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ABSTRACT
Alzheimer’s disease (AD) has brought a heavy burden to society as a representative neurodegenerative 
disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, 
diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD 
such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular 
amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several 
disadvantages including single target, poor curative effect, and obvious side effects. Tea contains 
many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea 
polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can 
reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation 
of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and 
hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving 
oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review 
summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, 
we propose the main limitations of current research and future research directions, hoping to 
contribute to the development of natural functional foods based on tea active ingredients in the 
prevention and treatment of AD.

HIGHLIGHTS
• Natural AD-modulating active ingredients in tea have been summarized.
• influences of drinking tea or tea active ingredients on AD are reviewed.
• Main regulating mechanisms of tea active ingredients on AD are explained.
• The main limitations of current research and future directions are proposed.

Introduction

More than 55 million people worldwide suffer from demen-
tia, and it is predicted to reach 78 million by 2030 
(Alzheimer’s Disease International 2021). AD accounts for 
80% of dementias (Anand, Gill, and Mahdi 2014). According 
to the estimation of Alzheimer’s Disease International (ADI), 
three-quarters of people with dementia are undiagnosed, 
and the proportion may be as high as 90% in some low- 
and middle-income countries (Alzheimer’s Disease 
International 2021). It is estimated that about 5 million 
people aged 65 years or older and 200,000 people under the 
age of 65 are affected by AD. The total estimated prevalence 
is projected to be 13.8 million by 2050 (Shal et  al. 2018). 
The occurrence of AD is affected by many innate and 
acquired factors (Figure 1), but its pathogenesis has not 
been fully elucidated. Presently, the theories explaining the 
pathogenesis of AD mainly include protein misfolding 
(including Aβ and tau protein), oxidative stress, inflamma-
tion, ApoE4, adenosine, cholinergic hypothesis, glutamatergic 
hypothesis, endoplasmic reticulum stress, changes in calcium 

metabolism and mitochondrial cascade hypothesis (Luo et  al. 
2021; Anand et  al. 2017). The conventional therapeutic treat-
ment of AD uses compounds that inhibit acetylcholinesterase 
(such as donepezil and rivastigmine) to increase the levels 
of acetylcholine in the nervous tissue of the brain. Recently, 
another drug for AD has emerged, memantine, which is a 
glutamatergic antagonist that protects neural tissue from 
glutamate-mediated excitotoxicity. Nevertheless, these drugs 
only relieve symptoms and there is no appropriate treatment 
to cure AD (Shal et  al. 2018; Anand et  al. 2017). Therefore, 
some studies tended to explore new theories to explain the 
causes of AD or to modify the previous hypotheses 
(Bostanciklioğlu 2019; Chhatwal et  al. 2022; Swerdlow, 
Burns, and Khan 2014).

Considering the difficulty of developing effective drugs 
along with their side effects, the potential of natural prod-
ucts for preventing and ameliorating AD has aroused exten-
sive interest, which has been proved by both epidemiological 
and experimental evidence. Eskelinen et  al. (2009) pointed 
out that drinking 3–5 cups of coffee daily in middle age 
could reduce the risk of AD later in life. The consumption 
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of ginkgo biloba extract improved cognitive assessment, daily 
living, and social behavior (Le Bars, Kieser, and Itil 2000). 
A 12-month clinical investigation revealed that an 
aloe-polymannose complex improved cognitive and immune 
function in adults with AD (Bokelmann 2022). Some fruits 
and plant-derived substances, such as apples, blueberries, 
grapes (Z. Yang, Ren, et  al. 2021), curcumin (Reddy et  al. 
2018), quercetin (Bahar, Kim, and Yoon 2017), resveratrol 
(Yazir et  al. 2015), naringenin (Shal et  al. 2018) and lyco-
pene (Przybylska 2020) have also been shown to alleviate 
neuroinflammation and delay the progression of AD. As 
one of the natural products, tea has also been widely 
explored for its therapeutic potential for AD (Prasanth et  al. 
2019; Shu-Qing Chen et  al. 2018; Akbarialiabad et  al. 2021). 
Tea has shown potent antioxidant and anti-inflammatory 
effects capable of modulating multiple targets in AD 
pathogenesis.

As the most consumed beverage in the world, tea was 
originated in China. Since ancient times, tea has been 
regarded as a both medicinal and edible plant that can 
improve or prevent various diseases. Over 30 countries are 
producing different kinds of tea as a natural beverage for 
relaxation and health. The functional components in tea 
include tea polyphenols, tea polysaccharides, amino acids, 
caffeine, tea pigments, amino acids and pyrroloquinoline 
Quinone (PQQ) (Wei et  al. 2022). The content of these 
different natural active ingredients varies to different 
degrees according to the variety and processing technology 
of the tea. According to different processing techniques, 
tea can be divided into six categories with the increase in 
the degree of tea fermentation: green tea, white tea, yellow 
tea, oolong tea, black tea and dark tea. The initial process-
ing stage of green tea involves steaming or roasting, which 
subsequently inactivates polyphenol oxidase to prevent oxi-
dation. Therefore, green tea retains the natural structure 
and chemical composition of its polyphenolic compounds, 

and therefore the content of TPP, L-TH and caffeine in 
green tea is higher than other teas. After picking of tea 
leaves, lightly fermented white tea is usually withered rather 
than steamed, leaving the oxidative enzymes in the tea not 
being inactivated, which leads to the oxidization of poly-
phenols and ultimately decrease in the polyphenol content 
(Chen, Shi, et  al. 2020). The lowest polyphenol content of 
white tea may be equivalent to half the level of green tea 
(Ning et  al. 2016; Zhao et  al. 2019; Yi et  al. 2015). The 
withering process may also lead to lower L-TH and caffeine 
content of white tea (Chen, Shi, et  al. 2020; Hilal and 
Engelhardt 2007). The content of TPP is negatively cor-
related with the degree of tea fermentation (Gao, Huang, 
and Li 2016; Zhang et  al. 2018; Zhao et  al. 2019). Zhao 
et  al. (2019) reported the TPP content in different tea 
leaves: green tea > yellow tea > oolong tea > dark tea > black 
tea > white tea. In terms of caffeine, green tea, dark tea and 
yellow tea have more and roughly equal content, followed 
by black tea and white tea, and oolong tea has the lowest 
caffeine content (Yi et  al. 2015). Moreover, green tea, yellow 
tea, and oolong tea have similar L-TH content, followed 
by black tea and white tea, and dark tea has the lowest 
L-TH content, which is less than half that of green tea 
(Jiang et  al. 2019). Nevertheless, although fermented teas 
have lower levels of TPP, L-TH and caffeine than green 
tea, they are generally higher in tea pigments and tea sapo-
nins (Wong, Sirisena, and Ng 2022). Zhao et  al. (2019) 
compared the antioxidant properties of different types of 
tea: green tea > yellow tea > oolong tea > black tea > dark 
tea > white tea. The variation in the content of different 
active ingredients in tea may be the main reason for some 
confusing results of different epidemiological experiments 
on the improvement of cognitive function of tea drinking 
(Tomata et  al. 2016; Feng et  al. 2008).

Over the past decade, numerous studies have demon-
strated the neuroprotective properties of tea. Compared with 
conventional drugs, the neuroprotective effect of tea has 
shown the advantages of multiple targets, nontoxicity and 
good synergy. The effects of TPP, L-TH and caffeine in tea 
on nerve function have attracted extensive attention. This 
paper reviews past studies on the action of tea and its active 
ingredients in AD, briefly outlines the mechanisms of action 
of individual tea active substance separately, and summarizes 
the potential mechanisms of modulating AD from a target 
point of view. Furthermore, this review presents the remain-
ing problems and shortcomings of current research to pro-
vide a basis for future studies.

Pathological mechanism of AD

The neuropathological hallmarks of AD are the formation 
of extracellular amyloids and intraneuronal neurofibrillary 
tangles (NFTs) induced by hyperphosphorylation of Aβ pep-
tide and microtubule-associated tau protein as well as selec-
tive large-scale hippocampal neuronal loss (Murphy and 
Levine 2010; Goncalves, Sodero, and Cordeiro 2021). The 
main pathogenesis of AD has been summarized and depicted 
in Figure 2 (Luo et  al. 2021; Anand et  al. 2017).

