, we would like
to focus on situations with clearly no AOD retrievals. Therefore, Group 2
data records were also excluded from data analysis to simplify the
interpretation of our results.

Ground PM2.5 Measurements and Meteorological Data
Daily mean PM2.5 and speciation concentrations from 2000 to 2010 were
obtained from the Southeastern Aerosol Research and Characterization
(SEARCH) Network (Figure 1). SEARCH sites collect daily average total
PM2.5 mass concentrations measured with the federal reference method
(FRM) every day, and speciation data including sulfate, nitrate, ammonium,
OM, elemental carbon (EC), and major metal oxides (MMO) every day
or every third day. SEARCH measurements are guided by a detailed
quality control and assurance protocol, much of which is derived
from EPA guidelines.22 We selected daily FRM PM2.5 measurement for

Table 1. The cloud and aerosol data products and parameters used in this study.

Parameter Satellite/product SDS name Resolution QA Reference

CF Terra/MOD06 ‘‘Cloud Fraction Day’’ 5 km usefulness¼ 1 confidence¼ 3 19

COT Terra/MOD06 ‘‘Cloud Optical Thickness’’ 1 km usefulness¼ 1 confidence¼ 3 19

AOD Terra/MOD04 ‘‘Optical Depth Land And Ocean’’ 10 km None 27,28

Figure 1. Geographic distribution of the eight monitoring sites in
SEARCH network.
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comparison with MODIS data because it is the national ambient air quality
standard for PM2.5 and there are twice as many FRM monitors nationwide
as continuous monitors. Previous studies also indicated that satellite
measurements were highly correlated with daily average ground
measurements.23,24 The eight SEARCH sites are arranged into four urban-
rural (or suburban) pairs in four southeast states (Mississippi, Florida,
Alabama, and Georgia). This configuration covers different land use
categories (residential, forest, agriculture, and industrial) and allows the
investigation of local and regional source influences, as well as coastal and
inland conditions (Table 3).

The mean PM2.5 mass concentrations of group 3 are lower than group 1
(except for Yorkville (YRK)) and group 2, which indicates that cloud
cover might have a negative association with PM2.5 mass concentrations
(Table 2). In addition, the relationship between cloud cover and PM2.5

concentrations might be associated with meteorological parameters such
as wind speed (WS), Temp, relative humidity (RH), solar radiation (SR), and
precipitation (PRECIP). Hourly meteorological measurements from the
SEARCH sites were averaged to daily values and matched with PM2.5

measurements.

Statistical Analysis
Relationships of PM2.5 concentrations with CF and COT were examined
respectively for all of the group 3 data points. The COT data were arranged
into 25 value bins separately, with an equal number of data points in
each bin. As 430% of the matched observations have a CF of 100%,
we put these data points in an individual bin (bin 26) and arranged the
rest of the CF data points into 25 bins. Detailed information for 26 value
bins of CF and 25 value bins of COT is provided in Supplementary
Materials (Supplementary Tables S1–S4). Mean values of PM2.5 mass
concentration, each major PM2.5 constituent and meteorological variable
within each CF or COT bin were calculated. As season, land use type, and
locations were important factors in the satellite-driven statistical models
of PM2.5,23 we also divided the data set into seasonal subsets (winter:
DJF, spring: MAM, summer: JJA, fall: SON), land use subsets (urban sites:
ATL, BHM, GFP, PNS; rural/suburban sites: YRK, CTR, OAK, OLF), or locational

subsets (inland sites: ATL, YRK, BHM, CTR; coastal sites: GFP, OAK, PNS,
OLF) according to the configuration of the SEARCH network. Data points
within each subset were also sorted by the cloud parameter and arranged
into 26 CF bins and 25 COT bins for regression analyses. We used linear
piecewise regression to examine the associations between PM2.5 mass
concentrations and CF/COT for easier interpretation and comparison
across regression results from seasonal, land use, and locational subsets.
To further examine the impact of cloud cover on secondary particle
generation, simple linear regression and piecewise linear regression
were also used to examine the association between PM2.5 constituent
concentrations and CF and COT, respectively. Additional site-specific
analysis and results on the comparison of various model formats are
provided in Supplementary Materials.

RESULTS
A total of 14,106 data points with available cloud retrievals but
missing AOD values were identified from 2000 to 2010 (Table 4).
The average PM2.5 concentrations vary by season, land use type,
and location. Summer has the highest mean PM2.5 levels, followed
by spring, fall, and winter. Long-term average PM2.5 levels at
inland and urban sites are 20–25% higher than coastal and rural
sites, respectively. Average CF and COT are B10% higher in winter
than the rest of the year. There are no significant differences in CF
and COT values between urban and rural subsets, or between
inland and coastal subsets.

