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STRUCTURE OF ZERO-DIVISORS
IN SKEW POWER SERIES RINGS

CHAN YoNG Hong, NAM KyuN KiM, AND YANG LEE

ABSTRACT. In this note we study the structures of power-serieswise Ar-
mendariz rings and IFP rings when they are skewed by ring endomor-
phisms (or automorphisms). We call such rings skew power-serieswise
Armendariz rings and skew IFP rings, respectively. We also investigate
relationships among them and construct necessary examples in the pro-
cess. The results argued in this note can be extended to the ordinary ring
theoretic properties of power-serieswise Armendariz rings, IFP rings, and
near-related rings.

Throughout this paper every ring is an associative ring with identity. Let o
be an endomorphism of a ring R. We use R[[z;0]] (resp. R[z;0]) to denote the
skew power series ring (resp. skew polynomial ring) with an indeterminate x
over a ring R, subject to the relation xr = o(r)z for r € R. Note that o(1) =1
for any skew power series ring (skew polynomial ring) R[[z; o]] (R[z; o]), since
la" = 2" = xla" ! = o(1)z" for any n > 1 where 1 is the identity of R.

Armendariz [2, Lemma 1] proved that whenever polynomials

f@) =Y a, gle) =3 bjad
i=0 §=0

over a reduced ring R satisfy f(z)g(z) = 0, then a;b; = 0 for all 4, j. Rege and
Chhawchharia [27] called such a ring (not necessarily reduced) Armendariz.
The Armendariz condition, and various derivatives described below, have been
studied by numerous authors.

According to Kim et al. [16], we say that a ring R is power-serieswise
Armendariz if a;b; = 0 for all i,j whenever power series f(z) = > .o, a;z’,
g(x) = 3520 bja? in R[[z]] satisfy f(z)g(z) = 0.

In [12], a ring R with an endomorphism o is called o-skew Armendariz if
whenever polynomials f(z) = > /" a;z’, g(z) = > im0 bjzl in R[x;o] satisfy
f(z)g(x) = 0, then a;0*(b;) = 0 for all i, j.
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Cortes [9, Definition 2.2] extended this definition to a skew power-serieswise
Armendariz ring as follows, and then studied the zip property of a skew power
series ring over a zip ring under the ring. (Recall that a ring R right zip if
the right annihilator rg(X) of a subset X of R is zero, then rr(Y) = 0 for
a finite subset Y C X.) A ring R with an endomorphism o satisfies SA2' if
whenever power series f(x) = Y2 aiz’, g(x) = 3277 bja? in R[[x;0]] satisfy
f(z)g(x) = 0, then a;o’(b;) = 0 for all i, j. However, we call the ring o-skew
power-serieswise Armendariz.

According to Baser et al. [3, Definition 3.1], a ring R with an endomorphism
o is called o-sps Armendariz if whenever power series f(z) = >~y a;a’, g(z) =
Z;‘io bjz’ in R[[x;0]] satisfy f(x)g(x) =0, then a;b; = 0 for all i, j. If we use
the methods of [14, Theorem 1.8], we get the fact that o-sps Armendariz rings
are o-skew power-serieswise Armendariz, but the converse is not true (see [14,
Example 1.9]).

Krempa [17] called an endomorphism o of a ring R rigid if ac(a) = 0 implies
a =0 for a € R. We call a ring R o-rigid if there exists a rigid endomorphism
o of R. Note that any rigid endomorphism of a ring is a monomorphism and
o-rigid rings are reduced rings by [12, Proposition 3]. Using this result, we can
easily check that o-rigid rings are o-skew power-serieswise Armendariz.

A ring R is called to satisfy the insertion-of-factors-property (simply, an IFP
ring) if ab = 0 implies aRb = 0 for a,b € R [4]. Narbonne [22] and Shin [28]
used the terms semicommutative and SI for the IFP, respectively. A ring R
is usually called abelian if every idempotent element is central. IFP rings are
obviously abelian. These conditions have the following relationships:

reduced = power-serieswise Armendariz = IFP = abelian

by [16, Lemma 2.3] and [28, Lemma 2.7]. However, without identity, an IFP
ring need not be abelian as can be seen by T' = (§ 5 ) over a domain S with
identity.

In this note we will observe the previously mentioned conditions when they
are equipped with an endomorphism (automorphism), and we study relation-
ships between them.

1. Skew power-serieswise Armendariz rings

In this section, we study skew power-serieswise Armendariz rings which ex-
tend power-serieswise Armendariz rings and skew Armendariz rings, etc. We
first note that o-rigid rings are reduced rings by [12, Proposition 3]. Using
this result, we can easily check that o-rigid rings are o-skew power-serieswise
Armendariz. Moreover, we have the following result which gives a very short
proof to Matczuk’s result [21, Theorem A] and also contains a result [3, Theo-
rem 3.3(1)].

Theorem 1.1. Let o be an endomorphism of a ring R. Then the following
conditions are equivalent:
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(1) R is o-rigid.
(2) o is injective, R is reduced and o-skew power-serieswise Armendariz.
(3) o is injective, R is reduced and o-skew Armendariz.
(4) R[[z;0]] is reduced.
(5) R[x;0] is reduced.
Proof. (1) & (4) < (5) follow from [12, Proposition 3] and (1) = (2) is routine.

(3) = (1): Suppose ac(a) =0 for a € R. Since R is reduced, o(a)a = 0. Thus
o(a)(1 — o(a)z)(1 + o(a)r)a = o(a)a = 0. Since R is o-skew Armendariz,
0 =o(a)o(a)o(a) = o(a®) and so a® = 0, entailing a = 0. O

Referring to [12, Proposition 3] or by Theorem 1.1, a ring R is o-rigid if
and only if R[[z;o]] is reduced. Then o-rigid rings are o-skew power-serieswise
Armendariz. However, the converse is not true. For example, the ring R in [12,
Example 1] is not o-rigid, but we can get that R is o-skew power-serieswise
Armendariz by the same method.

It is clear that o-skew power-serieswise Armendariz rings are o-skew Ar-
mendariz rings. However, the converse is also not true by the following result
which is a generalization to the skew setting of a special case of [1, Theorem
4.7].

Let K be a field and R;, R2 be K-algebras. Use R; *x Ry to denote the
ring coproduct of Ry and Ry (see Antoine [1] and Bergman [5, 6] for details).
Given a ring R, U(R) means the group of units in R.

Theorem 1.2. Let K be a field and A be a K-algebra. Let C = K|c] be
the polynomial ring with an indeterminate ¢ over K, and I be the ideal of C
generated by ¢*. Set B= C/I and R = Axx B. Let o be an automorphism of
A and o be the extended automorphism of R defined by o(a) = a(a) fora € A
and o(c+ 1) = ¢+ 1. Then R is o-skew Armendariz if and only if A is a
domain and U(A) = K\{0}.