Figure 1. Main factors that affect alzheimer’s disease.



CRiTiCAL Reviews iN FooD sCieNCe AND NUTRiTioN 3

Aβ theory

As the triggering event and the most important factor, the 
Aβ theory is related to the imbalance between the produc-
tion of Aβ by β-secretase (BACE1) and γ-secretase through 
proteolysis of amyloid precursor protein (APP) and the 
clearance of the produced Aβ (Murphy and Levine 2010). 
The newly Aβ generated forms a dynamic equilibrium 
between soluble Aβ1-40 and deposited Aβ1-42 (Rajendran et  al. 
2013). Soluble Aβ1-40 can be cleared out of the brain and 
enter the plasma with a concentration gradient, while the 
deposited toxic Aβ1-42 is difficult to clear due to its strong 
hydrophobicity. This phenomenon makes Aβ prone to aggre-
gation, which leads to the deposition of amyloid neuritis 
plaques, thus disrupting cell function and ultimately lead-
ing to AD.

Tau protein theory

The Aβ theory cannot fully explain the pathogenesis of AD. 
Tau is a highly soluble protein whose biological activity is 
associated with microtubules dependent on the degree of 
phosphorylation (Iqbal et  al. 2010). Hyperphosphorylated 
tau uncoupled from microtubules can aggregate into tangles 
and inhibit microtubule trafficking (Anand et  al. 2017), 
eventually leading to dysregulation of the neuronal system 
and axonal damage (Du, Wang, et  al. 2018). The changes 
in Aβ oligomers and tau protein have been reported as the 
most crucial factors in neuronal dysfunction in AD pathol-
ogy (Stoothoff and Johnson 2005; Strooper 2010).

Oxidative stress theory

AD is closely related to cellular oxidative stress (Browne 
and Beal 1994), which is associated with the accumulation 

of reactive oxygen species (ROS) in the brain due to the 
imbalance between ROS generation and the scavenging activ-
ity of antioxidants (Huang, Zhang, and Chen 2016). ROS 
can respond rapidly to the easily oxidized lipids in the brain, 
further leading to brain dysfunction (Huang, Zhang, and 
Chen 2016). In addition, ROS may disrupt the functions of 
mitochondrial antioxidant enzymes (SOD1 and SOD2), 
thereby impairing the mitochondrial electron transport sys-
tem and elevating ROS levels, which ultimately activates 
caspases and leads to neuronal apoptosis (Moreira et  al. 
2010). Furthermore, oxidative stress can increase the pro-
duction and aggregation of Aβ, which promotes tau hyper-
phosphorylation and the formation of ROS (Makhaeva 
et  al. 2015).

Neuroinflammation

Neuroinflammation is considered to be an important mech-
anism that leads to the progression of neurodegenerative 
diseases (Luo et  al. 2021). As the innate immune cells of 
the central nervous system, microglia produce a series of 
toxic factors to neurons, including interleukin-1 (IL-1), 
tumor necrosis factor-α (TNF-α), nitric oxide (NO) and 
superoxide (Block and Hong 2005). Microglia activation is 
thought to play a key role in selective neuronal damage, 
which exhibits important pathological implications in AD 
(Li et  al. 2004).

ApoE4

ApoE4 is considered to be the largest genetic risk for AD 
(Raber, Huang, and Ashford 2004), which advances the age 
of AD onset and increases the risk in a gene dose-dependent 
manner. ApoE4 promotes the accumulation, aggregation and 

Figure 2. Possible pathogenesis of ad.



4 Y. HUANG eT AL.

deposition of Aβ in the brain. Since ApoE4 has a lower 
affinity for Aβ than other ApoE isoforms (ApoE2, ApoE3), 
ApoE4 may be less efficient to clear Aβ within the 
blood-brain barrier (BBB). In addition, ApoE4 also induces 
abnormal brain cholesterol metabolism, further increasing 
Aβ production and promoting AD risk. ApoE is mainly 
produced by astrocytes, which makes up 40% of all brain 
cells. It transports lipoprotein-bound cholesterol from cir-
culating plasma to the brain, regulated by the BBB. ApoE4 
is less efficient in transporting cholesterol from astrocytes 
to neurons with a low binding capacity to plasma choles-
terol. Therefore, high ApoE4 levels may elevate the levels 
of cholesterol in plasma and astrocyte (Zhou and 
Zhang 2021).

Adenosine theory

Adenosine is an endogenous neuroprotective agent abun-
dantly present in the central nervous system, and its extra-
cellular concentration increases with brain injury, 
neuroinflammation, and aging (Dias et  al. 2013). The effects 
of adenosine are mediated through interactions with G 
protein-coupled receptors called adenosine receptors, such 
as the inhibitor adenosine receptor A1 (A1R) and the agonist 
adenosine receptor A2A (A2AR) (Moro et  al. 2003). Aging 
leads to an imbalance in the expression of A1R and A2AR, 
further causing cognitive impairment and increased risk of 
AD (Cunha et  al. 1996; Almeida et  al. 2003). Furthermore, 
the activation of A2AR increases their coupling to G proteins 
and elevates the level of adenylate cyclase (AC), further lead-
ing to the conversion of adenosine monophosphate (AMP) 
to cyclic adenosine monophosphate (cAMP) and higher levels 
of protein kinase A (PKA). Calcium channels are more phos-
phorylated and lead to overload of intracellular calcium (Dias 
et  al. 2013), which stimulates the production of Aβ and tau 
proteins as well as increases oxidative stress and neuroin-
flammation, ultimately elevating the risk of AD.

Cholinergic hypothesis

The cholinergic hypothesis states that AD begins with a 
deficiency of acetylcholine (AChE), and cholinesterase inhib-
itors play an important role in the treatment of AD. AD 
can decrease the neurotransmitter levels and reduced AChE 
content exerts a crucial role in AD pathogenesis (Anand 
et  al. 2017). Cholinergic system dysfunction is associated 
with the formation of NFTs and the resulting degeneration 
of the basal ganglia of Meynert cholinergic neurons (Fine 
et  al. 1997). The presence of NFTs and Aβ plaques leads 
to loss of cholinergic synapses.

Glutamatergic hypothesis

Glutamate is an excitatory neurotransmitter that acts on 
N-methyl-D-aspartic acid (NMDA) receptors and plays a key 
role in learning and memory. The flow of calcium ions into 
neurons activates various types of enzymes and produces 
ROS (Kakuda 2011). This continuous reaction is thought to 

lead to neuronal cell death. Soluble Aβ oligomers increase 
glutamate in the synaptic gap and may induce excitotoxicity. 
In this pathological state, increased ROS production and 
mitochondrial fragmentation have been observed in different 
models (Ide et  al. 2018). Therefore, the glutamatergic system 
has also been suggested as a target for AD therapy.

Mitochondrial cascade hypothesis

The mitochondrial cascade hypothesis offers unique AD 
perspectives, which proposes that alterations in mitochon-
drial function regulate Aβ homeostasis. Swerdlow, Burns, 
and Khan (2014) proposed the mitochondrial cascade 
hypothesis that individuals start with a specific level of 
mitochondrial function, which declines at a specific rate 
individually (Swerdlow and Khan 2004; Swerdlow, Burns, 
and Khan 2014). Ultimately, mitochondria decline beyond 
a threshold to induce AD-related histological changes. In 
familial AD, if changes in APP, α secretase form of soluble 
APP (sAPPα), or Aβ homeostasis induce mitochondrial dys-
function, these changes may eventually activate pathways 
related to late-onset AD.

