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STRUCTURE OF ZERO-DIVISORS

IN SKEW POWER SERIES RINGS

Chan Yong Hong, Nam Kyun Kim, and Yang Lee

Abstract. In this note we study the structures of power-serieswise Ar-
mendariz rings and IFP rings when they are skewed by ring endomor-
phisms (or automorphisms). We call such rings skew power-serieswise
Armendariz rings and skew IFP rings, respectively. We also investigate
relationships among them and construct necessary examples in the pro-
cess. The results argued in this note can be extended to the ordinary ring
theoretic properties of power-serieswise Armendariz rings, IFP rings, and
near-related rings.

Throughout this paper every ring is an associative ring with identity. Let σ
be an endomorphism of a ring R. We use R[[x;σ]] (resp. R[x;σ]) to denote the
skew power series ring (resp. skew polynomial ring) with an indeterminate x
over a ring R, subject to the relation xr = σ(r)x for r ∈ R. Note that σ(1) = 1
for any skew power series ring (skew polynomial ring) R[[x;σ]] (R[x;σ]), since
1xn = xn = x1xn−1 = σ(1)xn for any n ≥ 1 where 1 is the identity of R.

Armendariz [2, Lemma 1] proved that whenever polynomials

f(x) =

m∑

i=0

aix
i, g(x) =

n∑

j=0

bjx
j

over a reduced ring R satisfy f(x)g(x) = 0, then aibj = 0 for all i, j. Rege and
Chhawchharia [27] called such a ring (not necessarily reduced) Armendariz.
The Armendariz condition, and various derivatives described below, have been
studied by numerous authors.

According to Kim et al. [16], we say that a ring R is power-serieswise

Armendariz if aibj = 0 for all i, j whenever power series f(x) =
∑

∞

i=0 aix
i,

g(x) =
∑

∞

j=0 bjx
j in R[[x]] satisfy f(x)g(x) = 0.

In [12], a ring R with an endomorphism σ is called σ-skew Armendariz if
whenever polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j in R[x;σ] satisfy

f(x)g(x) = 0, then aiσ
i(bj) = 0 for all i, j.
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Cortes [9, Definition 2.2] extended this definition to a skew power-serieswise
Armendariz ring as follows, and then studied the zip property of a skew power
series ring over a zip ring under the ring. (Recall that a ring R right zip if
the right annihilator rR(X) of a subset X of R is zero, then rR(Y ) = 0 for
a finite subset Y ⊆ X .) A ring R with an endomorphism σ satisfies SA2′ if
whenever power series f(x) =

∑
∞

i=0 aix
i, g(x) =

∑
∞

j=0 bjx
j in R[[x;σ]] satisfy

f(x)g(x) = 0, then aiσ
i(bj) = 0 for all i, j. However, we call the ring σ-skew

power-serieswise Armendariz.
According to Baser et al. [3, Definition 3.1], a ring R with an endomorphism

σ is called σ-sps Armendariz if whenever power series f(x) =
∑

∞

i=0 aix
i, g(x) =∑

∞

j=0 bjx
j in R[[x;σ]] satisfy f(x)g(x) = 0, then aibj = 0 for all i, j. If we use

the methods of [14, Theorem 1.8], we get the fact that σ-sps Armendariz rings
are σ-skew power-serieswise Armendariz, but the converse is not true (see [14,
Example 1.9]).

Krempa [17] called an endomorphism σ of a ring R rigid if aσ(a) = 0 implies
a = 0 for a ∈ R. We call a ring R σ-rigid if there exists a rigid endomorphism
σ of R. Note that any rigid endomorphism of a ring is a monomorphism and
σ-rigid rings are reduced rings by [12, Proposition 3]. Using this result, we can
easily check that σ-rigid rings are σ-skew power-serieswise Armendariz.

A ring R is called to satisfy the insertion-of-factors-property (simply, an IFP

ring) if ab = 0 implies aRb = 0 for a, b ∈ R [4]. Narbonne [22] and Shin [28]
used the terms semicommutative and SI for the IFP, respectively. A ring R
is usually called abelian if every idempotent element is central. IFP rings are
obviously abelian. These conditions have the following relationships:

reduced ⇒ power-serieswise Armendariz ⇒ IFP ⇒ abelian

by [16, Lemma 2.3] and [28, Lemma 2.7]. However, without identity, an IFP
ring need not be abelian as can be seen by T = ( S S

0 0 ) over a domain S with
identity.

In this note we will observe the previously mentioned conditions when they
are equipped with an endomorphism (automorphism), and we study relation-
ships between them.

1. Skew power-serieswise Armendariz rings

In this section, we study skew power-serieswise Armendariz rings which ex-
tend power-serieswise Armendariz rings and skew Armendariz rings, etc. We
first note that σ-rigid rings are reduced rings by [12, Proposition 3]. Using
this result, we can easily check that σ-rigid rings are σ-skew power-serieswise
Armendariz. Moreover, we have the following result which gives a very short
proof to Matczuk’s result [21, Theorem A] and also contains a result [3, Theo-
rem 3.3(1)].

Theorem 1.1. Let σ be an endomorphism of a ring R. Then the following

conditions are equivalent:
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(1) R is σ-rigid.
(2) σ is injective, R is reduced and σ-skew power-serieswise Armendariz.

(3) σ is injective, R is reduced and σ-skew Armendariz.

(4) R[[x;σ]] is reduced.

(5) R[x;σ] is reduced.

Proof. (1) ⇔ (4) ⇔ (5) follow from [12, Proposition 3] and (1) ⇒ (2) is routine.
(3) ⇒ (1): Suppose aσ(a) = 0 for a ∈ R. Since R is reduced, σ(a)a = 0. Thus
σ(a)(1 − σ(a)x)(1 + σ(a)x)a = σ(a)a = 0. Since R is σ-skew Armendariz,
0 = σ(a)σ(a)σ(a) = σ(a3) and so a3 = 0, entailing a = 0. �

Referring to [12, Proposition 3] or by Theorem 1.1, a ring R is σ-rigid if
and only if R[[x;σ]] is reduced. Then σ-rigid rings are σ-skew power-serieswise
Armendariz. However, the converse is not true. For example, the ring R in [12,
Example 1] is not σ-rigid, but we can get that R is σ-skew power-serieswise
Armendariz by the same method.

It is clear that σ-skew power-serieswise Armendariz rings are σ-skew Ar-
mendariz rings. However, the converse is also not true by the following result
which is a generalization to the skew setting of a special case of [1, Theorem
4.7].

Let K be a field and R1, R2 be K-algebras. Use R1 ∗K R2 to denote the
ring coproduct of R1 and R2 (see Antoine [1] and Bergman [5, 6] for details).
Given a ring R, U (R) means the group of units in R.

Theorem 1.2. Let K be a field and A be a K-algebra. Let C = K[c] be

the polynomial ring with an indeterminate c over K, and I be the ideal of C
generated by c2. Set B = C/I and R = A ∗K B. Let α be an automorphism of

A and σ be the extended automorphism of R defined by σ(a) = α(a) for a ∈ A
and σ(c + I) = c + I. Then R is σ-skew Armendariz if and only if A is a

domain and U (A) = K\{0}.