Proof. Suppose that A is a domain and U(A) = K\{0}. We identify a; with
a;+1 for simplicity. Let 0 # f(x) = 31" aie’, 0 # g(x) = 327 bja! € Rlz;0]
such that f(z)g(z) = 0. Then f(z) and g(x) can be expressed by the following
forms:

f(x) = fo+ fic+cfa+cfsc and g(x) = go + gic + cg2 + cgsc,

where f;, g; € R[z; 0] and every sum-factor of coefficients of f;’s and g;’s does
not start by ¢ and does not end by c. In the following computation we will use
freely the condition that A is a domain and U(A) = K\{0}. Considering the
normal form of the elements in a coproduct of rings, every sum-factor of an
element in R is one of the following forms:

a, aijcaz, ajcazcasz, ..., a1€azC- - - a+—1CAa¢,

where a,a; € A for all i, and ¢ > 2. Note that o(ajcasc:--as_1ca;) =
o(ay)co(az)c---o(at—1)co(ar). This yields that o(r) # 0 if and only if r # 0
for r € R. From f(x)g(z) = 0, we have fo =0 or go = 0.
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Case 1. fop# 0 and g9 = 0.
Note

0= f(x)g9(x)= fogict+ focga+ focgzct ficgictcfagictcfocgatcfacgsctcfacgic.

Since fogic is unique in the expansion of f(z)g(x), we must have fogic =0
and it follows that g;c = 0. Hence

0= f(z)g(x) = focg2 + focgsc + cfacga + cfacgsc.
This also yields cg2 = 0 and cgse = 0. Consequently g(x) = 0, a contradiction.
Case 2. fop=0and gy # 0.
Note

0= f(x)g(x)= ficgo+ ficgictcfagotcfagictcfacgatcfocgzctcfacgotcfscgic.

Since ficgo is unique in the expansion of f(x)g(z), we must have ficgo = 0.
Thus, fic =0 and

0= f(x)g(z) = cfago + cfagic + cfacga + cfacgzc + cfzcgo + cfzcgic.

Note that cfago is also unique in the expansion, and so c¢fy = 0. This yields
¢fse = 0 and we have that f(z) = 0, a contradiction.

Case 3. fp=0and go =0.
Note f(x) = fic+ cfz +cfsc, g(x) = gic + cg2 + cgzc and
0= f(x)g(x) = ficgic + cfacga + cfagic + cfacgsc + cfscgrc.

In this case, we have that ficgic is the unique in the expansion of f(x)g(z), we
must have ficgic = 0. Similarly cfacgo = 0. Hence “either fic =0 or gic = 0"
and “either cfy = 0 or cga = 0”. Consequently, we have the following three
cases.

Subcase 3-1. fic=0and cfs = 0.

Note that f(z) = cfse, g(x) = gic+ cga + cgse and 0 = f(x)g(x) = cfscgic.
Since cfsc # 0, we get gic = 0 and so g(x) = cga + cgsc.

Subcase 3-2. fic# 0 and cfs = 0.
We have that f(x) = fic+ c¢fse, g(x) = gic+ cga + cgsc and
0= f(z)g(z) = ficgic + cfscgic.

Since ficgic and cfscgic are both unique in the expansion of f(x)g(z), we
get ficgic = 0 and cfscgic = 0. Since fic # 0 and then gy¢ = 0. Thus,
g(x) = cga + cgse.

Subcase 3-3. fic=0 and cfs # 0.

Note that f(z) = cfa + cfsc, g(x) = grc + cga + cgsc and

0= f(x)g(x) = cfacga + cfagic + cfacgsc + cfzcgic.
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Since cf2cgs is unique in the expansion of f(x)g(x), we get cfacga = 0. By the
fact that cfa # 0 we have that c¢ga = 0. Thus, g(z) = g1c + cgsc and

f(x)g(x) = cfagic+ cfacgsc + cfscgic.
In the right hand side of the preceding equality, cfsg;c is also unique and we get
g1¢ = 0, which implies that g(x) = cgsc. Now we have 0 = f(x)g(x) = cfacgsc.
Since c¢fy # 0, cgsc = 0 we have that g(z) = 0, a contradiction.

Summarizing the computations, we have f(x) = h(z)c and g(z) = ck(z) for
some h(z), k(x) € Rlx; o] whenever f(x)g(z) = 0. This implies that
a;o’(bj) = ajeo’ (cb) = ajeco’ (b)) =0
for all i and j, where a; = ajc and b; = cb; for some aj,b; € R. So R is o-skew

Vg
Armendariz.

For the proof of the converse of the theorem, we apply the method in the
proof of [1, Theorem 4.7]. Let R be o-skew Armendariz and assume on the
contrary that

A is not a domain or U(A) 2 K\{0}.

Suppose that there exist «, 5 € A\{0} such that a8 = 0. Set a = Sea. Then
0 # a € R and a® = 0. Consider two nonzero polynomials

f(z) = a+ acx and g(x) = ac — co(a)cx

in R[z;o]. Then
f(@)g(z) = (a + acx)(ac — co(a)cx)

= a’c — aco(a)cx + aco(a)cx — ac’o®(a)ca® = 0,

but aco(a)c is nonzero. This implies that R is not a o-skew Armendariz ring.
Next let u € U(A)\K, and consider two nonzero polynomials
flx)=cu™ —cu™?

in R[x;0]. Then

cx and g(z) = uc+ co(u)cx

fx)g(x) = (cu™ — cu™'ex)(uc + co(u)cx)

=+ cuteo(u)er — cuteo(u)ex — cum Po? (u)ea® = 0

but cu~tco(u)c is nonzero, which implies that R is not a o-skew Armendariz

ring. O

Using Theorem 1.2, we can always construct a o-skew Armendariz ring but
not o-skew power-serieswise Armendariz whenever a field is given.

Example 1.3. Let K be a field and A be a K-algebra such that dimg A > 2
and U(A) = K\{0} (e.g., the free algebra generated by noncommuting in-
determinates a,b over K). Let C = K][c|] be the polynomial ring with an
indeterminate ¢ over K, and I be the ideal of C' generated by ¢?, set B = C/I
and R = A xx B, a an automorphism of A and o the extended automorphism
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of R defined by o(a) = a(a) for a € A and o(c+ 1) = ¢+ I. Then R is o-skew
Armendariz by Theorem 1.2. Next consider the product of nonzero power series

c(1 — az)(1+ ax + ac(a)z? + ao(a)o®(a)z® + - )e=c* =0
for a € A\K where ¢(1—az) = c—caz, (1+ax+ac(a)r®*+ac(a)o?(a)z3+- - )c =
¢+ acx + ao(a)cx? + ao(a)o?(a)cx® + -+ € R|[z;0]]. Since cac # 0 we have
that R is not o-skew power-serieswise Armendariz.

We now provide a lemma which is very useful to study o-skew power-
serieswise Armendariz rings, and which is compared with [16, Lemma 2.3].
If o is an endomorphism of R, then ¢ induces an endomorphism & on R[[z; o]]
(Rlz; 0]) by (3 ai’) = 3 o(ai)a’.