The relationship between diet and AD

With no cure or preventive treatment for AD, there is an 
urgent need to find ways to prevent and delay the onset or 
reverse the disease process. Available evidence shows that 
there is a correlation between healthy eating compliance 
and AD incidence and prevalence (Figure 3). A systematic 
review found that 50 out of 64 studies revealed a significant 
association between diet and AD incidence (Yusufov, 
Weyandt, and Piryatinsky 2017). AD may be caused by 
defects in the supply chain of cholesterol, fat and antioxi-
dants. A diet with high glycemic index, high content of 
carbohydrates (especially fructose) and relatively low content 
of fat and cholesterol will lead to the damage of astrocytes, 
which will be accelerated by the excessive energy demand 
related to the increase of cholesterol synthesis due to the 
lack of sufficient blood supply. Once astrocytes can no lon-
ger provide enough cholesterol, fat and antioxidants, neurons 
also begin to be damaged (Seneff, Wainwright, and Mascitelli 
2011). Epidemiological findings consistently indicate a high 
degree of compliance with dietary patterns, characterized 
by high intake of fruits, vegetables, grains and beans, as 
well as low meat, high-fat dairy products and candy, which 
are always associated with a lower risk of AD (Hill 
et  al. 2019).

Clinical and epidemiological evidence suggests that life-
style factors, especially nutrition, may be the key to the 
control of AD (Pasinetti and Eberstein 2008). The compo-
sition of macronutrients and micronutrients divides the diet 
into Western-style diet (food containing a large amount of 
animal protein, saturated fat, salt and sugar), Mediterranean 
diet (diet containing protein and fat from plants, some lean 
protein and high monounsaturated fatty acid content), keto-
genic diet (low carbohydrate and high fat), high-sugar diet 
and high-fat diet (low protein, high saturation, 
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monounsaturated polyunsaturated fat level and high choles-
terol level) (Wood and Sullivan 2022). The prevalence of 
AD in Japan is related to the long-term nutritional transition 
from the traditional Japanese diet to the Western diet, in 
which the AD rate increased from 1% in 1985 to 7% in 
2008 (Grant 2014). Moreover, another study suggests that 
Western-style diet can trigger AD by accelerating inflam-
mation (Więckowska-Gacek et  al. 2021). A low carbohydrate, 
high-fat ketogenic diet may help reduce the damage asso-
ciated with these pathologies, because the ketogenic diet 
can reduce the impact of impaired glucose metabolism by 
providing ketones as a supplementary energy source. In 
addition, this diet may help to reduce the accumulation of 
amyloid plaques and reverse Aβ toxicity (Broom, Shaw, and 
Rucklidge 2019). Mediterranean diet compliance reduces the 
risk of AD, and may help maintain intestinal symbiosis 
(Solch et  al. 2022). A high-fat diet can exacerbate memory 
impairment (Rollins et  al. 2019). Another study showed that 
a high sugar diet during pregnancy promoted the AD phe-
notype (Di Meco et  al. 2018). Nevertheless, it is worth 
noting that the intake of high fat, high sugar and high 
cholesterol does not affect the pathogenesis of tau in the 
mouse model of Alzheimer’s disease (Chu et  al. 2022). 
Therefore, current evidence demonstrates that Mediterranean 
style dietary patterns and ketogenic diets are associated with 
a decrease in AD biomarkers and subsequent pathology. On 
the contrary, the hyperglycemia and high saturated fat diet 
can increase relevant AD biomarkers.

Tea and AD

Tea is the most popular plant beverage rich in antioxidants 
(Graham 1992). The tea leaves are picked, dried and steamed 
to prevent the activation of polyphenol oxidase and preserve 

the nutritional value of tea leaves (Graham 1992). Tea has 
exhibited significant antioxidant, anti-inflammatory, antibac-
terial, anticancer, antihypertensive, neuroprotective and cho-
lesterol lowering properties (Hayat et  al. 2015). Drinking 
tea can modulate the diversity of the gut microbiota to 
improve the gut microecosystem (Bond and Derbyshire 
2019). A cross-sectional survey of elderly Chinese found 
that the standardized prevalence of AD was 6.9%, and tea 
drinking was associated with a lower prevalence of AD and 
cognitive impairment (Yang, Jin, et  al. 2016). Similarly, a 
community study in Singapore reported that the participants 
with a tea drinking habit were associated with better cog-
nitive functions (Feng et  al. 2010). In another study, the 
prevalence of cognitive impairment was lower with drinking 
green tea (Gu et  al. 2018). Contrastly, several studies have 
not shown any benefit from green tea for AD (Ma et  al. 
2016). It was reported that drinking black tea was associated 
with better cognitive performance, while drinking green tea 
was not (Shen et  al. 2015). Few studies have been conducted 
on oolong and other teas. Feng et  al. (2008) reported an 
inverse correlation between oolong tea consumption and 
the presence of cognitive impairment, but Tomata et  al. 
(2016) demonstrated no significant association between 
oolong tea and dementia. Overall, there is growing epide-
miological evidence to support the effectiveness of tea con-
sumption on cognitive impairment, which may ameliorate 
dementia and cognitive decline. While some studies have 
shown no significant association between tea drinking and 
cognitive improvement, short follow-up periods, small sam-
ple sizes and insufficient levels of functional components 
in some teas, such as low levels of tea polyphenols in the 
more fermented black teas, should be accounted for these 
inconsistent results. Besides, a typical cup of green tea, with 
2.5 g of tea leaves brewed for 3 min in 250 ml hot water, 

Figure 3. the relationship between diet pattern and ad.
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usually contains 620–880 mg of water-extractable materials, 
of which about a third are catechins. EGCG accounts for 
50–75% of the total catechins. Thus, a freshly brewed cup 
of green tea may contain 130–180 mg of EGCG, 37.5 mg 
caffeine and 40 mg L-TH.(Yang and Pan 2012; Scheid et  al. 
2012; Bond and Derbyshire 2019). A meta-analysis of 17 
studies showed that for 100 mL/d, 300 mL/d, and 500 mL/d 
increase in tea consumption, the risk of AD was reduced 
by 6%, 19%, and 29%, respectively (Liu et  al. 2017). 
Considering the tea drinking habits in different regions, two 
cups of green tea or three cups of black tea per day may 
be appropriate for preventing AD (Table 1).

Tea active compounds and AD

Tea contains many bioactive compounds, such as TPP, caf-
feine, L-TH, GABA and PQQ, which contribute to its neu-
roprotective effects. Potential neuroprotective mechanisms 
include the regulation of signal pathways, which can not 
only regulate the hydrolysis of APP to control the produc-
tion of Aβ, but also play the role of antioxidant and 
anti-inflammatory through its mediation to inhibit neuronal 
apoptosis and protect the nervous system. Furthermore, 
through the regulation of some protein kinases and neu-
rotransmitters, it can inhibit the hyperphosphorylation and 
aggregation of tau and restore the cholinergic system. The 
potential neuroprotective mechanisms include the modula-
tion of signaling pathways, e.g. theanine inhibits neuronal 
apoptosis by regulating the extracellular regulated protein 
kinases 1/p38 mitogen-activated protein kinase (ERK1/
p38MAPK) and nuclear factor kappa-B (NF-κB) pathways, 
and TPP can inhibit abnormal protein production and aggre-
gation by regulating the ERK/NF-κB pathway; alleviating 
the symptoms of AD through antioxidant and 
anti-inflammatory effects; TPP and caffeine can play a neu-
roprotective role by regulating neurotransmitter levels.

TPP

The structure of TPP
TPP are complexes of polyhydroxy phenolic compounds in 
tea leaves. TPP show various physiological activities such 
as antioxidant, anti-radiation, anti-aging, hypolipidemic, 
hypoglycemic, and antimicrobial properties. According to 
the main chemical components, TPP are divided into four 
categories: catechins, flavonoids, anthocyanins, and phenolic 
acids. Among them, catechins occupy the highest proportion, 
accounting for 60–80% of TPP. The catechins are mainly 
epicatechin (EC), epicatechin gallate (ECG), epigallocatechin 
(EGC) and epigallocatechin gallate (EGCG). The highest 
content of catechins in tea leaves is EGCG, followed by 
ECG, and then EGC.