Proof. Suppose that A is a domain and U (A) = K\{0}. We identify ai with
ai+I for simplicity. Let 0 6= f(x) =

∑m
i=0 aix

i, 0 6= g(x) =
∑n

j=0 bjx
j ∈ R[x;σ]

such that f(x)g(x) = 0. Then f(x) and g(x) can be expressed by the following
forms:

f(x) = f0 + f1c+ cf2 + cf3c and g(x) = g0 + g1c+ cg2 + cg3c,

where fi, gi ∈ R[x;σ] and every sum-factor of coefficients of fi’s and gi’s does
not start by c and does not end by c. In the following computation we will use
freely the condition that A is a domain and U (A) = K\{0}. Considering the
normal form of the elements in a coproduct of rings, every sum-factor of an
element in R is one of the following forms:

a, a1ca2, a1ca2ca3, . . . , a1ca2c · · · at−1cat,

where a, ai ∈ A for all i, and t ≥ 2. Note that σ(a1ca2c · · · at−1cat) =
σ(a1)cσ(a2)c · · ·σ(at−1)cσ(at). This yields that σ(r) 6= 0 if and only if r 6= 0
for r ∈ R. From f(x)g(x) = 0, we have f0 = 0 or g0 = 0.
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Case 1. f0 6= 0 and g0 = 0.

Note

0= f(x)g(x)= f0g1c+f0cg2+f0cg3c+f1cg1c+cf2g1c+cf2cg2+cf2cg3c+cf3cg1c.

Since f0g1c is unique in the expansion of f(x)g(x), we must have f0g1c = 0
and it follows that g1c = 0. Hence

0 = f(x)g(x) = f0cg2 + f0cg3c+ cf2cg2 + cf2cg3c.

This also yields cg2 = 0 and cg3c = 0. Consequently g(x) = 0, a contradiction.

Case 2. f0 = 0 and g0 6= 0.

Note

0= f(x)g(x)= f1cg0+f1cg1c+cf2g0+cf2g1c+cf2cg2+cf2cg3c+cf3cg0+cf3cg1c.

Since f1cg0 is unique in the expansion of f(x)g(x), we must have f1cg0 = 0.
Thus, f1c = 0 and

0 = f(x)g(x) = cf2g0 + cf2g1c+ cf2cg2 + cf2cg3c+ cf3cg0 + cf3cg1c.

Note that cf2g0 is also unique in the expansion, and so cf2 = 0. This yields
cf3c = 0 and we have that f(x) = 0, a contradiction.

Case 3. f0 = 0 and g0 = 0.

Note f(x) = f1c+ cf2 + cf3c, g(x) = g1c+ cg2 + cg3c and

0 = f(x)g(x) = f1cg1c+ cf2cg2 + cf2g1c+ cf2cg3c+ cf3cg1c.

In this case, we have that f1cg1c is the unique in the expansion of f(x)g(x), we
must have f1cg1c = 0. Similarly cf2cg2 = 0. Hence “either f1c = 0 or g1c = 0”
and “either cf2 = 0 or cg2 = 0”. Consequently, we have the following three
cases.

Subcase 3-1. f1c = 0 and cf2 = 0.

Note that f(x) = cf3c, g(x) = g1c+ cg2 + cg3c and 0 = f(x)g(x) = cf3cg1c.
Since cf3c 6= 0, we get g1c = 0 and so g(x) = cg2 + cg3c.

Subcase 3-2. f1c 6= 0 and cf2 = 0.

We have that f(x) = f1c+ cf3c, g(x) = g1c+ cg2 + cg3c and

0 = f(x)g(x) = f1cg1c+ cf3cg1c.

Since f1cg1c and cf3cg1c are both unique in the expansion of f(x)g(x), we
get f1cg1c = 0 and cf3cg1c = 0. Since f1c 6= 0 and then g1c = 0. Thus,
g(x) = cg2 + cg3c.

Subcase 3-3. f1c = 0 and cf2 6= 0.

Note that f(x) = cf2 + cf3c, g(x) = g1c+ cg2 + cg3c and

0 = f(x)g(x) = cf2cg2 + cf2g1c+ cf2cg3c+ cf3cg1c.
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Since cf2cg2 is unique in the expansion of f(x)g(x), we get cf2cg2 = 0. By the
fact that cf2 6= 0 we have that cg2 = 0. Thus, g(x) = g1c+ cg3c and

f(x)g(x) = cf2g1c+ cf2cg3c+ cf3cg1c.

In the right hand side of the preceding equality, cf2g1c is also unique and we get
g1c = 0, which implies that g(x) = cg3c. Now we have 0 = f(x)g(x) = cf2cg3c.
Since cf2 6= 0, cg3c = 0 we have that g(x) = 0, a contradiction.

Summarizing the computations, we have f(x) = h(x)c and g(x) = ck(x) for
some h(x), k(x) ∈ R[x;σ] whenever f(x)g(x) = 0. This implies that

aiσ
i(bj) = a′icσ

i(cb′j) = a′iccσ
i(b′j) = 0

for all i and j, where ai = a′ic and bj = cb′j for some a′i, b
′

j ∈ R. So R is σ-skew
Armendariz.

For the proof of the converse of the theorem, we apply the method in the
proof of [1, Theorem 4.7]. Let R be σ-skew Armendariz and assume on the
contrary that

A is not a domain or U (A) % K\{0}.

Suppose that there exist α, β ∈ A\{0} such that αβ = 0. Set a = βcα. Then
0 6= a ∈ R and a2 = 0. Consider two nonzero polynomials

f(x) = a+ acx and g(x) = ac− cσ(a)cx

in R[x;σ]. Then

f(x)g(x) = (a+ acx)(ac− cσ(a)cx)

= a2c− acσ(a)cx+ acσ(a)cx − ac2σ2(a)cx2 = 0,

but acσ(a)c is nonzero. This implies that R is not a σ-skew Armendariz ring.

Next let u ∈ U (A)\K, and consider two nonzero polynomials

f(x) = cu−1 − cu−1cx and g(x) = uc+ cσ(u)cx

in R[x;σ]. Then

f(x)g(x) = (cu−1 − cu−1cx)(uc+ cσ(u)cx)

= c2 + cu−1cσ(u)cx− cu−1cσ(u)cx − cu−1c2σ2(u)cx2 = 0

but cu−1cσ(u)c is nonzero, which implies that R is not a σ-skew Armendariz
ring. �

Using Theorem 1.2, we can always construct a σ-skew Armendariz ring but
not σ-skew power-serieswise Armendariz whenever a field is given.

Example 1.3. Let K be a field and A be a K-algebra such that dimK A ≥ 2
and U (A) = K\{0} (e.g., the free algebra generated by noncommuting in-
determinates a, b over K). Let C = K[c] be the polynomial ring with an
indeterminate c over K, and I be the ideal of C generated by c2, set B = C/I
and R = A ∗K B, α an automorphism of A and σ the extended automorphism
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of R defined by σ(a) = α(a) for a ∈ A and σ(c+ I) = c+ I. Then R is σ-skew
Armendariz by Theorem 1.2. Next consider the product of nonzero power series

c(1− ax)(1 + ax+ aσ(a)x2 + aσ(a)σ2(a)x3 + · · · )c = c2 = 0

for a ∈ A\K where c(1−ax) = c−cax, (1+ax+aσ(a)x2+aσ(a)σ2(a)x3+· · · )c =
c + acx + aσ(a)cx2 + aσ(a)σ2(a)cx3 + · · · ∈ R[[x;σ]]. Since cac 6= 0 we have
that R is not σ-skew power-serieswise Armendariz.