Lemma 1.4. Suppose R is a o-skew power-serieswise Armendariz ring with
an endomorphism o. Then we have the following:

(1) If fr(x),..., fo(x) € R[[x;0]] such that f1(x)fa(x) - folx) =0, then

ailo.il (ajz) L o—sn,71+“‘+j2+i1 (atn) =0,

are arbitrary coefficients of fi(x), fa(x), ...,

n

where a;,, Qj,, ..., Qs,_ 0t
Facr(@), fa(w), respectively.

(2) For a,b € R, ab =0 implies aRc™(b) =0 for all n > 1.

(3) For f(x),9(x) € Rll;0l], f()g(x) = 0 implies f(z)Ig(x) =0, where I
is a left (or right) ideal of R|[[x;0]] generated by x.
Proof. (1) Suppose fi(x)fa(z)--- fo(x) = 0. By assumption we have that
a;, 0 (b)=0 for any coefficient a;, of f1(x) and any coefficient b of fo(z)- - - fn(x).
This implies a;, 5" (fo(x) - - - fn(x)) = 0, and so (a;, 0% (ag,) + (ai, 0 (a1,))r +
< )d1 (f(x) - falx)) = 0. Thus (a;,0% (a;,))072(d) = 0 for any coeffi-
cient aj, of fa(x) and any coefficient d of 5 (f3(z)--- fn(z)). Note that d
is of the form o (c) for some coefficient ¢ of f3(z)--- fu(z). This implies
ai, 0 (aj,)o72 T (f3(x) - fo(x)) = 0, and it follows that
(ail oh (ajz)o—jr’_il (a03)+(a’i10—i1 (a’j2)o—j2+i1 (als))z T+ )5—j2+i1 (f4 (:L') o In (I))
=0.
Continuing this process, we inductively obtain

ai, O.il (aj2)0j2+i1 (aks) - O-Sn—1+~“+j2+i1 (atn) =0,

where ag, and a;, are arbitrary coefficients of f3(x) and f,(z), respectively.
(2) Suppose that ab =0 for a,b € R. Then, for any integer [ > 1 and r € R,
we have

0=ab
= a(l —ra") (1 +ra’ +ro' (r)a® +rol (r)o® (ra® +- )b
= (a — arz") (b + ro' (b)z! + ro' (1) o (b)2® 4 ro' (r)o® (r)o (b)a + - --).

Since R is o-skew power-serieswise Armendariz, we have arc'(b) = 0. Thus,
aRo'(b) = 0.
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(3) Let f(z) = 372 air’, g(x) = 3272 bja’ € R[[x;0]] such that f(x)g(z) =
0. Then a;o%(b;) = 0 for all 4,5. From (2), a;Ro™"%(b;) = 0 for all 4,5 and
n > 1. Thus for any r € R and integer ¢ > 1, commutative ring R, see [10,
Examples 1, 2, and 3].

flx)ratg(z)
(Z a;x’)rat (Z bja?)
i=0 j=0

= agro’(bo) + (agra® (b)) + aro(r)o™ (b)) +--- =0,
completing the proof. Il

It is well known that a polynomial f(z) over a commutative ring R is nilpo-
tent if and only if each coefficient of f(x) is nilpotent, and that f(z) is a
zero divisor in R[z] if and only if f(x) is annihilated by a nonzero element of
R. However these results are not true in the power series ring R[[z]] over a
commutative ring R, see [10, Examples 1, 2, and 3].

Proposition 1.5. Let R be a o-skew power-serieswise Armendariz ring with an
endomorphism o. For nonzero elements f(x), g(x) € R[[z;0]], if f(z)g(x) =0,
then f(x)c =0 for some 0 # ¢ € R.

Proof. Let f(z) = Y272 a;x’ and g(x) = Y°7°bja’ be nonzero elements in
R][x; o]] with f(x)g(z) = 0. Then by Lemma 1.4(3), f(z)xg(x) =0. If xg(x) #
0, then there exists i such that o(b;) # 0. Since f(x)(zg(z)) = 0, aro*(a(b;)) =
0 for all £ > 0. Thus f(z)o(b;) = 0. Again applying zg(z) = 0, then o(bg) =0
for all k > 0. Since g(z) # 0, there exists ¢ such that b; # 0. By the fact that
f(x)g(z) = 0 we have that a;o®(b;) = 0 for all t > 0. So f(x)b; = 0. O

Let o be an endomorphism of a ring R. An element a of R is called o-
nilpotent if for any integer I > 1, there exists a positive integer m = m(l),
depending on I, such that ac'(a)o?(a)---o™ Y (a) = 0. Equivalently, the
elements ax! € R[z; o] are nilpotent for each integer [ > 1 (cf. [13], [24], [26],
etc.). We recall that a subset S of a ring R is called o-nilpotent if for any
integer [ > 1, there exists a positive integer m = m(l), depending on [, such
that So'(S)a?(S)---o(m=DES) =0 (cf. [13]).

Theorem 1.6. Let R be a o-skew power-serieswise Armendariz ring with an
endomorphism o and f(z) = Y ;2 a;z" € R[[x;0]]. Then the following state-
ments are equivalent:

(1) f(x) is a-nilpotent;

(2) For any l > 1, there exists n = n(l) > 1 such that

As,y UlJrSl (a52)02l+(51+52)(a53) T U(nil)l+(sl+52+m+snil)(asn,) =0

for any choice of coefficients as;’s of f(x) (j =1,2,...,n).
In this case, each ideal Ra;R s o-nilpotent.
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Proof. Let f(x) be g-nilpotent. Then for any integer I > 1, there exists a
positive integer n = n(l) such that
0=f(2)a' (f(2))---5" V' (f(x))
=(ag+ arz+---)(0'(ag)+ o' (a))z+---) - (™ V(ag)+ o V(ay)z+- ).
By Lemma 1.4(1), we have
s, 51 (ag, )0 A+ E152) (g ) - g (DTS2t a1 (g ) = )

for any choice of coefficients as;’s of f(x) (j = 1,2,...,n). Then, by Lemma
1.4(2), we have

Rasl Ro.l+s1+t1 (a52 )R021+(51+52)+(t1+t2) (1153)

. .Rg(nfl)lJrZ?;Ul(SiHi)(a JR=0

for any positive integer ¢ty (k =1,2,...,n —1). This yields
Rag, RoT174 (Ra,, R) o2+ (s1ts2)+(titt) (Rg  R)
. .U(n—l)l-lrz?;ol(sﬁti)(RasnR) =0.
Next let a5, = -+ = as, = a;. Then
(Ra;R)Ro'T "1 (Ra; R)Ro> !0+ +t2) (R, RYR
(D) (Ra;R)R = 0.
Since each tj, runs over all positive integers, we can obtain
0 =(Ra;R)o'(Ra;R) - - - o'~V (Ra; R)o® (Ra; R)o VY (Ra; R)
o2 DY Ra, R0 (Ra; R) o>V Ra, R)
o1 DY Ra R)o“ =1 (Ra; R)
by inserting necessary subsets of the form ¢%(Ra;R) (with « > 1) in place of
R’s, where we let ti’s such that [+ +t1 = a1, 2(1 +4) + (t1 + t2) = ag,. . .,
(n—1)(1+i) + 0t = an_1.
The proof of the converse is obvious. (I

In the proof of Theorem 1.6, we have that Ra;R is o-nilpotent. A related
example, in case of o being an identity map, can be found in [10]. The condition
“R is a o-skew power-serieswise Armendariz ring” in Proposition 1.5 is essential
as the following example shows.