Catechins have a variety of phenolic groups, which makes 
them chemically reactive. EGCG has eight phenolic groups, 
all of which are potential donors of hydrogen bonds. EGCG 
and other catechins can bind to a variety of proteins and 
other biomolecules through hydrogen bonds and other inter-
actions (Yang et  al. 2009). These phenolic groups also make 

catechin an effective antioxidant and scavenge free radicals 
(Zuo et  al. 2018). In addition, catechins can chelate trace 
elements such as iron and copper, which can prevent the 
formation of reactive oxygen species. The presence of grape 
phenolic group also makes catechin easy to be oxidized to 
form quinone, which can produce oxidative stress through 
redox cycle. To prevent this reaction from occurring in vivo, 
mammalian cells have catechol-O-methyltransferase (COMT), 
for example, methylation of EGCG at 4’and 4″ positions to 
form 4″-o-methyl-(-)-EGCG and 4’,4″-o-dimethyl-(-)-EGCG 
(Lu, Meng, and Yang 2003). This eliminates the ligno phe-
nolic structure and prevents possible toxicity through the 
redox cycle.

The metabolism of TPP
It has been reported that TPP are absorbed, distributed, 
metabolized and excreted within 24 h. In a human study, 
when 1.2 g of decaffeinated green tea was ingested, the 
plasma level of TPP ranged from 46–268 ng/mL within 1 h 
after ingestion, with cumulative excretion levels of 1.6–
3.2 mg within the first 24 h (Singh, Mandal, and Khan 2015). 
Consumption of five cups of tea per day increases the con-
centration of TPP in plasma by a factor of 12, which is 
sufficient to exert antioxidant activity (Sharma et  al. 2007). 
This data is further supported by animal studies, where 
administration of 35 mg/kg/d of green TPP not only pre-
vented oxidative damage and memory regression, but also 
delayed aging (Singh, Mandal, and Khan 2015). Oral cate-
chins are usually excreted from the body within 4–6 hours, 
and ingestion of catechins every 4–5 h is necessary unless 
sustained release can be guaranteed (Janle et  al. 2008). TPP 
is mainly absorbed in the small intestine (about 10–20%) 
(Spencer et  al. 2001), and metabolized in intestinal cells, 
liver and other organs through methylation, glucuronidation 
and sulfation (Chen and Yang 2020). Unabsorbed TPP enter-
ing the colon is degraded by the microbiota. Some metab-
olites are also absorbed throughout the body and excreted 
in the urine, while those that are not absorbed are excreted 
in the feces (Roowi et  al. 2010).

Effects of TPP on AD
As the main bioactive compound of green tea, EGCG has 
a well-documented potential to treat neurodegenerative dis-
eases. It has been reported that EGCG can interact with 
misfolded proteins, such as Aβ, tau, etc., which contribute 
to the pathogenesis of AD (Goncalves, Sodero, and 
Cordeiro 2021).

EGCG can reduce Aβ1-42-induced memory dysfunction 
by enhancing α-secretase, while inhibiting β- and γ-secretase 
by suppressing the ERK/NF-κB pathway (Lee et  al. 2009). 
In addition, EGCG also prevented Aβ1-42-induced apoptosis. 
Lee et  al. found that in an LPS-induced AD model, EGCG 
prevented astrocyte activation and elevation of 
pro-inflammatory cytokines, including TNF-α, and increased 
inflammatory proteins, such as inducible nitric oxide syn-
thase (iNOS) and cyclooxygenase-2 (COX-2) (Lee et  al. 
2013). In a streptozotocin-induced AD model, EGCG could 
reverse oxidative stress and decrease acetylcholinesterase 
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activity, thus exerting neuroprotective effects (Biasibetti et  al. 
2013). In another study, after oral administration of EGCG 
(50 mg/kg) in TG APPsw transgenic rats, the content of 
soluble phosphorylated tau protein in brain was decreased, 
and the content of insoluble phosphorylated Tau protein 
was increased, and the content of both was close to normal 
levels (Rezai-Zadeh et  al. 2008). The phenomenon indicated 
that EGCG can improve the pathological phenomenon of 
Tau protein. Specifically, EGCG can activate nuclear 
factor-erythroid2 related factor 2 (NRF2) in SH-SY5Y neu-
roblastoma cells, induce autophagy, and increase the mRNA 
levels of adaptor proteins NDP52 and p62 to mediate neu-
roprotection. In a transgenic AD mouse model expressing 
multiple APP mutations, oral administration of EGCG 
(50 mg/kg/d) for 4 months showed a beneficial effect on 
cognition and reduced the level of soluble Aβ1-42 in cortex 
and hippocampus (He et  al. 2012). Similarly, both intraper-
itoneal injection of EGCG (20 mg/kg) and oral administra-
tion of EGCG (50 mg/kg) inhibited the p-tau subtype, 
suggesting that EGCG downregulates the expression of tau 
protein (Rezai-Zadeh et  al. 2008). Using Aβ1-42-induced 
SH-SY5Y cells and APP/PS1 transgenic mice, Du, Liu, et  al. 
(2018) found that EGCG prevented Aβ1-42-induced toxicity, 
increased cell viability, and inhibited APP/PS1 transgene 
apoptosis of cortical neurons. Meanwhile, EGCG could atten-
uate abnormal ultrastructural swelling of the endoplasmic 
reticulum (ER) and down-regulated the expression of ER 
stress-related proteins. These results suggest that EGCG may 
alleviate the neurotoxicity of AD by inhibiting ER 
stress-related neuronal apoptosis. Aβ1-42 reduced the protein 
and gene expression levels of peroxisome proliferator acti-
vated receptor-γ coactivator-1α (PGC-1α) in neuroblastoma 
N2a cells (Yuqin Zhang et  al. 2017). The overexpression of 
PGC-1α can attenuate Aβ1-42-induced cell death and 
caspase-3 activation, and reduce pro-inflammatory cells by 
inhibiting the transport of nuclear factor NF-κB p65 from 
the cytoplasm to the nucleus and Aβ1-42-induced Iα degra-
dation factor levels (Zhang et  al. 2017). Long-term oral 
administration of EGCG (15 mg/kg) improved the memory 
function of AD transgenic mice in the Y-maze and Morris 
water maze tests. In addition, EGCG decreased the levels 
of Aβ1-42 and β-secretase in the frontal cortex and hippo-
campus and prevented the hyperphosphorylation of tau 
(Guo, Noble, et  al. 2017). In an experiment using human 
SH-SY5Y neuroblastoma and rat pheochromocytoma (PC12) 
cells, EGCG promoted α-secretase-mediated release of 
non-amyloidogenic sAPPα into the culture medium (Levites 
et  al. 2003). Inhibition or downregulation of PKC blocks 
EGCG-induced secretion of sAPPα by inducing the phos-
phorylation of PKC. EGCG also protects PC12 cells from 
Aβ toxicity. Up-regulation of enkephalinase expression can 
also reduce Aβ levels to alleviate AD symptoms (Chang 
et  al. 2015).

As the most widely and deeply studied substance in green 
tea, the regulatory mechanism of EGCG on AD can be 
summarized as follows: EGCG can remove misfolded pro-
teins (Aβ and tau) and reduce their expression and aggre-
gation by regulating signaling pathways and activating 
autophagy. In addition, EGCG can eliminate ROS and 

reverse oxidative stress through its powerful antioxidant 
effect, and reduce neuroinflammation by regulating 
pro-inflammatory factors or inflammatory proteins such as 
IL-1β, TNF-α and INOS to suppress neuroinflammation. 
Furthermore, EGCG can protect neurology and alleviate AD 
by lowering acetylcholinesterase to regulate neurotransmit-
ters, chelating metal ions to reduce neurotoxicity and block-
ing caspase activation.

EGC and ECG can alleviate Aβ40 aggregation and reduce 
ROS generation by chelating Cu2+ and Zn2+, thereby reduc-
ing the neurotoxicity induced by Cu2+- and Zn2+-Aβ40 on 
neurons (Chen, Shi, et  al. 2020). ECG can exert a thera-
peutic effect through the BBB, inhibiting the formation of 
senile plaques, and alleviating neuronal damage in the brains 
of transgenic AD mouse models (Chen, Shi, et  al. 2020). 
Although EGCG is a potent chelating agent, it is poorly 
absorbed in the brain and therefore may not be as effective 
as ECG. Taniguchi et  al. (2005) found that ECG, EC and 
C could inhibit heparin-induced tau protein aggregation. 
Inactivation of plasminogen activator inhibitor type 1 can 
alleviate the symptoms of AD (Luo et  al. 2021). Theaflavins 
could inhibit plasminogen activator inhibitor 1 in a 
concentration-dependent manner, with an IC50 value of 
18 μM. Theaflavins may delay the progression of AD by 
inhibiting the plasminogen activator inhibitor 1-dependent 
pathway (Skrzypczak-Jankun and Jankun 2010; Luo 
et  al. 2021).