We now provide a lemma which is very useful to study σ-skew power-
serieswise Armendariz rings, and which is compared with [16, Lemma 2.3].
If σ is an endomorphism of R, then σ induces an endomorphism σ̄ on R[[x;σ]]
(R[x;σ]) by σ̄(

∑
aix

i) =
∑

σ(ai)x
i.

Lemma 1.4. Suppose R is a σ-skew power-serieswise Armendariz ring with

an endomorphism σ. Then we have the following:
(1) If f1(x), . . . , fn(x) ∈ R[[x;σ]] such that f1(x)f2(x) · · · fn(x) = 0, then

ai1σ
i1(aj2) · · ·σ

sn−1+···+j2+i1(atn) = 0,

where ai1 , aj2 , . . ., asn−1
atn are arbitrary coefficients of f1(x), f2(x), . . .,

fn−1(x), fn(x), respectively.
(2) For a, b ∈ R, ab = 0 implies aRσn(b) = 0 for all n ≥ 1.
(3) For f(x), g(x) ∈ R[[x;σ]], f(x)g(x) = 0 implies f(x)Ig(x) = 0, where I

is a left (or right) ideal of R[[x;σ]] generated by x.

Proof. (1) Suppose f1(x)f2(x) · · · fn(x) = 0. By assumption we have that
ai1σ

i1(b)=0 for any coefficient ai1 of f1(x) and any coefficient b of f2(x)· · ·fn(x).
This implies ai1 σ̄

i1(f2(x) · · · fn(x)) = 0, and so (ai1σ
i1 (a02) + (ai1σ

i1(a12))x+
· · · )σ̄i1(f3(x) · · · fn(x)) = 0. Thus (ai1σ

i1 (aj2))σ
j2 (d) = 0 for any coeffi-

cient aj2 of f2(x) and any coefficient d of σ̄i1 (f3(x) · · · fn(x)). Note that d
is of the form σi1 (c) for some coefficient c of f3(x) · · · fn(x). This implies
ai1σ

i1(aj2 )σ̄
j2+i1(f3(x) · · · fn(x)) = 0, and it follows that

(ai1σ
i1(aj2)σ

j2+i1(a03)+(ai1σ
i1 (aj2)σ

j2+i1(a13))x + · · · )σ̄j2+i1(f4(x) · · · fn(x))

= 0.

Continuing this process, we inductively obtain

ai1σ
i1(aj2 )σ

j2+i1(ak3
) · · ·σsn−1+···+j2+i1(atn) = 0,

where ak3
and atn are arbitrary coefficients of f3(x) and fn(x), respectively.

(2) Suppose that ab = 0 for a, b ∈ R. Then, for any integer l ≥ 1 and r ∈ R,
we have

0 = ab

= a(1− rxl)(1 + rxl + rσl(r)x2l + rσl(r)σ2l(r)x3l + · · · )b

= (a− arxl)(b + rσl(b)xl + rσl(r)σ2l(b)x2l + rσl(r)σ2l(r)σ3l(b)x3l + · · · ).

Since R is σ-skew power-serieswise Armendariz, we have arσl(b) = 0. Thus,
aRσl(b) = 0.
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(3) Let f(x) =
∑

∞

i=0 aix
i, g(x) =

∑
∞

j=0 bjx
j ∈ R[[x;σ]] such that f(x)g(x) =

0. Then aiσ
i(bj) = 0 for all i, j. From (2), aiRσn+i(bj) = 0 for all i, j and

n ≥ 1. Thus for any r ∈ R and integer t ≥ 1, commutative ring R, see [10,
Examples 1, 2, and 3].

f(x)rxtg(x)

= (

∞∑

i=0

aix
i)rxt(

∞∑

j=0

bjx
j)

= a0rσ
t(b0) + (a0rσ

t(b1) + a1σ(r)σ
t+1(b0))x+ · · · = 0,

completing the proof. �

It is well known that a polynomial f(x) over a commutative ring R is nilpo-
tent if and only if each coefficient of f(x) is nilpotent, and that f(x) is a
zero divisor in R[x] if and only if f(x) is annihilated by a nonzero element of
R. However these results are not true in the power series ring R[[x]] over a
commutative ring R, see [10, Examples 1, 2, and 3].

Proposition 1.5. Let R be a σ-skew power-serieswise Armendariz ring with an

endomorphism σ. For nonzero elements f(x), g(x) ∈ R[[x;σ]], if f(x)g(x) = 0,
then f(x)c = 0 for some 0 6= c ∈ R.

Proof. Let f(x) =
∑

∞

i=0 aix
i and g(x) =

∑
∞

j=0 bjx
j be nonzero elements in

R[[x;σ]] with f(x)g(x) = 0. Then by Lemma 1.4(3), f(x)xg(x) = 0. If xg(x) 6=
0, then there exists i such that σ(bi) 6= 0. Since f(x)(xg(x)) = 0, akσ

k(σ(bi)) =
0 for all k ≥ 0. Thus f(x)σ(bi) = 0. Again applying xg(x) = 0, then σ(bk) = 0
for all k ≥ 0. Since g(x) 6= 0, there exists i such that bi 6= 0. By the fact that
f(x)g(x) = 0 we have that atσ

t(bi) = 0 for all t ≥ 0. So f(x)bi = 0. �

Let σ be an endomorphism of a ring R. An element a of R is called σ-
nilpotent if for any integer l ≥ 1, there exists a positive integer m = m(l),
depending on l, such that aσl(a)σ2l(a) · · ·σ(m−1)l(a) = 0. Equivalently, the
elements axl ∈ R[x;σ] are nilpotent for each integer l ≥ 1 (cf. [13], [24], [26],
etc.). We recall that a subset S of a ring R is called σ-nilpotent if for any
integer l ≥ 1, there exists a positive integer m = m(l), depending on l, such
that Sσl(S)σ2l(S) · · ·σ(m−1)l(S) = 0 (cf. [13]).

Theorem 1.6. Let R be a σ-skew power-serieswise Armendariz ring with an

endomorphism σ and f(x) =
∑

∞

i=0 aix
i ∈ R[[x;σ]]. Then the following state-

ments are equivalent:
(1) f(x) is σ̄-nilpotent;
(2) For any l ≥ 1, there exists n = n(l) ≥ 1 such that

as1σ
l+s1 (as2)σ

2l+(s1+s2)(as3) · · ·σ
(n−1)l+(s1+s2+···+sn−1)(asn) = 0

for any choice of coefficients asj ’s of f(x) (j = 1, 2, . . . , n).
In this case, each ideal RaiR is σ-nilpotent.
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Proof. Let f(x) be σ̄-nilpotent. Then for any integer l ≥ 1, there exists a
positive integer n = n(l) such that

0=f(x)σ̄l(f(x)) · · · σ̄(n−1)l(f(x))

=(a0+ a1x+· · · )(σl(a0)+ σl(a1)x+· · · ) · · · (σ(n−1)l(a0)+ σ(n−1)l(a1)x+· · · ).