Example 1.7. Let D be a commutative domain, X = {¢;|j € Z} a set of
commuting indeterminates over D and F is the quotient field of D[X] and
a an automorphism of F' defined by t; — ¢;41. We consider A = F{a,b,c},
the free algebra of polynomials with zero constant terms in noncommuting
indeterminates a, b, c over F', and I be an ideal of F'4+ A generated by cc, ac, cre
with 7 € A. Next we define R = F—JIFA and an automorphism o of R by
(D finite SY) = D pinite @(5)Y, where s € F and Y is a finite product of a, b, ¢’s.
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Identify f with f+ I for f € F + A for simplicity. Consider the equality
(a—abz)(c+bex+b2ca®+- - +b"ca™ +---) = a(l —bx)(1+br+b%2%+- - )c =
ac =0 with 1 —bx, 1 +bx+b%2*+- - - € R[[x;0]]. Since abc # 0, R is not o-skew
power-serieswise Armendariz. Note that if (a — abxz)d = 0 for some d € R, then
ad = 0 and abd = 0, and so d = 0.

Cortes in [8, Proposition 3.2] (resp. [9, Lemma 2.7]) and observed the re-
lations between annihilators in a ring R and annihilators in R[z;o] (resp.
R][x; 0]]) in case of o being an automorphism of R. We here extend the Cortes’
results to the situation of o-skew power series ring in case of o being an endo-
morphism. This result provides useful tools for studying the skew power series
rings with the o-skew power-serieswise Armendariz condition, and its applica-
tions. For a ring R, let f(z) = Y ;o a;z’ € R|[x;0]] and Ay = {a;a"|i € I},
where I is the set of all nonnegative integers. Then for each i, rr(a;z*) =
TR[[e:0]) (@iz") N R is a right ideal of R and rgjz01(Ar) = NirRlwe](@:z’);
hence rr(Af) = (NirR{[z;07 (@iz’)) N R is a right ideal of R. Let

I'={rr(4y) | f(z Zazx € R[[z; o]]},

A= {TR[[I;O]]( ) |® # V g Rl[z;0]]}.

Then we obtain a map ® : I' — A defined by ®(rgr(Ay)) = rr(Af)R][z; 0] as
in the proof of Lemma 1.8 to follow.

Lemma 1.8. Let o be an endomorphism of a ring R. Then the following
statements are equivalent:

(1) R is o-skew power-serieswise Armendariz,

(2) @ :T — A is bijective with ®(rr(Ay)) = rr(As)R][[x; 0]].

Proof. (1)=(2): We first claim that ® is well-defined. Let f(z) = > .2 a;z’ €
R[[z;0]] and g(z) = Y ;2 bix" € rr(Af)R|[x;0]] for TR(Af) € T'. Then we
can assume that b; € rR(Af) for all i and we have that bea’ € 7 (3,0 (Ay) for
each £. Thus, g(x) € 7g[[; o] 1(Ay). On the other hand, let h(x) = ZZ oGzt €
TR[[z;07] (Af). Then 0 = a;x (i Y = aizlcotaiziciz+- - airie, "+
for all i. If a;x%c; # 0 for some ¢, then a;0%(c;) # 0 and it follows that aixictxt =
a;ot(c)ztt # 0. Hence a;z'h(z) # 0, a contradiction. Thus ¢ € rr(Ayf) for
all k, and we get h(z) € rr(Af)R[[x;0]]. Consequently rr(As)R[[z;0]] =
TR[z:0)] (Af) € A, which determines the map ® : I' — A with (I)(TR(Af))
rr(Af)R[[z;0]]. We next show that ® is injective. In fact, ®(rg(A4y)) =
B(rr(A,)) for f(z),9(x) € Rl[z;0]]. Then ra(As)R[z;0]] = rr(Ag)R(lz; o]
and we have that rg((z:07](Af) = TR[[e;0]](Ay) What we proved above. It then
follows

TR(Af) = TR{[2:0]] (Af) N R = TR[2:0))(Ag) N R = 1Rr(Ay),

which implies that ® is injective.
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We claim that @ is surjective. In fact, let V' be a subset of R[[z;o]] and
flo) =T an’ € V. If g(x) = 3775 bz’ € rRao)(f(2)), then f(x)g(z) =
0. Since R is o-skew power-serieswise Armendariz, we have a;0"(b;) = 0
for each i,j. Thus for any j, we have b; € N;rgr(a;z"), and it follows that
g(x) € rr(Ay)R|[[z;0]]. Hence 7gz0)(f(7)) € rr(Ay)R[[z;0]]. On the other
hand, let g(z) € rr(Ay)R[[7;0]] = TR[z:07)(Af). Then we get f(z)g(z) =0
which implies that g(z) € 7gz0)(f(2)), and we have that g, (f(x)) =
rr(Af)R[[x;0]] = TR[[2:0))(Af). Consequently

TR[[I;O’]](V) = ﬂ TR[[z;U]](f(x)) = ﬂ T R[[z;0]] (Af = TR[[x;0]] U Af

flx)ev f(z)eVv f(z)eVv
= TR([x;0]) (Av) = TrR(AV) R[[z;0]] = ®(rr(AV),
where Ay = Ug(z)ev A, completing the proof.

(2)=(1): Let f(x) = 327Zq aia’, g(x) = 3.2 bia' € R|[x;0]] with f(x)g(x)
= 0. Since ® is surjective, g(z) € rg[0)(f(7)) = TR(Ah)R[[ o]] for some
h(z) = Y2 cix' € R[[x;0]]. Thus by € 7r(An) C TR{z:07(f(2)), and hence
f(x)by, = 0 for all k. This implies a;0%(by) = 0 for all i,k. So R is o-skew
power-serieswise Armendariz. O

Cortes [8, Corollary 3.10] proved that a o-skew Armendariz ring R with an
automorphism o is right Goldie if and only if R[x; o] is right Goldie. But, there
exists a o-skew power-serieswise Armendariz ring R with finite right Goldie
dimension whose skew power series ring R[[z;o]] has no a finite right Goldie
dimension [18, Example 10.31A and Theorem 10.22].

Proposition 1.9. Let R be a o-skew power-serieswise Armendariz ring with
an endomorphism o. Then R satisfies the ascending chain condition on right
annihilators if and only if R|[[x;0]] satisfies the ascending chain condition on
right annihilators.