The safety of TPP
Meanwhile, despite the low bioavailability of TPP, higher 
levels of TPP show potential physiological toxicity. Feeding 
high doses (1%) of TPP in colitis mice caused nephrotoxic 
symptoms and affected liver and kidney function, resulting 
in oxidative damage. Similar results were observed in healthy 
mice. Nevertheless, when colitis mice were fed with low 
doses (0.01% or 0.1%) of TPP, TPP showed protective effects 
on organs such as liver and kidney (Murakami 2014). 
Therefore, the optimal dosage of TPP in the prevention and 
treatment of different diseases needs to be confirmed.

Caffeine

The structure of caffeine
Caffeine (C8H10N4O2) is a xanthine alkaloid extracted from 
tea and coffee and is present in various foods and beverages. 
Pure caffeine is a white powder with a strong bitter taste 
(Nehlig 2018). As a brain stimulant, the primary effect of 
caffeine is to increase brain energy metabolism, cortical 
activity, and extracellular acetylcholine levels, thus increasing 
alertness (Yenisetti and Muralidhara 2016). Different types 
of tea contain various amounts of caffeine varied by fer-
mentation levels. Generally, 100 mL of unfermented green 
tea contained an average of 15 mg of caffeine, and 
semi-fermented oolong tea and fermented black tea con-
tained an average of 17 mg of caffeine per 100 mL (Bond 
and Derbyshire 2019). Caffeine promotes cognitive improve-
ment by antagonizing A1R and A2AR in the brain (Fredholm 
et  al. 1999; Londzin et  al. 2021).
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The metabolism of caffeine
Caffeine is rapidly and completely absorbed from the gas-
trointestinal tract, especially in the small intestine, with very 
high bioavailability (99–100%) (Arnaud 1987). Over the next 
30 to 60 mins, 96.34 mg of caffeine will result in a maximum 
plasma concentration of 2.47 μg/mL (Arendash et  al. 2006; 
Zhou and Zhang 2021). The hydrophobicity of caffeine 
allows it to quickly cross BBB, and then the caffeine con-
centration in the brain reaches a concentration similar to 
that in the blood. Therefore, oral caffeine can protect ner-
vous system from cognitive dysfunction (Arendash 
et  al. 2006).

Caffeine is mainly metabolized in the liver by the cyto-
chrome P450 oxidase system, especially the CYP1A2 enzyme 
(Temple et  al. 2017). The metabolism of caffeine is regulated 
by several factors, such as genetic variation, circadian 
rhythms, steroid hormones, pregnancy, infancy, etc. In 
women in particular, metabolism of caffeine is slowed during 
pregnancy and oral contraceptive use (Carver et  al. 2014; 
Košir, Španinger, and Rozman 2013). In infants, early metab-
olism is very slow, and caffeine is metabolized at the same 
rate as adults until six months of age (Aranda et  al. 1979).

Effects of caffeine on AD
As an adenosine analog, caffeine can non-selectively antag-
onize adenosine receptors to exert its pharmacological or 
toxicological effects. Several longitudinal studies reported 
that a daily intake of caffeine equivalent to 3 or more cups 
of coffee reduces cognitive decline in the elderly with 
"non-dementia" (Ritchie et  al. 2007; van Gelder et  al. 2007). 
Nevertheless, Kim, Kwak, and Myung (2015) performed a 
meta-analysis of 20 studies with a total of 31,479 subjects 
and found that caffeine intake from coffee or tea was not 
associated with the risk of cognitive impairment. Whereas 
from a large number of studies, there is increasing evidence 
that caffeine has an effect on cognition and the development 
of AD (Londzin et  al. 2021). Compared with age-matched 
non-AD patients, AD patients consumed significantly less 
caffeine in the 20 years prior to being diagnosed with AD. 
Long-term caffeine intake may prevent aging-related memory 
impairment and AD (Maia and De Mendonça 2002). 
Similarly, AD transgenic mice given moderate caffeine intake 
(equivalent to 5 cups of coffee daily in humans) were pre-
vented from developing specific cognitive impairments 
(Arendash et  al. 2009).

The effect of caffeine on AD can be described from four 
aspects: (1) The hyperactive form of c-Raf-1 promotes the 
progression of AD by activating the NF-κB pathway and 
the expression of β-secretase. Caffeine can stimulate PKA 
activity to reduce the overactivity of c-Raf-1. (2) Caffeine 
can also reduce the dysregulation of GSK-3α gene, which 
upregulates ps1 mutation and γ-secretase expression, thereby 
inhibiting tau hyperphosphorylation. (3) The oxidative stress 
theory suggests that caffeine can inhibit the formation of 
ROS, while Aβ can promote the formation of ROS. ROS 
can damage the mitochondrial electron transport system, 
which in turn triggers caspases and neuronal apoptosis. (4) 
Caffeine can reduce high ApoE4-induced high plasma and 

astrocyte cholesterol levels and reduce the damage of BBB 
caused by hypercholesterolemia (Zhou and Zhang 2021). In 
addition, caffeine could also inhibit acetylcholinesterase 
(Pohanka and Dobes 2013) and glutamate (Gołembiowska 
and Dziubina 2012). In conclusion, caffeine can act on AD 
through the following mechanisms including reducing the 
phosphorylation level of Aβ and tau and eliminate the 
plaque and NFTs caused by their aggregation; clearing ROS 
and regulate inflammatory factors to reduce the level of 
oxidative stress and inhibit neuroinflammation; antagonizing 
adenosine receptor to protect neurons and competitively 
binding acetylcholinesterase and glutamate receptors to reg-
ulate neurotransmitters and protect nerves.

The safety of caffeine
Caffeine is safe for healthy adults, but may be detrimental 
for certain groups, including risks of cardiovascular function 
and sleep (Temple et  al. 2017). Safe levels of caffeine con-
sumption have not been determined for most children, teens, 
and young adults. Notably, high doses (≥200 mg/d) of caf-
feine consumption, caffeine consumption with cardiovascular 
disease or mental illness, and consumption of more than 
200 mg/d caffeine during pregnancy or breastfeeding may 
cause adverse effects (Temple et  al. 2017).

L-TH

Structure of L-TH
Theanine (TH), 5-N-ethylglutamine, with the chemical for-
mula C7H14N2O3, is the most abundant amino acid in tea 
(Kojima and Yoshida 2008). It is a glutamine derivative 
ethylated at the N5 position with the chemical name 
2-amino-4-(ethylcarbamoyl) butanoic acid, which has two 
chiral isomers, D- and L-Theanine (L-TH) (Mindt et  al. 
2020). Similar to other amino acids in nature, theanine 
mainly occurs in the L-(S) enantiomer form (Sharma, Joshi, 
and Gulati 2018). L-TH is a water-soluble compound syn-
thesized from γ-ethylamine and L-glutamic acid (Yu and 
Yang 2020). L-TH has a structure similar to L-glutamine 
and can compete with L-glutamine for L-glutamine receptors 
on the surface of cell membrane. Once L-TH is taken up 
by cells, it is enzymatically converted to L-glutamate, 
increasing L-glutamate and glutathione (GSH) concentrations 
in tissues. Theanine can eliminate the astringency of caffeine 
and TPP and promote the release of tea aroma (Deng, Ogita, 
and Ashihara 2010; Mindt et  al. 2020). L-TH has exhibited 
health benefits including neuroprotection (Luo et  al. 2021), 
anti-inflammatory (Luo et  al. 2021), antibacterial (Bansal 
et  al. 2013), and regulation of lipid metabolism (Lin et  al. 
2020), glucose metabolism (Lin et  al. 2020), and gut micro-
biota (He et  al. 2021).