By Lemma 1.4(1), we have

as1σ
l+s1 (as2)σ

2l+(s1+s2)(as3) · · ·σ
(n−1)l+(s1+s2+···+sn−1)(asn) = 0

for any choice of coefficients asj ’s of f(x) (j = 1, 2, . . . , n). Then, by Lemma
1.4(2), we have

Ras1Rσl+s1+t1(as2)Rσ2l+(s1+s2)+(t1+t2)(as3)

· · ·Rσ(n−1)l+
∑n−1

i=0
(si+ti)(asn)R = 0

for any positive integer tk (k = 1, 2, . . . , n− 1). This yields

Ras1Rσl+s1+t1(Ras2R)σ2l+(s1+s2)+(t1+t2)(Ras3R)

· · ·σ(n−1)l+
∑n−1

i=0
(si+ti)(RasnR) = 0.

Next let as1 = · · · = asn = ai. Then

(RaiR)Rσl+i+t1(RaiR)Rσ2(l+i)+(t1+t2)(RaiR)R

· · ·σ(n−1)(l+i)+
∑n−1

i=0
ti(RaiR)R = 0.

Since each tk runs over all positive integers, we can obtain

0 =(RaiR)σl(RaiR) · · ·σ(α1−1)l(RaiR)σα1l(RaiR)σ(α1+1)l(RaiR)

· · ·σ(α2−1)l(RaiR)σα2l(RaiR)σ(α2+1)l(RaiR)

· · ·σ(αn−1−1)l(RaiR)σαn−1l(RaiR)

by inserting necessary subsets of the form σu(RaiR) (with u ≥ 1) in place of
R’s, where we let tk’s such that l + i + t1 = α1, 2(l + i) + (t1 + t2) = α2,. . .,

(n− 1)(l+ i) +
∑n−1

i=0 ti = αn−1.
The proof of the converse is obvious. �

In the proof of Theorem 1.6, we have that RaiR is σ-nilpotent. A related
example, in case of σ being an identity map, can be found in [10]. The condition
“R is a σ-skew power-serieswise Armendariz ring” in Proposition 1.5 is essential
as the following example shows.

Example 1.7. Let D be a commutative domain, X = {tj | j ∈ Z} a set of
commuting indeterminates over D and F is the quotient field of D[X ] and
α an automorphism of F defined by ti 7→ ti+1. We consider A = F{a, b, c},
the free algebra of polynomials with zero constant terms in noncommuting
indeterminates a, b, c over F , and I be an ideal of F +A generated by cc, ac, crc
with r ∈ A. Next we define R = F+A

I
and an automorphism σ of R by

σ(
∑

finite sY ) →
∑

finite α(s)Y , where s ∈ F and Y is a finite product of a, b, c’s.
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Identify f with f + I for f ∈ F + A for simplicity. Consider the equality
(a−abx)(c+bcx+b2cx2+ · · ·+bncxn+ · · · ) = a(1−bx)(1+bx+b2x2+ · · · )c =
ac = 0 with 1−bx, 1+bx+b2x2+ · · · ∈ R[[x;σ]]. Since abc 6= 0, R is not σ-skew
power-serieswise Armendariz. Note that if (a−abx)d = 0 for some d ∈ R, then
ad = 0 and abd = 0, and so d = 0.

Cortes in [8, Proposition 3.2] (resp. [9, Lemma 2.7]) and observed the re-
lations between annihilators in a ring R and annihilators in R[x;σ] (resp.
R[[x;σ]]) in case of σ being an automorphism of R. We here extend the Cortes’
results to the situation of σ-skew power series ring in case of σ being an endo-
morphism. This result provides useful tools for studying the skew power series
rings with the σ-skew power-serieswise Armendariz condition, and its applica-
tions. For a ring R, let f(x) =

∑
∞

i=0 aix
i ∈ R[[x;σ]] and Af = {aixi | i ∈ I},

where I is the set of all nonnegative integers. Then for each i, rR(aix
i) =

rR[[x;σ]](aix
i) ∩ R is a right ideal of R and rR[[x;σ]](Af ) = ∩irR[[x;σ]](aix

i);

hence rR(Af ) = (∩irR[[x;σ]](aix
i)) ∩R is a right ideal of R. Let

Γ = {rR(Af ) | f(x) =
∞∑

i=0

aix
i ∈ R[[x;σ]]},

∆ = {rR[[x;σ]](V ) | ∅ 6= V ⊆ R[[x;σ]]}.

Then we obtain a map Φ : Γ → ∆ defined by Φ(rR(Af )) = rR(Af )R[[x;σ]] as
in the proof of Lemma 1.8 to follow.

Lemma 1.8. Let σ be an endomorphism of a ring R. Then the following

statements are equivalent:
(1) R is σ-skew power-serieswise Armendariz;
(2) Φ : Γ → ∆ is bijective with Φ(rR(Af )) = rR(Af )R[[x;σ]].

Proof. (1)⇒(2): We first claim that Φ is well-defined. Let f(x) =
∑

∞

i=0 aix
i ∈

R[[x;σ]] and g(x) =
∑

∞

i=0 bix
i ∈ rR(Af )R[[x;σ]] for rR(Af ) ∈ Γ. Then we

can assume that bi ∈ rR(Af ) for all i and we have that bℓx
ℓ ∈ rR[[x;σ]](Af ) for

each ℓ. Thus, g(x) ∈ rR[[x;σ]](Af ). On the other hand, let h(x) =
∑

∞

i=0 cix
i ∈

rR[[x;σ]](Af ). Then 0 = aix
i(
∑

∞

i=0 cix
i) = aix

ic0+aix
ic1x+· · ·+aix

icnx
n+· · ·

for all i. If aix
ict 6= 0 for some t, then aiσ

i(ct) 6= 0 and it follows that aix
ictx

t =
aiσ

i(ct)x
i+t 6= 0. Hence aix

ih(x) 6= 0, a contradiction. Thus ck ∈ rR(Af ) for
all k, and we get h(x) ∈ rR(Af )R[[x;σ]]. Consequently rR(Af )R[[x;σ]] =
rR[[x;σ]](Af ) ∈ ∆, which determines the map Φ : Γ → ∆ with Φ(rR(Af )) =
rR(Af )R[[x;σ]]. We next show that Φ is injective. In fact, Φ(rR(Af )) =
Φ(rR(Ag)) for f(x), g(x) ∈ R[[x;σ]]. Then rR(Af )R[[x;σ]] = rR(Ag)R[[x;σ]]
and we have that rR[[x;σ]](Af ) = rR[[x;σ]](Ag) what we proved above. It then
follows

rR(Af ) = rR[[x;σ]](Af ) ∩R = rR[[x;σ]](Ag) ∩R = rR(Ag),

which implies that Φ is injective.
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We claim that Φ is surjective. In fact, let V be a subset of R[[x;σ]] and
f(x) =