Proof. Tt suffices to show the necessity. Suppose that rz(jz:071(V1) € rR[fz;01 (V2)
C --- is an ascending chain in R[[z;0]] for V; C R[[z;0]]. By Lemma 1.8,
TRlz:0] (Vi) = rr(Av,)R[[z;0]], where Ay = UgevAy and we have that
rr(Av;) C rr(Av,,,). Let a € rg(Ay,). Then Ay,a = 0 and we have that
f(xz)a =0 for any f(z) € V;. Thus Viy1a = 0 and it follows that Ay, a = 0.
Hence rgr(Ay;) € rr(Av,,,). By assumption, there exists an integer n > 1
such that rr(Ay,) = rr(Av,,,) for all integers k > 1. So 7gjz;0(Va) =
TR[[m;U]](VnJrk)' U

For a ring R, let I be an ideal and ¢ be an automorphism of R. If o(I) C I,
then I is called a o-ideal. If o(I) = I, then [ is called o-invariant. According
to Pearson and Stephenson [24], a proper o-ideal P of R is o-prime if whenever
AB C P for an ideal A and a o-ideal B, we have that either A C P or
B C P. If in addition P is o-invariant, then P is called strongly o-prime. We
mean by a right annihilator ideal (left annihilator ideal), an ideal of the form
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rr(I), (respectively, ¢r(I)), where I is an ideal of R. If an ideal is of the form
rr(I) = Lr(I), where I is a o-ideal of R, then it will be called an annihilator
o-ideal. By an annihilator o-prime ideal, we mean an annihilator o-ideal which
is also o-prime.

The following lemma is due to [13, Lemma 1.2].

Lemma 1.10. Let P be a proper o-invariant ideal of a ring R with an auto-
morphism o. Then the following conditions are equivalent:

(1) P is strongly o-prime;

(2) For a,b € R, if for some positive integer m, aRc™(b) C P for alln > m,
then a € P or b e P;

(3) For a,b € R, if for some integer m, aRo™(b) C P for all n > m, then
acPorbeP.

A strongly o-prime ideal is obviously o-prime, but otherwise “strongly o-
prime”, “o-prime” and “prime” are completely independent conditions (see,

[20]).
By [23, Proposition 1.6] and [24, Corollary 1.4], we have the following.

Proposition 1.11. Let o be an automorphism of R. If R is a semiprime ring
with the ascending chain condition on right annihilators, then we have

(1) R has only a finite number of minimal strongly o-prime ideals, and their
intersection 1s zero.

(2) A strongly o-prime ideal of R is minimal if and only if it is an annihilator
o-ideal.

(3) R[[z;0]] is semiprime.

Even though, if R is a semiprime ring with the ascending chain condition
on right annihilators, a minimal strongly o-prime ideal is not necessarily to be
a minimal prime ideal. For example, let R = Zy @ Zy and let 0 : R — R be
an automorphism defined by «((a,b)) = (b,a). Then the minimal (strongly)
o-prime ideal {(0,0)} of the ring R is not minimal prime.

Theorem 1.12. Let R be a semiprime ring with the ascending chain condition
on right annihilators. If R is a o-skew power-serieswise Armendariz ring with
an automorphism o, then R[[x;c]] has finitely many minimal strongly &-prime
ideals, say Qu,...,Qm, such that Q1 N---NQp = 0 and Q; = Pr;)[[x;0]] for
any i, where Pr(1),..., Priy) are minimal strongly o-prime ideals of R and T
is a permutation of {1,...,m}.

Proof. By Propositions 1.11 and 1.9, R][x; o] is a semiprime ring with the as-
cending chain condition on right annihilators. Thus R[[z;o]] has finitely many
minimal strongly &-prime ideals, say Qi,...,Q@m. By Proposition 1.11(2),
Qi = TR[;5)(Li) for any i, where I; is an ideal of R[[x;c]]. Then by Lemma
1.8, Q; = TR(A]i)R[[w; 0‘]], where Aj, = Ur(z)el; (Af)

We now note that R is o-rigid (so R[[z;0]] is 6-rigid). Suppose ac(a) =0
for a € R. By Lemma 1.4(2), aRo?(a) = 0. Since R is semiprime, 02(a)Ra = 0
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and so 02(a)a = 0. Again applying to Lemma 1.4(2), 0%(a)Ro?(a) = 0. Since
o is an automorphism, we have aRa = 0, which yields a = 0.

We claim that C is a strongly o-prime ideal of R if and only if C[[z;0o]]
is strongly 7-prime of R][[x;c]]. Suppose that C[[z;0]] is strongly &-prime of
R][x;0]]. Note that o(C)[[z;0]] = (Cl[x;0]]) = C[[z;0]], and we have that
o(C) = C. Suppose that for some integer m, aRo™(b) C C for all n > m
with b ¢ C. As mentioned above, C = rg(I) for some ideal I of R. Then
y ¢ C for all y € I since R is reduced. Thus yac™(b) = 0 and yR[[z;0]]a%(b) €
C|[z;0]] for some integer s by Lemma 1.10. This implies that yrot(b) ¢ C
for some integer ¢ and r € R. Since yab = 0 and R[[z;0]] is &-rigid, then
yra™(b)R[[x;0]lo(a) = 0 C C|[[x;0]] for any integer I, and it follows that
a € C which implies that C' is strongly o-prime.

Conversely, we suppose that f(z) = Yo, a;z’, g(z) = Z;io bjz! are in
R][x;0]] such that f(x)R[[z;0]]a™(g(x)) C C[[z;0]] for all integer n > m,
where m is an integer, and g(z) ¢ C][x;0]]. Then there exists b; which is
minimal among such that b; ¢ C, where 0 < ¢. Then for any integer s > 1 and
t>j,0%(b,) € C since o(C) = C. Note that

agRo™ (by) + alRoerl(bt,l) + -+ aRo™ Tt (by) C C.

Then agRo™(b;) C C and we have that ag € C. Also since agRo™ (byy1) +
a1 Ro™ (b)) + -+ + agy1 Ro™ T (bo) C C, a1 Ro™(b;) C C and it follows that
a1 € C. Repeating this process, we have f(z) € C|[z;oc]], which implies that
C[lz; o]] is strongly g-prime in R][[x;o]]. Moreover, C' is a minimal strongly o-
prime ideal of R if and only if C[[z; ]] is minimal strongly &-prime in R[[z; o]].

Using the fact, we have for any ¢, P; = rg(Ay,) is minimal strongly o-prime
in R, we get t = m and we obtain that Q; = P;[[x;0]] for alli = 1,...,m (after
reordering if necessary). O

2. Skew IFP rings

In this section, we study some properties of o-skew IFP rings. According to
Baser et al. [3, Definition 2.1], for an endomorphism o of a ring R, R is called
o-skew IFP if for a,b € R, ab = 0 implies aRo(b) = 0. In [3, Theorem 2.4]
they proved that a ring R is o-rigid if and only if R is reduced o-skew IFP and
o is a monomorphism. An endomorphism o of R is of locally finite order if for
every r € R there exists a positive integer n = n(r) such that o™ (r) = r.

We begin with the following lemma.