The metabolism of L-TH
In rats, the plasma concentration of L-TH reached its max-
imum level 0.5 h after ingestion (Unno et  al. 1999). After 
oral ingestion of 250 ml of tea in volunteers, the level of 
L-TH reached a peak plasma concentration of 26.5 μmol/L 
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at 0.8 h (Scheid et  al. 2012). Part of L-TH absorbed by the 
intestine is retained in red blood cells, and most of the rest 
is hydrolyzed into glutamate and ethylamine, and a small 
amount is discharged in the original form. The retention 
time of L-TH was 10 mins, and the subjects reached the 
maximum plasma concentration (1.0–4.4 mg/L) after 50 mins 
(van der Pijl, Chen, and Mulder 2010).

The intestinal absorption of L-TH was mediated by 
sodium-coupled cotransporters in the brush boundary mem-
brane (Kitaoka et  al. 1996). Therefore, oral L-TH is effi-
ciently absorbed from the gut and delivered to the brain 
across BBB (Kakuda 2011). In addition, L-TH was also 
reported to be carried through the intestine through the 
methionine carrier transport system. The absorbed L-TH is 
transported through the blood to the main organs, mainly 
the brain. It can then be excreted directly through urine or 
hydrolyzed and catabolized into glutamate and ethylamine 
in the kidney, and then it can also be excreted from the 
body with urine (Vuong, Bowyer, and Roach 2011).

Effects of L-theanine on AD
Kakuda (2011) reported that the cognitive impairment of 
elderly volunteers was improved after eating powdered green 
tea containing high theanine concentration. On the other 
hand, theanine fed rats showed better recognition ability to 
affect learning and memory (Yamada et  al. 2008). The pos-
itive effect of L-TH on cognitive ability is one of its most 
important functions. The chemical structure of L-TH is 
similar to glutamate, and therefore it can act as a neu-
rotransmitter related to memory (Türközü and Şanlier 2017). 
Firstly, it is pointed out that L-TH penetrates the BBB and 
shows brain protection, preventing neuronal cell death after 
transient cerebral ischemia. This neuroprotective effect is 
partly caused by the antagonistic effect of glutamate receptor 
on its subtype AMPA and hole receptor. In addition, L-TH 
inhibits the combination of extracellular glutamine and neu-
rons as it is a glutamine carrier (Kakuda 2011). It was 
reported that L-TH promoted neurogenesis and enhanced 
the proliferation of precursor cells of the nervous system, 
suggesting that L-TH can be used as part of neuronal regen-
eration therapy for AD (Abe et  al. 2007).

The potential regulatory mechanism of L-TH on AD is 
attributed to its antioxidant ability and its unique effect of 
antagonizing glutamate. Ben et  al. (2016) found that L-TH 
inhibited Cd-induced tau protein hyperphosphorylation on 
Ser199, Ser202 and Ser396, and that L-TH inhibited GSK-3β 
activation, which leads to tau hyperphosphorylation and 
Cd-induced cytotoxicity. In addition, L-TH may protect 
neurology by interfering with the protein kinase B/mam-
malian target of rapamycin (Akt/Mtor) signaling pathway. 
L-TH may modulate hippocampal synaptic efficacy and 
improve AD symptoms through the dopamine D1/5-PKA 
pathway (Zhu et  al. 2018). L-TH can alleviate Aβ-induced 
oxidative stress and activate ERK1/p38MAPK and NF-κB 
pathways to inhibit neuronal cell death (Kim et  al. 2009). 
Furthermore, L-TH showed anti-neurotoxicity induced by 
L-glutamate on APPsw-overexpressing SH-SY5Y cells by 
overactivating the NMDA receptor and its associated 

pathways (Di et  al. 2010). As a natural antagonist of gluta-
mate, L-TH can prevent the increase of Aβ secretion caused 
by excessive activation of NMDA receptors, regulate Ca2+- 
and NO-related cell signaling pathways, and protect nerve 
cells from apoptosis (Di et  al. 2010). L-TH also shows 
anti-inflammatory effects by reducing the expression of the 
inflammation-related factors TNF-α and IL-1β (Park et  al. 
2018). Generally, similar to EGCG and caffeine, L-TH can 
reduce Aβ expression, aggregation and tau phosphorylation, 
eliminate AB plaque, clear ROS and regulate inflammatory 
factors. The difference is that L-TH has a prominent effect 
on cholinergic, and its natural antagonism against glutamate 
highlights the neuroprotective effect of L-TH.

The safety of L-TH
The safety of L-TH has been confirmed by Liu et  al. (2021). 
The NOAEL for L-TH was 4000 mg/kg/day in rats (Borzelleca, 
Peters, and Hall 2006). L-TH is also certified as generally 
recognized as safe (GRAS) by the U.S. Food and Drug 
Administration (FDA). Meanwhile, the FDA pointed out 
that the maximum daily consumption of L-TH is 1200 mg 
(Vuong 2014).

Other active compounds

As the second non-protein amino acid that contributes to 
the function of tea (Yu and Yang 2020), GABA is one of 
the two major inhibitory neurotransmitters in the CNS 
(Bowery and Smart 2006). GABA may be the key to a 
complex system of factors that leads to the main clinical 
feature of AD: episodic memory loss (Jiménez-Balado and 
Eich 2021). Excessive GABA play an important role in a 
variety of neurological diseases such as anxiety, depression, 
and insomnia. The dysfunction of GABAergic receptor can 
lead to mood and depressive disorders. The GABA content 
in the brains of AD patients tends to decrease (Fuhrer et  al. 
2017; Gueli and Taibi 2013), and GABA in tea can fix this 
insufficiency. Nevertheless, there have also been reports of 
increased GABA levels in the hippocampus and cerebrospi-
nal fluid of AD patients (Jo et  al. 2014). Therefore, before 
exploring drugs targeting GABAergic neurotransmission as 
a potential therapy for AD, a common consensus on GABA 
changes during AD progression remains to be determined 
(Roy et  al. 2018).

PQQ has a strong antioxidant capacity to scavenge free 
radicals, which is 50–100 times higher than that of ascorbic 
acid. Derivatives of PQQ can protect neurons by scavenging 
free radicals and inhibiting peroxidation through the BBB 
(Murray 2020; Akagawa, Nakano, and Ikemoto 2016). A 
novel multifunctional compound named Camellikaempferoside 
B (YCF-2) was isolated from Fuzhuan tea. YCF-2 is com-
posed of a new structure of kaempferol backbone, p-coumaric 
acid (p-CA) group and a rhamnopyranoyl group at the C-4′ 
position with the properties of kaempferol and p-βCA. 
YCF-2 could inhibit Aβ42 fibrillation and promoted the for-
mation of nontoxic oligomers by binding to Aβ42 oligomers 
and by blocking the conformational transition to β-sheets. 
Furthermore, YCF-2 ameliorated Aβ-induced neuronal cell 



CRiTiCAL Reviews iN FooD sCieNCe AND NUTRiTioN 15

death by blocking the NF-κB signaling pathway in microglia, 
and inhibited ROS production, inflammatory factor release, 
and microglial activation (Yang, Jin, et  al. 2016).

Potential mechanism of tea active ingredients in 
AD improvement

The occurrence of AD is influenced by a variety of inter-
active factors. Specifically, the generation and aggregation 
of Aβ and the hyperphosphorylation and aggregation of tau 
promote each other, which in turn leads to neuroinflam-
mation and oxidative stress. The phenomenon further aggra-
vates the symptoms of AD and the aggregation and neural 
tangles of Aβ. Therefore, tea active ingredients can mainly 
regulate AD through the following potential mechanisms 
(Figure 4).