PM2.5 concentration is negatively correlated with CF (R2¼ 0.74,
Slope¼ � 0.046), and this association varies significantly by
season (Figure 2). The negative slope between CF and PM2.5 is
stronger in summer (R2¼ 0.65, Slope¼ � 0.054) and fall (R2¼ 0.49,
Slope¼ � 0.054) than in spring (R2¼ 0.20, Slope¼ � 0.022),
whereas the correlation in winter is statistically insignificant
(P-value40.05). In contrast, the association between PM2.5

Table 2. Mean values of PM2.5, AOD, and cloud fraction of three groups of MODIS aerosol/cloud observations for all data points and each site.

Group 1 Group 2 Group 3

Num PM2.5 (mg/m3) AOD Num PM2.5 (mg/m3) AOD CF (%) Num PM2.5 (mg/m3) CF (%)

All 7347 12.65 0.078 5942 14.72 0.25 58.0 14106 11.20 89.6
ATL 894 14.48 0.099 719 18.17 0.29 59.4 1794 13.98 91.9
YRK 971 11.63 0.081 716 15.12 0.27 55.9 1790 11.90 90.6
BHM 934 16.51 0.061 846 19.94 0.27 60.0 1797 13.98 91.8
CTR 1103 11.67 0.077 737 13.54 0.25 56.2 1706 10.26 89.8
GFP 806 11.58 0.081 720 12.48 0.24 56.4 1857 9.65 86.8
OAK 984 11.33 0.064 658 12.54 0.23 58.9 1803 9.91 87.4
PNS 732 13.51 0.087 792 13.21 0.24 58.9 1499 10.47 89.1
OLF 923 10.91 0.075 754 12.02 0.24 58.2 1860 9.41 89.3

Group 1: Data points with only AOD retrievals. Group 2: Data points with both AOD and cloud retrievals. Group 3: Data points with only cloud retrievals.

Table 3. Description of the SEARCH sites.

Name Type Setting Latitude Longitude Days PM2.5 (mg/m3)

Atlanta (ATL) Urban Industrial-residential 33.776 84.413 3556 15.00
Yorkville (YRK) Rural Forest-agricultural 33.931 85.046 3571 12.44
Birmingham (BHM) Urban Industrial-residential 33.553 86.815 3721 16.05
Centreville (CTR) Rural Forest 32.902 87.250 3653 11.37
Gulfport (GFP) Urban Residential 30.391 89.050 3464 10.72
Oak Grove (OAK) Rural Forest 30.985 88.932 3554 10.73
Pensacola (PNS)a Urban Residential 30.437 87.256 3165 11.96
Outlying Landing Field no.8 (OLF) Suburban Forest-grass 30.551 87.376 3683 10.39

Days is the number of days of data available between 1 January 2000 and 31 December 2010, PM2.5 is the mean PM2.5 mass concentrations (mg/m3) for all days.
aPM2.5 data from PNS site are from 2000 to 2009.
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concentration and CF does not change substantially between
urban (slope¼ � 0.047) and rural sites (slope¼ � 0.047) as shown
in Figure 2c, except the constant discrepancy of PM2.5 mass
concentration levels between them. A t-test showed that the

regression slope difference between urban and rural sites is
insignificant (P-value 40.05). PM2.5 mass concentrations decrease
more significantly at inland sites (Slope: � 0.057) than at coastal
sites (Slope: � 0.043) with increasing CF, indicating that CF is a
more effective indicator of change in PM2.5 levels at inland sites
than at coastal sites. Site-specific plots of PM2.5-CF relations also
show similar results (Supplementary Materials, Supplementary
Figure S1).

Figure 3 shows that PM2.5 concentration is negatively associated
with COT. However, the distribution of COT values is uneven,
with B75% of COT values below 20. We calculated the number,
median, mean, and SD of COT, CF, PM2.5 total mass, and
constituent concentrations (nitrate, sulfate, ammonium, OM, EC,
and MMO), and meteorological variables (WS, Temp, RH, SR, and
PRECIP) for subsets of COT values larger and smaller than 20
(Supplementary Table S5 in the Supplementary Materials), and the
statistical characteristics of COT values r20 differ substantially
from that of COT values 420. For low COT values (r20), the
SD of COT is smaller than high COT values (420), and the COT
values are more concentrated. However, CF, PM2.5 (especially
for sulfate and nitrate), and SR all have substantially larger SDs
than those with high COT values. Consequently, we defined
an empirical cutoff of COT¼ 20 to fit a linear regression line
for COT r20 and COT 420 separately. Compared with more
complex model formats including power-law, parabola, and

Figure 2. Relationships between PM2.5 mass concentrations and cloud fraction for (a) all data, (b) seasonal subsets, (c) land use subsets and
(d) location subsets. Dashed lines represent a linear fit of data points for individual data groups.