∑
∞

i=0 aix
i ∈ V . If g(x) =

∑
∞

i=0 bix
i ∈ rR[[x;σ]](f(x)), then f(x)g(x) =

0. Since R is σ-skew power-serieswise Armendariz, we have aiσ
i(bj) = 0

for each i, j. Thus for any j, we have bj ∈ ∩irR(aix
i), and it follows that

g(x) ∈ rR(Af )R[[x;σ]]. Hence rR[[x;σ]](f(x)) ⊆ rR(Af )R[[x;σ]]. On the other
hand, let g(x) ∈ rR(Af )R[[x;σ]] = rR[[x;σ]](Af ). Then we get f(x)g(x) = 0
which implies that g(x) ∈ rR[[x;σ]](f(x)), and we have that rR[[x;σ]](f(x)) =
rR(Af )R[[x;σ]] = rR[[x;σ]](Af ). Consequently

rR[[x;σ]](V ) =
⋂

f(x)∈V

rR[[x;σ]](f(x)) =
⋂

f(x)∈V

rR[[x;σ]](Af ) = rR[[x;σ]](
⋃

f(x)∈V

Af )

= rR[[x;σ]](AV ) = rR(AV )R[[x;σ]] = Φ(rR(AV ),

where AV = ∪f(x)∈V Af , completing the proof.

(2)⇒(1): Let f(x) =
∑

∞

i=0 aix
i, g(x) =

∑
∞

i=0 bix
i ∈ R[[x;σ]] with f(x)g(x)

= 0. Since Φ is surjective, g(x) ∈ rR[[x;σ]](f(x)) = rR(Ah)R[[x;σ]] for some

h(x) =
∑

∞

i=0 cix
i ∈ R[[x;σ]]. Thus bk ∈ rR(Ah) ⊆ rR[[x;σ]](f(x)), and hence

f(x)bk = 0 for all k. This implies aiσ
i(bk) = 0 for all i, k. So R is σ-skew

power-serieswise Armendariz. �

Cortes [8, Corollary 3.10] proved that a σ-skew Armendariz ring R with an
automorphism σ is right Goldie if and only if R[x;σ] is right Goldie. But, there
exists a σ-skew power-serieswise Armendariz ring R with finite right Goldie
dimension whose skew power series ring R[[x;σ]] has no a finite right Goldie
dimension [18, Example 10.31A and Theorem 10.22].

Proposition 1.9. Let R be a σ-skew power-serieswise Armendariz ring with

an endomorphism σ. Then R satisfies the ascending chain condition on right

annihilators if and only if R[[x;σ]] satisfies the ascending chain condition on

right annihilators.

Proof. It suffices to show the necessity. Suppose that rR[[x;σ]](V1) ⊆ rR[[x;σ]](V2)
⊆ · · · is an ascending chain in R[[x;σ]] for Vi ⊆ R[[x;σ]]. By Lemma 1.8,
rR[[x;σ]](Vi) = rR(AVi

)R[[x;σ]], where AV = ∪f(x)∈V Af and we have that
rR(AVi

) ⊆ rR(AVi+1
). Let a ∈ rR(AVi

). Then AVi
a = 0 and we have that

f(x)a = 0 for any f(x) ∈ Vi. Thus Vi+1a = 0 and it follows that AVi+1
a = 0.

Hence rR(AVi
) ⊆ rR(AVi+1

). By assumption, there exists an integer n ≥ 1
such that rR(AVn

) = rR(AVn+k
) for all integers k ≥ 1. So rR[[x;σ]](Vn) =

rR[[x;σ]](Vn+k). �

For a ring R, let I be an ideal and σ be an automorphism of R. If σ(I) ⊆ I,
then I is called a σ-ideal. If σ(I) = I, then I is called σ-invariant. According
to Pearson and Stephenson [24], a proper σ-ideal P of R is σ-prime if whenever
AB ⊆ P for an ideal A and a σ-ideal B, we have that either A ⊆ P or
B ⊆ P . If in addition P is σ-invariant, then P is called strongly σ-prime. We
mean by a right annihilator ideal (left annihilator ideal), an ideal of the form
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rR(I), (respectively, ℓR(I)), where I is an ideal of R. If an ideal is of the form
rR(I) = ℓR(I), where I is a σ-ideal of R, then it will be called an annihilator

σ-ideal. By an annihilator σ-prime ideal, we mean an annihilator σ-ideal which
is also σ-prime.

The following lemma is due to [13, Lemma 1.2].

Lemma 1.10. Let P be a proper σ-invariant ideal of a ring R with an auto-

morphism σ. Then the following conditions are equivalent:
(1) P is strongly σ-prime;
(2) For a, b ∈ R, if for some positive integer m, aRσn(b) ⊆ P for all n ≥ m,

then a ∈ P or b ∈ P ;
(3) For a, b ∈ R, if for some integer m, aRσn(b) ⊆ P for all n ≥ m, then

a ∈ P or b ∈ P .

A strongly σ-prime ideal is obviously σ-prime, but otherwise “strongly σ-
prime”, “σ-prime” and “prime” are completely independent conditions (see,
[20]).

By [23, Proposition 1.6] and [24, Corollary 1.4], we have the following.

Proposition 1.11. Let σ be an automorphism of R. If R is a semiprime ring

with the ascending chain condition on right annihilators, then we have

(1) R has only a finite number of minimal strongly σ-prime ideals, and their

intersection is zero.

(2) A strongly σ-prime ideal of R is minimal if and only if it is an annihilator

σ-ideal.
(3) R[[x;σ]] is semiprime.

Even though, if R is a semiprime ring with the ascending chain condition
on right annihilators, a minimal strongly σ-prime ideal is not necessarily to be
a minimal prime ideal. For example, let R = Z2 ⊕ Z2 and let σ : R → R be
an automorphism defined by α((a, b)) = (b, a). Then the minimal (strongly)
σ-prime ideal {(0, 0)} of the ring R is not minimal prime.

Theorem 1.12. Let R be a semiprime ring with the ascending chain condition

on right annihilators. If R is a σ-skew power-serieswise Armendariz ring with

an automorphism σ, then R[[x;σ]] has finitely many minimal strongly σ̄-prime

ideals, say Q1, . . . , Qm, such that Q1 ∩ · · · ∩Qm = 0 and Qi = Pτ(i)[[x;σ]] for
any i, where Pτ(1), . . . , Pτ(m) are minimal strongly σ-prime ideals of R and τ
is a permutation of {1, . . . ,m}.

Proof. By Propositions 1.11 and 1.9, R[[x;σ]] is a semiprime ring with the as-
cending chain condition on right annihilators. Thus R[[x;σ]] has finitely many
minimal strongly σ̄-prime ideals, say Q1, . . . , Qm. By Proposition 1.11(2),
Qi = rR[[x;σ̄]](Ii) for any i, where Ii is an ideal of R[[x;σ]]. Then by Lemma
1.8, Qi = rR(AIi)R[[x;σ]], where AIi = ∪f(x)∈Ii(Af ).

We now note that R is σ-rigid (so R[[x;σ]] is σ̄-rigid). Suppose aσ(a) = 0
for a ∈ R. By Lemma 1.4(2), aRσ2(a) = 0. Since R is semiprime, σ2(a)Ra = 0
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and so σ2(a)a = 0. Again applying to Lemma 1.4(2), σ2(a)Rσ2(a) = 0. Since
σ is an automorphism, we have aRa = 0, which yields a = 0.