Inhibit the expression and aggregation of Aβ

EGCG can elevate α-secretase activity and reduce β- and 
γ-secretase activity by inhibiting the ERK/NF-κB pathway 
to reduce APP levels and Aβ production (Lee et  al. 2009). 
Caffeine stimulates PKA activity and reduces the overactive 
form of c-Raf-1, thereby inhibiting NF-κB pathway and 
β-secretase expression to reduce Aβ production (Zhou and 
Zhang 2021). Similar to EGCG and caffeine, L-TH reduces 
Aβ plaques in the hippocampus and cortex as well as 
down-regulating BACE1 activity (Zhu et  al. 2018; Kim et  al. 
2009). Unlike EGCG, which activates autophagy to reduce 
Aβ deposition (Rezai-Zadeh et  al. 2008), ECG and EGC can 
alleviate Aβ aggregation mainly by chelating metal ions (T. 
Chen et  al. 2020). Caffeine also reduces ApoE polymorphism 
levels (Zhou and Zhang 2021), and EGCG promotes NEP 
secretion through ERK and phosphatidylinositol 3-kinase 
(PI3k)/PKB (PKB = AKt) pathways to reduce the level of Aβ 
aggregation (Chang et  al. 2015). In general, the active 

components of tea seal the source of Aβ by reducing the 
activity of β- and γ-secretase through ERK/NF-κB signal 
pathway. Thereafter, tea active ingredients can reduce the 
existing Aβ by increasing the activity of α-secretase, acti-
vating autophagy and reducing the level of ApoE polymor-
phism to prevent and treat AD.

Inhibit the hyperphosphorylation and aggregation of 
tau

Hyperphosphorylation of tau protein leads to NFTs intra-
cellular aggregation. Aβ-mediated Tau phosphorylation has 
also been reported (Edwards 2019). The p-Tau protein is 
deeply related with neurological dysfunction, such as dis-
rupting microtubule networks and axonal transport or cell 
signaling (Guo, Noble, et  al. 2017). Thus, decreasing the 
levels of hyperphosphorylation of tau can be used as one 
of the therapeutic targets for AD. GSK-3α and GSK-3β are 
closely related to reducing tau hyperphosphorylation. EGCG, 
caffeine and L-TH all inhibit tau hyperphosphorylation, 
while EGCG inhibits GSK-3β by attenuating TNF-α/c-Jun 
signaling, thereby reducing phosphorylation levels (Jia et  al. 
2013). Caffeine inhibits phosphorylation by reducing the 
dysregulation of GSK-3α expression (Zhou and Zhang 2021). 
In addition, caffeine can reduce phosphorylation by antag-
onizing the coupling of A2AR to G proteins (Dias et  al. 
2013), and L-TH reduces tau phosphorylation by inhibiting 
GSK-3β and Akt/mTOR (Ben et  al. 2016).

Inhibition of neuronal apoptosis

Apoptosis plays a key role in the progression of AD (Radi 
et  al. 2014), which is associated with DNA fragmentation, 
chromatin condensation, TNF-α, ROS, Aβ, perturbation of 
enzymes factors, activation of cysteine-proteases and 
caspases(Radi et  al. 2014; Yang, Ren, et  al. 2021). Inhibiting 

Figure 4. Mechanism of active components in tea to modulate ad.
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apoptosis could be considered as the preventive and thera-
peutic strategy for AD. EGCG, caffeine and L-TH can pre-
vent or inhibit caspase activation, calcium homeostasis 
disorder and excitatory toxicity caused by neurotransmitter 
imbalance, synaptic plasticity disorder and neuronal dys-
function, and play a role in protecting the nervous system. 
EGCG can inhibit the activation of caspase-3 by increasing 
the expression level of PGC-1α (Zhang et  al. 2017). EGCG, 
ECG and EGC can chelate metal ions to prevent neurotox-
icity caused by deposited metal ions (Chen, Shi, et  al. 2020). 
EGCG can also suppress endoplasmic reticulum stress-related 
neuronal apoptosis (Du, Liu, et  al. 2018). Caffeine reduces 
the damage to mitochondrial electron transport by reducing 
the formation of ROS to prevent the activation of caspase-3 
(Dragicevic et  al. 2012). L-TH can inhibit caspase activation 
induced by L-glutamate (Di et  al. 2010). PQQ derivatives 
can improve metabolic circulation through BBB to effectively 
protect neurons (Murray 2020).

Regulation of neurotransmitters

Acetylcholine (ACh) is an important neurotransmitter used 
by cholinergic neurons, participating in several crucial phys-
iological processes, such as attention, learning, memory, 
stress response, arousal and sleep, and sensory information. 
Cholinergic neuron injury is considered to be a key patho-
logical change associated with cognitive impairment in AD 
(Du, Wang, et  al. 2018; Haam and Yakel 2017). In terms of 
neurotransmitters, EGCG, caffeine and L-TH can reduce the 
activity of acetylcholinesterase and increase the level of ace-
tylcholine. EGCG and caffeine competitively inhibited ace-
tylcholinesterase AChE and BuChE (Biasibetti et  al. 2013; 
Pohanka and Dobes 2013). In addition to inhibiting AChE, 
L-TH can also activate NMDA receptor, antagonize the neu-
rotoxicity caused by L-glutamate (Kim et  al. 2008), and 
regulate the synaptic efficiency of hippocampus through 
dopamine D1/5-PKA pathway to play a neuroprotective role 
(Zhu et  al. 2018; Di et  al. 2010).

Antioxidant and anti-inflammatory capacity

EGCG, caffeine and L-TH can inhibit activation of neuroin-
flammation through microglia and astrocyte and elevation 
of pro-inflammatory factors and inflammatory proteins such 
as TNF-α, iNOS and COX-2. EGCG reduces pro-inflammatory 
factors by inhibiting NF-κB p65 transport and Iα degrada-
tion (Zhang et  al. 2017). Meanwhile, EGCG can upregulate 
the levels of anti-inflammatory factors (IL-10 and IL-13) 
and reduce the expression of pro-inflammatory factors 
(IL-1β and IL-18) (Bao et  al. 2020; Zhong et  al. 2019). In 
addition, EGCG can activate Nrf2, which acts as an anti-
oxidant and reduces the production of ROS (Scapagnini 
et  al. 2011). Caffeine can suppress the formation of ROS to 
reduce the damage to mitochondrial electron transport 
(Dragicevic et  al. 2012). L-TH can activate MAPK, p38/ERK 
and NF-κB pathways to reduce protein and lipid oxidative 
damage and ROS production (Kim et  al. 2009). In terms 
of anti-inflammation, L-TH reduces the expression of TNF-α 

and IL-1β (Park et  al. 2018). Moreover, PQQ shows a pow-
erful antioxidant capacity to clear ROS and inhibit peroxi-
dation (Murray 2020; Akagawa, Nakano, and Ikemoto 2016). 
Similarly, YCF-2 can inhibit ROS production, inflammatory 
factor release and microglia activation by blocking the 
NF-κB signaling pathway in microglia (Yang, Jin, et al. 2016).

Gut microbiota

Gut microbiota is closely related to diet. As shown in  
Figure 5, previous studies have shown a tight and varied 
association between gut microbiota and AD (Haran et  al. 
2022; La Rosa et  al. 2018; Jeon et  al. 2019; Kim et  al. 2020; 
Hang et  al. 2022). Gut (La Rosa et  al. 2018; Jeon et  al. 2019), 
gut microbiota (Kim et  al. 2020), and metabolites of gut 
microbiota (Hang et  al. 2022) have different effects on AD 
by affecting gut permeability, gut hormones, immunity, 
genetic material, inflammation, oxidative stress, neuropro-
tection and metabolism (Hang et  al. 2022). For instance, the 
reduced abundance of gut microflora is strongly associated 
with neurodegeneration, thereby inducing inflammation to 
aggravate AD (Fung, Olson, and Hsiao 2017; Qian et  al. 
2021). Zhang et  al. (2013) pointed that EGCG, GCG and 
EGCG3"Me promoted the growth of Bifidobacterium spp. 
and Lactobacillus/Enterococcus groups and exhibited inhibi-
tory effects on the growth of Bacteroides–Prevotella, 
Clostridium histolyticum and Eubacterium–Clostridium groups. 
Zhang et  al. (2021) found that Pu-erh tea extract could 
alleviate intestinal inflammation through promoting the 
growth of intestinal probiotics and inhibiting pathogenic 
bacteria. Tea extracts changed the overall composition of gut 
microbiota and decreased the relative abundance of 
Rikenellaceae and Desulfovibrionaceae (Liu et  al. 2019). In 
addition, Fuzhuan brick tea polysaccharide was reported to 
alleviate inflammation and disruption of the intestinal micro-
biota, promote the proliferation of beneficial microbiota such 

Figure 5. Mechanism of tea active components on affecting ad through gut 
microbiota.
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as Lactobacillus and Ackermannia, and significantly increase 
the levels of short-chain fatty acids (Yang, Ren, et  al. 2021). 
The metabolites of gut microbiota also contribute to the 
removal of misfolded proteins (Bonfili et  al. 2017). The 
fluctuations in the bacterial profile affect the afferents of 
vagal nerve fibers and alter neurotransmitter levels in the 
brain (Bostanciklioğlu 2019; Goehler et  al. 2005). Tea active 
ingredients can directly modulate microbial composition, 
microbial community function, and their metabolites. Due 
to the existence of BBB, most tea active ingredients can only 
indirectly affect brain function through the enteric nervous 
system due to the bidirectional action of the gut-brain axis 
except caffeine and L-TH. A small amount of tea active 
ingredients that are catabolized in the gut will release small 
molecular compounds, which can exert a preventive role by 
inhibiting the aggregation of Aβ, regulating and improving 
oxidative stress and neuroinflammation to alleviate 
neurotoxicity.