Table 4. Descriptive statistics (mean±SD) for PM2.5, CF, and COT in
each subset.

Subset Num PM2.5 (mg/m3) CF (%) COT

All 14106 11.2±6.2 89.6±17.2 16.5±17.5
Season
Winter 3383 9.9±5.5 95.8±10.9 21.5±20.3
Spring 3534 11.2±5.4 88.8±17.8 16.7±18.1
Summer 4132 12.4±6.9 85.2±19.3 11.8±13.3
Fall 3057 11.0±6.5 89.5±17.0 17.0±16.7

Land use
Urban 6947 12.1±6.5 89.9±16.3 16.3±17.7
Rural 7159 10.3±5.7 89.3±18.0 16.7±17.3

Location
Inland 7087 12.6±6.7 91.0±16.4 18.0±18.0
Coastal 7019 9.8±5.3 88.1±17.8 14.9±16.8
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exponential equations, the piecewise linear function has the
highest model R2 and is easier to interpret (Supplementary
Materials, Supplementary Figure S2 and Supplementary Table S6).
Our results showed that the PM2.5 concentration decreases more
rapidly with COT when COT is r20 (Slope: � 0.15) as compared
with when COT is 420 (Slope: � 0.032). Similar to CF, the
association between PM2.5 concentration and COT also varies by
season (Figure 3b). The negative association of COT with PM2.5 is
significant in warmer seasons (summer: R2¼ 0.65, Slope¼ � 0.18;
fall: R2¼ 0.46, Slope¼ � 0.15; spring: R2¼ 0.40, Slope¼ � 0.12),
whereas insignificant in winter (P-value 40.05). Figure 3c shows
that the negative associations between COT and PM2.5 levels
are comparable at urban and rural sites, and are almost identical
to that of the whole data set. The linear regression slopes in
both land use types are neither significantly different from each
other nor the slope derived using the entire data set at a¼ 0.05
level. As shown in Figure 3d, COT has a slightly greater impact on
inland sites (slope: � 0.19) than coastal sites (slope: � 0.14) when
COT is r20.

Figure 4 shows that secondary PM2.5 constituents including
sulfate (R2¼ 0.73, slope¼ � 0.021) and OM (R2¼ 0.37, slope¼
� 0.011) decrease significantly with increasing CF. Primary
constituents such as EC and MMO are less affected as indicated
by lower model R2 values and close-to-zero slopes. Nitrate levels
increase with CF (R2¼ 0.31, slope¼ 0.0019). Figure 5 shows
decreasing trends of sulfate, ammonium, OM with COT, but the
negative slopes are greater at low COT levels (i.e.,r20) (sulfate:

R2¼ 0.61, slope¼ � 0.062; ammonium: R2¼ 0.34, slope¼ � 0.013;
OM: R2¼ 0.78, slope¼ � 0.076) than at high COT levels (420)
(sulfate: R2¼ 0.91, slope¼ � 0.020; ammonium: R2¼ 0.90, slope¼
� 0.006; OM: R2¼ 0.64, slope¼ � 0.014). The levels of primary
PM2.5 constituents such as EC and MMOs decrease with increasing
COT only at low COT levels.

Figure 6 shows that CF and COT are positively associated with
WS, RH, and PRECIP. Stronger horizontal mixing with increasing
WS as well as wet deposition are expected to lower PM2.5 levels
under clouds. In addition, Tai et al.15 found a negative correla-
tion of PM2.5 with RH in the Southeast based on observed
meteorological and PM2.5 data. However, the mechanism for
the relationship between RH and PM2.5 is complex as individual
PM2.5 components show different correlations with RH.15 The
associations of meteorological parameters with COT are generally
stronger at low COT levels as indicated by steeper negative slopes
than high COT levels.

The seasonal variation of the relationship of PM2.5 with CF and
COT might be associated with temperature. Table 5 shows that
sulfate and OM concentrations are the highest and nitrate
concentrations the lowest in summer; these patterns are reversed
in winter. As a result, the impact of cloud cover would be more
pronounced in warm seasons than in cold seasons. The fractions
of sulfate and OM in PM2.5 are similar between urban and rural
sites, which could result in comparable negative associations
between cloud properties (CF, COT) and PM2.5 levels at urban and
rural sites. Owing to the slight differences in sulfate and OM mass

Figure 3. Relationships between PM2.5 mass concentrations and cloud optical thickness for (a) all data, (b) seasonal subsets, (c) land use
subsets and (d) location subsets. Dashed lines represent a linear fit of data points for individual data groups.
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concentrations between inland sites and coastal sites, PM2.5 mass
concentrations decrease a little more significantly at inland sites
than at coastal sites with increasing cloud cover.