Lemma 2.1. For a ring R with an endomorphism o, we have the following:
(1) A ring R is o-skew IFP if and only if for a,b € R, ab = 0 implies
aRo™(b) = 0 for all integers n > 1;
(2) A o-skew power-serieswise Armendariz ring is o-skew IFP;
(3) If o is of locally finite order, then a o-skew IFP ring is IFP.
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Proof. (1) Let R be a o-skew IFP ring and ab = 0 for a,b € R. Then aRo(b) =
0 and in particular ac(b) = 0. Since R is o-skew IFP, we have aRo?(b) = 0.
Inductively we obtain the result.

(2) Tt follows from (1) and Lemma 1.4(2).

(3) Let o be an endomorphism of a ring R with ¢ (b) = b and ab = 0 for
a,b € R. Then we get aRb = aRo™(b) = 0 by (2), and so R is IFP. O

Baser et al. [3, Theorem 3.3(3)] proved that R[[z;o]] is IFP when R is a
o-sps Armendariz o-IFP ring. However, by Lemma 2.1(2), we can remove the
condition “R is o-IFP” in the result.

Note that a o-skew IFP ring and an IFP ring coincide when o is an identity
map. The converses of Lemma 2.1(1) and (3) does not need to hold as we see
in the following example.

Example 2.2. (1) Let D be a commutative domain. Suppose that X =
{tj|7 € Z} is a set of commuting indeterminates over D and F is the quo-
tient field of D[X] and « an automorphism of F defined by ¢; — ¢;11. The
construction of the following ring R is due to Hamann and Swan [11].

Let S = F[A] be the free algebra generated by the noncommuting inde-
terminates A = {a;|i = 0,1,2,...} over F, I the ideal of S generated by
{a;a;a | a;,a; and ay are in A}, T = % and identify a; with a; + I for sim-
plicity. Next we let d,, = >, j=n @iaj and J the ideal of T' generated by
{d,|n=0,1,2,...}. Now we put R = %, and define an automorphism o of R
by 0(3 finite SY) = 2 finite @(8)Y where s € F and Y is a finite product of a;’s.

Consider f(z) = >i°,a;x’ € R|[z;0]]. Note that f(z)? = 0, however
ajol(a) = ajay # 0 unless j, k are zero. Thus R is not o-skew power-serieswise
Armendariz.

We next show that R is o-skew IFP. In fact, let L; and Ly be the linear spaces
generated by {a, | a, € A} and {a;a; | a; and a; are in A} over F, respectively,
and b, c € S such that bc € J. Note that b, ¢ can be expressed by

b:b0+b1+b2+b3 andc:co+cl+02+b3

for some bg,co € F, by,c1 € Ly, ba,co € Ly, and b3, c3 € I. From bc € J we get
boco = 0, and it follows that by = 0 or ¢y = 0. Suppose that by = 0 and ¢y # 0.
Then we get

coby + (Cobz + blcl) € J with cgby € Ly, cobs + bicy € Lo,

and we have that coby = 0 and cpbs + bic; € J. From ¢y # 0 we have by =
0; hence coba € J and we have that cobo = 0, which implies that by = 0.
Consequently b = b3 € I C J and so bRo(c) = 0. Next suppose that by = 0 =
co. Then we get bycy € J with by € Ly. We can write by = Y .* ; vsa;, and
c1 =Y ;o waj,, where vg,w; € F and a;_,aj, € A. Thus

m n
bicy = (Z Usais)(z wiaj,) = szwtaisaﬁ € JN L.
s=0 t=0

s,t
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In this situation we can assume that a;, # a;, if ia # ig and aj; # a;, if
Js # J- So there exist a;; and a;,, such that i5 and j, are largest in the indices
is’s and j;’s respectively.

Since i5 + j is larger than every other i; + j:, we have a;; a;., must be do
(ie., ajz = ag = a;, ). Hence we have that

b1 = vag and ¢; = way
for some v, w € F' since i5 and j., are largest. So we get
bRo(c) = (vag + be)Ro(wag + ¢2)
= (vag + b2)(ep + €1 + e2)(a(w)ag + o(c2))
= vega(w)ag =0

for all eg € F,e; € Ly,eq € Lo.

The computation for the case of ¢ = 0 is similar, and therefore R is o-skew
IFP.

(2) There is an IFP ring that is not o-skew IFP with o of infinite order. Let
S be a domain and R =}, _, S; with S; = S for all € Z. Then R is IFP since
R is reduced. Define o(a;) = (a;+1), then o is an automorphism of R of infinite
order. Take (a;)icz, (bj)jcz € R such that a; = 0 = b; for all odd integers i,
even integers j, and a; = 1 = b; for all even integers i, odd integers j. Then
(ai)iez(bj)jez =0, but (ai)ieZRU(bj)jeZ = (ai)iezR(ai)iez # 0. Thus R is not
o-skew IFP.

Note that if the skew power series ring R[[z;0]] is IFP, then R is IFP and
o-skew IFP. Conversely, if R is a o-skew IFP ring with of locally finite order
and o-skew power-serieswise Armendariz ring, then R[[z; o] is IFP. However,
the following example shows that the condition “R is o-skew power-serieswise
Armendariz” is essential.

Example 2.3. We modify the construction and apply the computation in [15,
Example]. Let Zs be the field of integers modulo 2 and A = Zs{ayg, a1, as, bo, b1,
ba, ¢} be the free algebra of polynomials with zero constant terms in noncom-
muting indeterminates ag, a1, az,bg,b1,bs,c over Zs. Set S = Zs + A and
consider an ideal of S, say I, generated by
agbo, a1ba + azb1, agb1 + a1bg, apba + a1b1 + azbg, azba, agrby, axrbs,
(ao + a1 + (J,Q)T(bo + b1 + bQ),
apao, 102 + aza1, apa1 + aiap, o2 + ai1ai + a2ao, a2a2, aprag, A2raz,
(ap + a1 + a2)r(ap + a1 + az2),
aias + azby, agby + ayag, agbe + aja; + azbo,
boag, braz + baa1, boar + brag, boas + biay + baag, baasz, borag, baras,
(bo + b1 + ba)r(ao + a1 + az),
bobg, b1ba + baby, bob1 + b1bg, boba + b1b1 + babg, baba, borby, barbo,
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(bo + bl + b2)7’(b0 + bl + b2),
biba + baa1, boay + bi1bg, boas + b1b1 + baag

with » € A and rirorgry with r1,7r2,73,74 € A. Then clearly A* € I. Now
let R = (Za+ A)/I and identify every element in S with its image in R for
simplicity. Define a map o from R to R by o(a;) = b;, o(b;) = a;, and o(c) = ¢
for ¢ = 0,1,2. Note that ¢ is an automorphism of R (also of S) with o(I) = I.

We consider f(x) = ag + a1z + azx?, g(x) = by + bz + bex? € R[z; 0], such
that f(x)g(z) = 0. Thus (ag + a1z + a2z?)c(by + b1z + bex?) # 0 because
apchy + ajcag # 0. Hence Rx; o] (and so R][x;0]]) is not IFP.