We claim that C is a strongly σ-prime ideal of R if and only if C[[x;σ]]
is strongly σ̄-prime of R[[x;σ]]. Suppose that C[[x;σ]] is strongly σ̄-prime of
R[[x;σ]]. Note that σ(C)[[x;σ]] = σ̄(C[[x;σ]]) = C[[x;σ]], and we have that
σ(C) = C. Suppose that for some integer m, aRσn(b) ⊆ C for all n ≥ m
with b /∈ C. As mentioned above, C = rR(I) for some ideal I of R. Then
y /∈ C for all y ∈ I since R is reduced. Thus yaσn(b) = 0 and yR[[x;σ]]σ̄s(b) *
C[[x;σ]] for some integer s by Lemma 1.10. This implies that yrσt(b) /∈ C
for some integer t and r ∈ R. Since yab = 0 and R[[x;σ]] is σ̄-rigid, then
yrσm(b)R[[x;σ]]σl(a) = 0 ⊆ C[[x;σ]] for any integer l, and it follows that
a ∈ C which implies that C is strongly σ-prime.

Conversely, we suppose that f(x) =
∑

∞

i=0 aix
i, g(x) =

∑
∞

j=0 bjx
j are in

R[[x;σ]] such that f(x)R[[x;σ]]σ̄m(g(x)) ⊆ C[[x;σ]] for all integer n ≥ m,
where m is an integer, and g(x) /∈ C[[x;σ]]. Then there exists bt which is
minimal among such that bi /∈ C, where 0 ≤ t. Then for any integer s ≥ 1 and
t > j, σs(bj) ∈ C since σ(C) = C. Note that

a0Rσm(bt) + a1Rσm+1(bt−1) + · · ·+ atRσm+t(b0) ⊆ C.

Then a0Rσm(bt) ⊆ C and we have that a0 ∈ C. Also since a0Rσm(bt+1) +
a1Rσm+1(bt) + · · ·+ at+1Rσm+t(b0) ⊆ C, a1Rσm(bt) ⊆ C and it follows that
a1 ∈ C. Repeating this process, we have f(x) ∈ C[[x;σ]], which implies that
C[[x;σ]] is strongly σ̄-prime in R[[x;σ]]. Moreover, C is a minimal strongly σ-
prime ideal of R if and only if C[[x;σ]] is minimal strongly σ̄-prime in R[[x;σ]].

Using the fact, we have for any i, Pi = rR(AIi ) is minimal strongly σ-prime
in R, we get t = m and we obtain that Qi = Pi[[x;σ]] for all i = 1, . . . ,m (after
reordering if necessary). �

2. Skew IFP rings

In this section, we study some properties of σ-skew IFP rings. According to
Baser et al. [3, Definition 2.1], for an endomorphism σ of a ring R, R is called
σ-skew IFP if for a, b ∈ R, ab = 0 implies aRσ(b) = 0. In [3, Theorem 2.4]
they proved that a ring R is σ-rigid if and only if R is reduced σ-skew IFP and
σ is a monomorphism. An endomorphism σ of R is of locally finite order if for
every r ∈ R there exists a positive integer n = n(r) such that σn(r) = r.

We begin with the following lemma.

Lemma 2.1. For a ring R with an endomorphism σ, we have the following:

(1) A ring R is σ-skew IFP if and only if for a, b ∈ R, ab = 0 implies

aRσn(b) = 0 for all integers n ≥ 1;
(2) A σ-skew power-serieswise Armendariz ring is σ-skew IFP;
(3) If σ is of locally finite order, then a σ-skew IFP ring is IFP.
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Proof. (1) Let R be a σ-skew IFP ring and ab = 0 for a, b ∈ R. Then aRσ(b) =
0 and in particular aσ(b) = 0. Since R is σ-skew IFP, we have aRσ2(b) = 0.
Inductively we obtain the result.

(2) It follows from (1) and Lemma 1.4(2).
(3) Let σ be an endomorphism of a ring R with σn(b) = b and ab = 0 for

a, b ∈ R. Then we get aRb = aRσn(b) = 0 by (2), and so R is IFP. �

Baser et al. [3, Theorem 3.3(3)] proved that R[[x;σ]] is IFP when R is a
σ-sps Armendariz σ-IFP ring. However, by Lemma 2.1(2), we can remove the
condition “R is σ-IFP” in the result.

Note that a σ-skew IFP ring and an IFP ring coincide when σ is an identity
map. The converses of Lemma 2.1(1) and (3) does not need to hold as we see
in the following example.

Example 2.2. (1) Let D be a commutative domain. Suppose that X =
{tj | j ∈ Z} is a set of commuting indeterminates over D and F is the quo-
tient field of D[X ] and α an automorphism of F defined by ti 7→ ti+1. The
construction of the following ring R is due to Hamann and Swan [11].

Let S = F [A] be the free algebra generated by the noncommuting inde-
terminates A = {ai | i = 0, 1, 2, . . .} over F , I the ideal of S generated by
{aiajak | ai, aj and ak are in A}, T = S

I
and identify ai with ai + I for sim-

plicity. Next we let dn =
∑

i+j=n aiaj and J the ideal of T generated by

{dn |n = 0, 1, 2, . . .}. Now we put R = T
J
, and define an automorphism σ of R

by σ(
∑

finite sY ) →
∑

finite α(s)Y where s ∈ F and Y is a finite product of ai’s.
Consider f(x) =

∑
∞

i=0 aix
i ∈ R[[x;σ]]. Note that f(x)2 = 0, however

ajσ
j(ak) = ajak 6= 0 unless j, k are zero. Thus R is not σ-skew power-serieswise

Armendariz.
We next show thatR is σ-skew IFP. In fact, let L1 and L2 be the linear spaces

generated by {an | an ∈ A} and {aiaj | ai and aj are in A} over F , respectively,
and b, c ∈ S such that bc ∈ J . Note that b, c can be expressed by

b = b0 + b1 + b2 + b3 and c = c0 + c1 + c2 + b3

for some b0, c0 ∈ F , b1, c1 ∈ L1, b2, c2 ∈ L2, and b3, c3 ∈ I. From bc ∈ J we get
b0c0 = 0, and it follows that b0 = 0 or c0 = 0. Suppose that b0 = 0 and c0 6= 0.
Then we get

c0b1 + (c0b2 + b1c1) ∈ J with c0b1 ∈ L1, c0b2 + b1c1 ∈ L2,

and we have that c0b1 = 0 and c0b2 + b1c1 ∈ J . From c0 6= 0 we have b1 =
0; hence c0b2 ∈ J and we have that c0b2 = 0, which implies that b2 = 0.
Consequently b = b3 ∈ I ⊆ J and so bRσ(c) = 0. Next suppose that b0 = 0 =
c0. Then we get b1c1 ∈ J with b1c1 ∈ L2. We can write b1 =

∑m
s=0 vsais and

c1 =
∑n

t=0 wtajt , where vs, wt ∈ F and ais , ajt ∈ A. Thus

b1c1 = (

m∑

s=0

vsais)(

n∑

t=0

wtajt) =
∑

s,t

vswtaisajt ∈ J ∩ L2.
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In this situation we can assume that aiα 6= aiβ if iα 6= iβ and ajδ 6= ajγ if
jδ 6= jγ . So there exist aiδ and ajγ such that iδ and jγ are largest in the indices
is’s and jt’s respectively.