Conclusions and perspectives

The health benefits of drinking tea have been recognized 
around the world. Most epidemiological surveys show that 
drinking two or three cups of tea a day, especially green 
and black tea, can reduce the risk of cognitive impairment. 
The neuroprotection of tea is a research hotspot in the field 
of tea and health in recent years. The neuroprotective effect 
of tea exhibits the advantages of multiple targets, nontoxicity 
and good synergy. Due to the complex pathological mech-
anisms of neurodegenerative diseases, multi-target therapeu-
tic strategies have gradually become a trend, and tea can 
exert neuroprotective effects through multi-component inter-
actions. In vivo and in vitro studies have shown that TPP, 
L-TH, caffeine, and other tea active substances have shown 
neuroprotective effects on AD.

The regulation of AD by active ingredients in tea can be 
divided into direct effect and indirect effect. In terms of 
direct effect, the tea active ingredients absorbed by the 
intestine can act on the nervous system and immune system, 
including the following aspects: (1) By regulating signaling 
pathways or abnormal kinases, increasing the activity of 
α-secretase and reducing β-, γ-secretase makes APP produce 
less Aβ. Meanwhile, the tea active ingredients promote the 
degradation of Aβ and reduce plaques in the brain. (2) The 
tea active ingredients can reduce GSK-3α and GSK-3β to 
inhibit tau aggregation and hyperphosphorylation, which 
reduces NFTs in the brain. (3) The active ingredients of tea 
can prevent or inhibit the activation of caspase, calcium 
homeostasis disorders and excitotoxicity caused by neu-
rotransmitter disorders, synaptic plasticity disorders and 
neuronal dysfunction, which can inhibit neuronal apoptosis 
and protect the nervous system. (4) The active ingredients 
of tea can inhibit acetylcholinesterase AChE and BuChE, 
regulate hippocampal synaptic efficacy through dopamine 
D1/5-PKA pathway, and activate NMDA receptors to antag-
onize the neurotoxicity of L-glutamate. (5) The active ingre-
dients of tea inhibit the neuroinflammation activated by 
microglia and astrocytes and the increase of pro-inflammatory 

factors and inflammatory proteins, thereby alleviating the 
aggregation of Aβ and the phosphorylation of tau, and pro-
tecting the brain nerves. Indirect effects represent that some 
active ingredients of tea are not effectively absorbed by small 
intestine, but can be adequately utilized by gut microbes 
after entering the colon to potentially affect AD in several 
ways such as gut permeability, gut hormones, immunity, 
genetic material, inflammation, oxidative stress, neuropro-
tection and metabolism through the gut-brain axis.

There are still some limitations in the research on the 
regulation of AD by tea and its active ingredients. First, the 
current research mainly focuses on EGCG in TPP, and the 
research on other tea active ingredients is insufficient. Taking 
L-TH as an example, although there exists evidence that L-TH 
can inhibit the formation and aggregation of Aβ and the 
phosphorylation of tau, its specific molecular mechanism 
remains unclear. Similarly, other tea active ingredients are in 
the same predicament. Second, the low bioavailability of TPP 
hinders exerting their biological activity (Rashidinejad et  al. 
2021), which are attributed to poor stability, passive diffusion, 
and active efflux in the gastrointestinal tract (Liang et  al. 
2017). Presently, some strategies have been proposed to 
improve the bioavailability of TPP through nano-delivery 
technology (Rashidinejad et  al. 2021). Smith et  al. (2010) 
enhanced the oral bioavailability of EGCG through lipid 
nanoparticles, which could elevate neuronal α-secretase by 
up to 91%. Therefore, the use of nanotechnology to modify 
TPP or other active ingredients to improve bioavailability can 
be an alternative. Finally, there are some problems to be 
explored on the indirect regulation of AD by tea active ingre-
dients through gut microbiota. For instance, what is the spe-
cific mechanism of the interaction between microbial 
neurotransmitters and the nervous system? There is still no 
report on the influence of tea polysaccharides on AD. It is 
noteworthy that previous studies have proposed a mechanism 
to modulate AD through intestinal flora (Cattaneo et al. 2017; 
Marizzoni et  al. 2017; Bostanciklioğlu 2019), and tea poly-
saccharides have shown the ability to regulate intestinal flora. 
Therefore, the effects of tea polysaccharides on AD via intes-
tinal flora should be confirmed. TPP, L-TH and caffeine, 
which have shown direct effects on AD, can also be further 
investigated through the intestinal flora.

In general, the signaling pathways that regulate AD are 
not limited to a single disease. EGCG, caffeine, L-TH and 
YCF-2 can regulate AD through the NF-κB pathway, which 
has been reported to be an inflammation-related pathway 
that regulates inflammatory diseases such as pulmonary 
fibrosis, asthma and pneumonia (Alharbi et  al. 2022). The 
PKA pathway, which enables caffeine and L-TH to regulate 
AD, also plays a role in maintaining metabolic health 
(London and Stratakis 2022). The NRF-2 pathway is closely 
associated with oxidative stress-related diseases (Cen et  al. 
2022). The activation of mitogen-activated protein kinases 
(MAPKs) (ERK1/2 and p38 MAPKs), is linked to cell pro-
liferation, differentiation, motility and survival (Roux and 
Blenis 2004). Different diseases can be regulated by the 
same pathway, which suggest new targets for the prevention 
and treatment of AD or similar diseases.
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Considering that the majority of antineoplastic drugs 
produced are derived from natural products or their 
semi-synthetic or synthetic derivatives, accounting for 
approximately 80% in the last three decades, the potential 
of plant metabolites in the development of new therapeutics 
is clear (Newman and Cragg 2016). Metabolites of natural 
products have low toxicity and high bioactivity potential. 
Of the 250,000 known plant species, only 5–15% have been 
developed for their biological activity (Majolo et  al. 2021). 
Bioactive compounds have been used for centuries but have 
not been fully elucidated (Majolo et  al. 2021). In addition 
to their individual effects, the synergistic effects of sev-
eral natural active ingredients remain to be systematically 
explored. The effect of single active component of tea on 
AD is the basis of the physiological activity of tea drinking 
to prevent and regulate AD. Difference teas contains active 
ingredients of varied chemical compositions and contents. 
Therefore, future research must clarify the effects of dif-
ferent combinations of tea active ingredients on AD and 
their associated health benefits and potential risks. Based 
on the dose-response relationship, further research can pro-
vide scientific guidance for the development of different 
tea active ingredients and tea drinking to ameliorate AD. 
For instance, the combination of L-TH and caffeine can 
improve attention (Einöther et  al. 2010), and L-TH may 
also improve some of the side effects of caffeine intake, 
such as reversing caffeine-induced slow-wave sleep reduction 
(Jang et  al. 2012). EGCG could reverse the anxiolytic effects 
induced by caffeine (Park et  al. 2010). In addition to this, 
the combined use of EGCG and L-TH with other bioactive 
ingredients outside of tea such as ginkgo biloba, resveratrol, 
cocoa, tobacco, saffron, and curcumin also exhibit positive 
effects on cognitive impairment (Cicero, Fogacci, and Banach 
2018). In the future, the effects of the combination of natu-
ral active ingredients on AD remains to be further explored.
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