We next show that R is o-skew IFP. In fact, each product of indeterminates
ag, a1, as,bg, by, ba, c is called a monomial and we say that « is a monomial of
degree n if it is a product of exactly n generators. Let H,, be the set of all
linear combinations of monomials of degree n over Z,. Observe that H, is
finite for any n and that the ideal I of R is homogeneous (i.e., if >0, r; € T
with 7; € H;, then every r; is in I). Note that o2 is the identity map of R.

Claim 1. If fig; € I with f1,g1 € Hy, then firo*(g1) € I for any r € S and
k>1.

Proof. Let fig1 € I with f1,91 € Hy. Then, by the definition of I, we obtain the
following cases: (f1 = ao, g1 = bo), (f1 = a2,91 = b2), (f1 = ap + a1 +az,g91 =
bo + b1 + b2), (f1 = ao, 91 = ao), (fi = a2,91 = a2), (f1 = a0+ a1 +az,91 =
ao + ay + a2), (fi = bo,g1 = ao), (fi = b2, g1 = a2), (fi =bo + b1 +b2,91 =
ao + a1 + az), (f1 = bo,g91 =bo), (fi = b2, g1 = ba), or (f1 =bg+ b1+ b2, g1 =
bo + b1 + b2). So we complete the proof, using the definition of I again. [l

Claim 2. If fg € I with f,g € A, then fro*(g) € I for all r € A.

Proof. Observe that f = fi + fo+ fs+ fa,9 = g1 + 92 + 93 + g4 and r =
r1 + 179 + 13 + 74 for some fi,g91,71 € Hy, fa,92,70 € Ho, f3,93,73 € H3 and
some f4, 94,74 € I. Note that H; C I for i > 4. So fro¥(g) = firic"(g1) + h
for some h € I. Since fg € I then fi1g91 € I by the fact that I is homogeneous;
we have that fir10%(g1) € I by Claim 1. This gives us fro*(g) € I. O

We claim that R is o-skew IFP. In fact, it suffices to show that yro*(z) € I
for all » € S whenever yz € I for y,z € S. By Claim 2, we can obtain
that y = a +4',z = 8 + 2’ for some «,3 € Zs and some y',2’ € A. Hence,
aff+az'+y' B+vy'z =yz € I and it follows that « = 0 or 5 = 0. Assume that
a=0. Then /S + 4’2" € I. If B # 0, then y’ € I because I is homogeneous,
B € Zy and consequently yro*(z) = y'ro¥(z) € I for all v € Zy + A. If 3 =0,
then ¢z’ € I and so by Claim 2, yro*(z) = y'ro*(2’) € I for all r € Zy + A.
The proof of the case of § = 0 is similar. Therefore R is a o-skew IFP ring.

By [16, Lemma 2.3], if a ring R is power-serieswise Armendariz, then R[[z]]
is IFP. However, we now do not know that R[[z;c]] is IFP when a ring R is
o-skew power-serieswise Armendariz. Note that, in Example 2.3, the ring R is
a o-skew IFP ring with o of locally finite order, but R[[x;0]] is not IFP.
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Proposition 2.4. If R is a o-skew power-serieswise Armendariz ring with o
of locally finite order, then R[[x;c]] is IFP, where o is an endomorphism of R.

Proof. Let R be a o-skew power-serieswise Armendariz ring with o of locally
finite order. Suppose f(z)g(z) = 0 for f(z) = 3272, aix’, g(x) = 372 bja! €
R[[z;0]]. Then a;o%(b;) = 0 for all 4,j. By Lemma 2.1(2) and (3), we have
a;Ro™k(b;) = 0 for all i,j where k > 0. This yields f(x)Raz*g(z) = 0 for all
k >0 and so f(z)R][x;0]]g(x) = 0, completing the proof. O

Let o be an endomorphism of a ring R and n € N. An element a of R is
called o(n)-nilpotent if there exists a positive integer m = m(n), depending
on n, such that ac™(a)o?*(a)---o(m=Y"(a) = 0. Equivalently, the element
ax™ € R[z;0] is nilpotent.

Definition 2.5. Let R be a ring and ¢ an endomorphism of R.
(1) N(o;4)(R) :=={a € R|a is o(i)-nilpotent}.
(2) Nu(0)(R) := UienN (03 4)(R).
(3) Ni(o)(R) = NienN(03)(R).

Pearson and Stephenson [24] defined the o-prime radical of a ring R, denoted
by P,(R), as the intersection of all strongly o-prime ideals of R. Many authors
have used the concept of o-prime ideal to study of radicals of skew polynomial
rings, see ([7], [13], [19], [23], [24], [25], [26], etc.). A subset S of a ring R
is called o-nil if every element in S is o-nilpotent. By [7, Proposition 1.12],
P,(R) is o-nil. Note that Ny (o)(R) is the set of all o(n)-nilpotent elements of
R and Ni(o)(R) is the set of all o-nilpotent elements of R. Thus we see that
P,(R) C Ni(0)(R) € Ny(o)(R) when o is an automorphism. However, the
following examples show that the containments are proper.

Example 2.6. (1) P,(R) C Ni(o)(R).

Let K[{t;}icz] be a polynomial ring over a field K, and I = ({tpn, tnytng | n3—
ng = ngz —nq > 0}) be an ideal of K[{t;}icz|. Define R = K[{t;}icz]/I. The
K-automorphism o of K[{t;};cz| defined by sending each t; to t;41 induces
an automorphism o on R. Ram proved that the skew polynomial ring R[z; o]
is prime, see [26, Example 3.2(ii)]. Thus by [24, Corollary 1.4] we have that
P,(R) = 0. Note that for any integer [ > 1, (t;2))3 = t;ol(t;)o? (t;)2® =
titi+lti+gll‘3l = 0. Hence ¢; € N[(O‘)(R)

(2) Nilo)(R) € Nu(o)(R).

Let R = Zo @ Zy where Zs is the ring of integers modulo 2. Then R is a
commutative reduced ring. Consider ¢ : R — R the automorphism defined
by o((a,b)) = (b,a). Then (1,0) € Ny(o)(R), but N;(o)(R) = 0. Note that
RJz; o] is not reduced.

From now on, o always denotes an automorphism of a ring R. The following
proposition extends the result of [28, Theorem 1.5].
Proposition 2.7. If R is a o-skew IFP ring, then P,(R) = Ni(o)(R) =
Ny(o)(R).
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Proof. Let a € Ny(o)(R). Then for some integer s; > 1,
ac® (a)o®* (a) - o™V (a) =0

for some positive integers m. Assume that a ¢ P,(R). Then a ¢ P for some
strongly o-prime ideal of R and by Lemma 1.10, we can take a positive integer
n1 > s1 such that aRo™ (a) € P. Say azi0°t(a) ¢ P. Since R is o-skew IFP,
we have

aRo™ ™51 (6 (a)0®* (a) - - - o™ V51 (a)) = 0.
In particular

az1o™ (a)o™ T (a) - - oM TS () = 0,
Also by Lemma 1.10, az10™ (a)ze0™ (a) ¢ P for some x2 € R and positive
integer ng > ny + s1. By the fact that R is o-skew IFP, we have that

az10™ (a)Ro™2 (M8 (gMdsi(g) .. g M=) =

and in particular we have that

az10™ (a)z20™ (@)™ () - - - g2 T3S () = 0,
Next we can find ng > no + s1 and x3 € R such that

azx10™ (a)ze0™ (a)x30™ (a) ¢ P.