Since iδ + jγ is larger than every other is + jt, we have aiδajγ must be d0
(i.e., aiδ = a0 = ajγ ). Hence we have that

b1 = va0 and c1 = wa0

for some v, w ∈ F since iδ and jγ are largest. So we get

bRσ(c) = (va0 + b2)Rσ(wa0 + c2)

= (va0 + b2)(e0 + e1 + e2)(α(w)a0 + σ(c2))

= ve0α(w)a
2
0 = 0

for all e0 ∈ F, e1 ∈ L1, e2 ∈ L2.
The computation for the case of c = 0 is similar, and therefore R is σ-skew

IFP.
(2) There is an IFP ring that is not σ-skew IFP with σ of infinite order. Let

S be a domain and R =
∑

i∈Z
Si with Si = S for all ∈ Z. Then R is IFP since

R is reduced. Define σ(ai) = (ai+1), then σ is an automorphism of R of infinite
order. Take (ai)i∈Z, (bj)j∈Z ∈ R such that ai = 0 = bj for all odd integers i,
even integers j, and ai = 1 = bj for all even integers i, odd integers j. Then
(ai)i∈Z(bj)j∈Z = 0, but (ai)i∈ZRσ(bj)j∈Z = (ai)i∈ZR(ai)i∈Z 6= 0. Thus R is not
σ-skew IFP.

Note that if the skew power series ring R[[x;σ]] is IFP, then R is IFP and
σ-skew IFP. Conversely, if R is a σ-skew IFP ring with of locally finite order
and σ-skew power-serieswise Armendariz ring, then R[[x;σ]] is IFP. However,
the following example shows that the condition “R is σ-skew power-serieswise
Armendariz” is essential.

Example 2.3. We modify the construction and apply the computation in [15,
Example]. Let Z2 be the field of integers modulo 2 and A = Z2{a0, a1, a2, b0, b1,
b2, c} be the free algebra of polynomials with zero constant terms in noncom-
muting indeterminates a0, a1, a2, b0, b1, b2, c over Z2. Set S = Z2 + A and
consider an ideal of S, say I, generated by

a0b0, a1b2 + a2b1, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a2b2, a0rb0, a2rb2,

(a0 + a1 + a2)r(b0 + b1 + b2),

a0a0, a1a2 + a2a1, a0a1 + a1a0, a0a2 + a1a1 + a2a0, a2a2, a0ra0, a2ra2,

(a0 + a1 + a2)r(a0 + a1 + a2),

a1a2 + a2b1, a0b1 + a1a0, a0b2 + a1a1 + a2b0,

b0a0, b1a2 + b2a1, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b2a2, b0ra0, b2ra2,

(b0 + b1 + b2)r(a0 + a1 + a2),

b0b0, b1b2 + b2b1, b0b1 + b1b0, b0b2 + b1b1 + b2b0, b2b2, b0rb0, b2rb2,
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(b0 + b1 + b2)r(b0 + b1 + b2),

b1b2 + b2a1, b0a1 + b1b0, b0a2 + b1b1 + b2a0

with r ∈ A and r1r2r3r4 with r1, r2, r3, r4 ∈ A. Then clearly A4 ∈ I. Now
let R = (Z2 + A)/I and identify every element in S with its image in R for
simplicity. Define a map σ from R to R by σ(ai) = bi, σ(bi) = ai, and σ(c) = c
for i = 0, 1, 2. Note that σ is an automorphism of R (also of S) with σ(I) = I.

We consider f(x) = a0 + a1x+ a2x
2, g(x) = b0 + b1x+ b2x

2 ∈ R[x;σ], such
that f(x)g(x) = 0. Thus (a0 + a1x + a2x

2)c(b0 + b1x + b2x
2) 6= 0 because

a0cb1 + a1ca0 6= 0. Hence R[x;σ] (and so R[[x;σ]]) is not IFP.
We next show that R is σ-skew IFP. In fact, each product of indeterminates

a0, a1, a2, b0, b1, b2, c is called a monomial and we say that α is a monomial of
degree n if it is a product of exactly n generators. Let Hn be the set of all
linear combinations of monomials of degree n over Z2. Observe that Hn is
finite for any n and that the ideal I of R is homogeneous (i.e., if

∑s
i=1 ri ∈ I

with ri ∈ Hi, then every ri is in I). Note that σ2 is the identity map of R.

Claim 1. If f1g1 ∈ I with f1, g1 ∈ H1, then f1rσ
k(g1) ∈ I for any r ∈ S and

k ≥ 1.

Proof. Let f1g1 ∈ I with f1, g1 ∈ H1. Then, by the definition of I, we obtain the
following cases: (f1 = a0, g1 = b0), (f1 = a2, g1 = b2), (f1 = a0 + a1 + a2, g1 =
b0 + b1 + b2), (f1 = a0, g1 = a0), (f1 = a2, g1 = a2), (f1 = a0 + a1 + a2, g1 =
a0 + a1 + a2), (f1 = b0, g1 = a0), (f1 = b2, g1 = a2), (f1 = b0 + b1 + b2, g1 =
a0 + a1 + a2), (f1 = b0, g1 = b0), (f1 = b2, g1 = b2), or (f1 = b0 + b1 + b2, g1 =
b0 + b1 + b2). So we complete the proof, using the definition of I again. �

Claim 2. If fg ∈ I with f, g ∈ A, then frσk(g) ∈ I for all r ∈ A.

Proof. Observe that f = f1 + f2 + f3 + f4, g = g1 + g2 + g3 + g4 and r =
r1 + r2 + r3 + r4 for some f1, g1, r1 ∈ H1, f2, g2, r2 ∈ H2, f3, g3, r3 ∈ H3 and
some f4, g4, r4 ∈ I. Note that Hi ⊆ I for i ≥ 4. So frσk(g) = f1r1σ

k(g1) + h
for some h ∈ I. Since fg ∈ I then f1g1 ∈ I by the fact that I is homogeneous;
we have that f1r1σ

k(g1) ∈ I by Claim 1. This gives us frσk(g) ∈ I. �

We claim that R is σ-skew IFP. In fact, it suffices to show that yrσk(z) ∈ I
for all r ∈ S whenever yz ∈ I for y, z ∈ S. By Claim 2, we can obtain
that y = α + y′, z = β + z′ for some α, β ∈ Z2 and some y′, z′ ∈ A. Hence,
αβ+αz′+ y′β+ y′z′ = yz ∈ I and it follows that α = 0 or β = 0. Assume that
α = 0. Then y′β + y′z′ ∈ I. If β 6= 0, then y′ ∈ I because I is homogeneous,
β ∈ Z2 and consequently yrσk(z) = y′rσk(z) ∈ I for all r ∈ Z2 + A. If β = 0,
then y′z′ ∈ I and so by Claim 2, yrσk(z) = y′rσk(z′) ∈ I for all r ∈ Z2 + A.
The proof of the case of β = 0 is similar. Therefore R is a σ-skew IFP ring.