DISCUSSION

A major limiting factor of current satellite-driven PM2.5 exposure
models in air pollution health effects research is missing data due
to cloud cover. Using MODIS-retrieved cloud parameters and
ground PM2.5 mass concentrations, we showed that there are
significant and systematic differences in PM2.5 levels between
cloudy and cloud-free regions, and PM2.5 mass concentrations are
negatively correlated with CF and COT. During our study period,
secondary particles such as sulfate and OM account for up to
70% of the total PM2.5 mass at each SEARCH site (Supplementary
Figure S3, Supplementary Materials). The negative association
between total PM2.5 and cloud cover can be largely attributed to
the negative response of sulfate and OM to cloud cover. The
decrease in sulfate concentration is probably associated with the
attenuation of photochemical reactions under cloud cover,
although it may be partly offset by the positive influence from

in cloud SO2 oxidation at high RH.15 For OM, this might be related
to less frequent prescribed burns and wildfires under cloudy
and high humidity conditions, which are major emissions
sources of carbonaceous aerosols in this region.25 The positive
association of nitrate with cloud cover likely reflects the RH
dependence of the ammonium nitrate formation equilibrium
and decreased volatilization of ammonium nitrate with lower
Temp under cloud cover.14,26 As the counter-ion for sulfate and
nitrate, the negative association of ammonium with cloud cover is
likely due to the combined effects of sulfate and nitrate.15 Our
piecewise regression results, which showed significant different
regression slopes between PM2.5 and COT at COT r20 and
COT 420, might also be the reflection of the impact of cloud
cover on secondary particle generation. Light transmittance of
clouds is roughly equal to 1/COT for large COT values (personal
communication with Dr. Steven Platnick). When COT is 420,
clouds might be thick enough to prevent direct sunlight from
reaching the ground. As a result, the increase in COT no longer
has a strong impact on PM2.5 levels. The smaller regression
slope at high COT values might also be related to the fact that
lower Temp below clouds can lead to reduced photochemical
reaction rates.

Figure 4. Relationships between PM2.5 speciation and cloud fraction.
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However, it should be noted that the production and removal
of PM2.5 is a complex interaction among various surface and
meteorological variables, and these interactions are difficult to
unravel with only the observation data sets used in this study. For
example, the impact of PRECIP on PM2.5 mass and constituent
concentrations cannot be fully explored without additional
information such as cloud type. Our empirical analysis cannot
fully explain the different associations between PM2.5 mass and
constituent concentrations and low/high COT levels either. Further

examination should be based on satellite-ground observations
and atmospheric chemistry models to delineate the relationship
between cloud conditions and ground PM2.5.

Nonetheless, our empirical data analysis showed that MODIS
cloud parameters are strongly associated with ground PM2.5 mass
concentrations. On one hand, satellite cloud parameters alone are
insufficient to estimate PM2.5 concentrations, as there is significant
variability in PM2.5 levels within each CF or COT value bin. On
the other hand, almost all current satellite PM2.5 models involve

Figure 5. Relationships between PM2.5 speciation and cloud optical thickness.
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multiple covariates such as meteorological and land use para-
meters to modify and strengthen the association between satellite
AOD and PM2.5.9,12 Each of these covariates is correlated with

PM2.5, but is not robust enough to estimate PM2.5 alone. However,
together they form highly predictive models. Similarly, satellite
cloud parameters will need to be used in conjunction with these

Figure 6. Relationships between meteorological variables and CF and COT.
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covariates to estimate PM2.5 concentrations although a demon-
stration of such models is beyond the scope of this paper.

In conclusion, the statistically significant relationships between
PM2.5 mass concentrations and cloud properties (CF and COT)
observed in our study serve an important purpose in PM2.5

exposure modeling, especially for predicting PM2.5 daily concen-
trations. Our paper is the first attempt to establish the feasibility
of satellite-retrieved cloud parameters to be considered in
similar ways to other meteorological and land use parameters
in satellite PM2.5 models. Given the global and almost daily
coverage of satellite instruments such as MODIS, these cloud
parameters may be developed into predictors of PM2.5 levels.
The regression slopes obtained in the current analysis can be
used together with predicted PM2.5 concentrations derived
from satellite AOD in cloud-free conditions to estimate PM2.5

concentrations under cloud cover, effectively doubling the cover-
age of satellite PM2.5 models. The relationships between cloud
properties and PM2.5 mass concentrations described in this study
could be also used as observational constraints for atmospheric
chemistry models.
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