Continuing in this process, we inductively obtain

ax10™ (a)ra0"?(a)xz0™ (a) -+ Tp_10"m 1 (a) ¢ P
and

ax10™ (a)zeo™? (a)x30™ (@) - Typ—10™™ (a) =0
for some z;’s in R, a contradiction. So P,(R) = N;(0)(R) = Ny(o)(R). O

Lemma 2.8. If R is a o-skew IFP ring with o of locally finite order, then for
ai,as,...,a; € R, ajas---a; = 0 implies o** (ay)Ro*?(az)R - -- Ro*t(a;) = 0
for any nonnegative integers ki, ko, ..., ki.

Proof. The proof will be done by induction on ¢ and we first assume ajas = 0
for a1,as € R. Then %' (a;)o* (az) = 0 for any positive integer k;. Since R
is o-skew IFP, then o*!(a;)Ro"™ *1(ay) = 0 for any positive integer n > 1.
Let 0™2(ag) = ag and ko = n + k1. Then ko = pmo + 7, where 0 <
r < mg. Take a positive integer s such that n = smqo + (r — k1) > 1.
Thus o*2(az) = o"tFi(ay) = o*NT=k)+k(gy) = 5N+ (ay) = 0" (az) and
we have that ¥ (a;)Ro*?(az) = 0 for any positive integer ki, ks. Now as-
sume that it holds for ¢ — 1. Suppose that ajas---a; = 0 and by induction
hypothesis, o*1(a;)Ro*?(ag)R--- Ro*-1(a;—1) = 0 for any positive integers
ki, ko, ... ki_1. Hence 0¥t (ay)Ro*2 (ag)R - - - Ro*+-1(as_1)o*—1(a;) = 0 and by
the fact that R is o-skew IFP we have that

o (a1)Ro™ (az)R - - - Ro™ = (a;_1)Ro™ =1 (a;) = 0

for any positive integer n > 1. Let ks = n + k;—1 and o7"(a;) = at. Then k; =
gmyi~+r, where 0 < r < m; and take a positive integer u such that n = um;+(r—
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ki—1) > 1. Consequently o*t(a;) = o"+Fe- 1(at) = gumt(r—ke)thkioa(g,) =
ot (ay) = 0" (az). So 0¥t (a1)Ro*2(az)R -+ Ro*t(a;) = 0 for any positive
integers ki, ko, . .., kt. O

The o-Wedderburn radical of R, denoted by W, (R), is given by
W (R) =Y {I|Iisa o-nilpotent o-ideal of R}.

By [13, Lemma 3.1}, W,(R) = {a € R| Y ;=, Ro'(a)R is o-nilpotent}. Note
that for any automorphism o of R, W,(R) C P,(R).

Proposition 2.9. If R is a o-skew IFP ring with o of locally finite order, then
W5 (R) = P»(R) = Ni(0)(R) = Ny(o)(R).
Proof. By Proposition 2.7, it is enough to show that W,(R) 2 P,(R). Let
a € P,(R) and A = >7° Ro'(a)R = Zf;ol Ro'(a)R, where o%(a) = a.
Then for any integer s > 1, there exists a positive integer n = n(s) such that
ac®(a)o?(a)--- 0" V%(a) = 0. Since R is o-skew IFP, we have, by Lemma
2.8, that 0¥ (a)Ro*?(0°(a))R--- Ro*» (¢("~1V%(a)) = 0 for any positive inte-
gers ki, ko, ..., k,. For o'1(a),c2(a),..., o (a) € A, take ky = ly,...,k, = I,
and we have that
o''(a)Ro* (0" (a))R - -- Ro™ V3o (a))
= " (a)Ro*(c* (a))R - - - Ro~ V3 (gkn

= O'kl (a Ra’k2 (US a))R .. RoFn (U(nfl)s

(a))
(a))

So A is a o-nilpotent o-ideal, and it follows that a € A C W, (R). O

It is clear that IFP rings are abelian, but the converse is not true. We also
have the following result.

Proposition 2.10. Let R be a o-skew IFP ring. Then we have
(1) e = e € R if and only if ec(e) = o(e)e = e. In particular, e = o(e).
(2) R is abelian.
(3) R[[z;0]] is abelian.

Proof. (1) Let e be an idempotent in R. Then (e —1)e =0 = e(e — 1), and we
have that (e — 1)o(e) = 0. Thus, by assumption, ec(e — 1) = 0 and it follows
that ec(e) = o(e) and ec(e) = e since o is an automorphism. Hence e = o(e)
and consequently o(e)e = e? = e. Suppose that ec(e) = o(e)e = e for e € R.
Then (1 — o(e))e = 0, and by assumption (1 — o(e))o(e) = 0. So, e? =e.

(2) Let €2 = e € R. Then (1 —e)e =0 = e(1 — e). By Lemma 1.4(2) and
(1), we have 0 = (1 —e)Ro(e) = (1 —e)Re and 0 = eRo(1 —e) = eR(1 — ).
So, R is abelian.

(3) Note that if €2 = e € R|[[z;0]], then e € R by the same method as in the
proof of [12, Lemma 19]. Using (1) and (2), we get R[[z;o]] is abelian. O
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Finally, we consider the classical right quotient rings of skew power-serieswise
Armendariz ring and skew IFP rings. Recall that a ring R is right Ore if there
exists the classical right quotient ring Q(R) of R. Let o be an automorphism
of a right Ore ring R. Then for any ab~! € Q(R) where a,b € R with b regular,
the induced map  : Q(R) — Q(R) defined by 5(ab™!) = o(a)o(b)~! extends
to an automorphism of Q(R).

Proposition 2.11. Suppose that R is a semiprime right Ore ring. Then the
following statements are equivalent:

(1) R is o-rigid.

(2) R is o-skew power-serisewise Armendariz.

(3) R is o-skew IFP.

(4) Q(R) is &-rigid.

(5) Q(R) is d-skew power-serisewise Armendariz.

(6) Q(R) is o-skew IFP.
Proof. The directions (1)=-(2)=(3) and (4)=-(5)=-(6) follow from Theorem 1.1
and Lemma 1.4(2). It is easy to show (1)< (4). (6)=(4): Suppose ab~'5(ab™1)
=0 for ab~! € Q(R). Then

ab™lo(a) = 0= ab"'Q(R)o?(a) = 0 = aQ(R)o?*(a) = 0 = aRo?(a) = 0.
Since R is semiprime we have that
o?(a)a = 0= 02(a)Q(R)c*(a) =0 = 0*(a)Ro*(a) =0 = aRa =0 = a = 0.
By the same method as above, we also get the direction (3)=-(1). O
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