By [16, Lemma 2.3], if a ring R is power-serieswise Armendariz, then R[[x]]
is IFP. However, we now do not know that R[[x;σ]] is IFP when a ring R is
σ-skew power-serieswise Armendariz. Note that, in Example 2.3, the ring R is
a σ-skew IFP ring with σ of locally finite order, but R[[x;σ]] is not IFP.
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Proposition 2.4. If R is a σ-skew power-serieswise Armendariz ring with σ
of locally finite order, then R[[x;σ]] is IFP, where σ is an endomorphism of R.

Proof. Let R be a σ-skew power-serieswise Armendariz ring with σ of locally
finite order. Suppose f(x)g(x) = 0 for f(x) =

∑
∞

i=0 aix
i, g(x) =

∑
∞

j=0 bjx
j ∈

R[[x;σ]]. Then aiσ
i(bj) = 0 for all i, j. By Lemma 2.1(2) and (3), we have

aiRσi+k(bj) = 0 for all i, j where k ≥ 0. This yields f(x)Rxkg(x) = 0 for all
k ≥ 0 and so f(x)R[[x;σ]]g(x) = 0, completing the proof. �

Let σ be an endomorphism of a ring R and n ∈ N. An element a of R is
called σ(n)-nilpotent if there exists a positive integer m = m(n), depending
on n, such that aσn(a)σ2n(a) · · ·σ(m−1)n(a) = 0. Equivalently, the element
axn ∈ R[x;σ] is nilpotent.

Definition 2.5. Let R be a ring and σ an endomorphism of R.
(1) N(σ; i)(R) := {a ∈ R | a is σ(i)-nilpotent}.
(2) NU (σ)(R) := ∪i∈NN(σ; i)(R).
(3) NI(σ)(R) := ∩i∈NN(σ; i)(R).

Pearson and Stephenson [24] defined the σ-prime radical of a ring R, denoted
by Pσ(R), as the intersection of all strongly σ-prime ideals of R. Many authors
have used the concept of σ-prime ideal to study of radicals of skew polynomial
rings, see ([7], [13], [19], [23], [24], [25], [26], etc.). A subset S of a ring R
is called σ-nil if every element in S is σ-nilpotent. By [7, Proposition 1.12],
Pσ(R) is σ-nil. Note that NU (σ)(R) is the set of all σ(n)-nilpotent elements of
R and NI(σ)(R) is the set of all σ-nilpotent elements of R. Thus we see that
Pσ(R) ⊆ NI(σ)(R) ⊆ NU (σ)(R) when σ is an automorphism. However, the
following examples show that the containments are proper.

Example 2.6. (1) Pσ(R) ( NI(σ)(R).
Let K[{ti}i∈Z] be a polynomial ring over a field K, and I = ({tn1

tn2
tn3

|n3−
n2 = n2 − n1 > 0}) be an ideal of K[{ti}i∈Z]. Define R = K[{ti}i∈Z]/I. The
K-automorphism σ of K[{ti}i∈Z] defined by sending each ti to ti+1 induces
an automorphism σ on R. Ram proved that the skew polynomial ring R[x;σ]
is prime, see [26, Example 3.2(ii)]. Thus by [24, Corollary 1.4] we have that
Pσ(R) = 0. Note that for any integer l ≥ 1, (tix

l)3 = tiσ
l(ti)σ

2l(ti)x
3l =

titi+lti+2lx
3l = 0. Hence ti ∈ NI(σ)(R).

(2) NI(σ)(R) ( NU (σ)(R).
Let R = Z2 ⊕ Z2 where Z2 is the ring of integers modulo 2. Then R is a

commutative reduced ring. Consider σ : R → R the automorphism defined
by σ((a, b)) = (b, a). Then (1, 0) ∈ NU (σ)(R), but NI(σ)(R) = 0. Note that
R[x;σ] is not reduced.

From now on, σ always denotes an automorphism of a ring R. The following
proposition extends the result of [28, Theorem 1.5].

Proposition 2.7. If R is a σ-skew IFP ring, then Pσ(R) = NI(σ)(R) =
NU (σ)(R).
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Proof. Let a ∈ NU (σ)(R). Then for some integer s1 ≥ 1,

aσs1 (a)σ2s1(a) · · ·σ(m−1)s1(a) = 0

for some positive integers m. Assume that a /∈ Pσ(R). Then a /∈ P for some
strongly σ-prime ideal of R and by Lemma 1.10, we can take a positive integer
n1 > s1 such that aRσn1(a) * P . Say ax1σ

s1 (a) /∈ P . Since R is σ-skew IFP,
we have

aRσn1−s1(σs1 (a)σ2s1 (a) · · ·σ(m−1)s1(a)) = 0.

In particular
ax1σ

n1(a)σn1+s1(a) · · ·σn1+(m−2)s1(a) = 0.

Also by Lemma 1.10, ax1σ
n1(a)x2σ

n2(a) /∈ P for some x2 ∈ R and positive
integer n2 > n1 + s1. By the fact that R is σ-skew IFP, we have that

ax1σ
n1(a)Rσn2−(n1+s1)(σn1+s1(a) · · ·σn1+(m−2)s1(a)) = 0

and in particular we have that

ax1σ
n1(a)x2σ

n2(a)σn2+s1(a) · · ·σn2+(m−3)s1(a) = 0.

Next we can find n3 > n2 + s1 and x3 ∈ R such that

ax1σ
n1(a)x2σ

n2(a)x3σ
n3(a) /∈ P.

Continuing in this process, we inductively obtain

ax1σ
n1(a)x2σ

n2(a)x3σ
n3(a) · · ·xm−1σ

nm−1(a) /∈ P

and
ax1σ

n1(a)x2σ
n2(a)x3σ

n3(a) · · ·xm−1σ
nm−1(a) = 0

for some xj ’s in R, a contradiction. So Pσ(R) = NI(σ)(R) = NU (σ)(R). �

Lemma 2.8. If R is a σ-skew IFP ring with σ of locally finite order, then for

a1, a2, . . . , at ∈ R, a1a2 · · · at = 0 implies σk1(a1)Rσk2(a2)R · · ·Rσkt(at) = 0
for any nonnegative integers k1, k2, . . . , kt.

Proof. The proof will be done by induction on t and we first assume a1a2 = 0
for a1, a2 ∈ R. Then σk1(a1)σ

k1(a2) = 0 for any positive integer k1. Since R
is σ-skew IFP, then σk1(a1)Rσn+k1(a2) = 0 for any positive integer n ≥ 1.
Let σm2(a2) = a2 and k2 = n + k1. Then k2 = pm2 + r, where 0 ≤
r < m2. Take a positive integer s such that n = sm2 + (r − k1) ≥ 1.
Thus σk2(a2) = σn+k1(a2) = σsN+(r−k1)+k1(a2) = σsN+r(a2) = σr(a2) and
we have that σk1(a1)Rσk2(a2) = 0 for any positive integer k1, k2. Now as-
sume that it holds for t − 1. Suppose that a1a2 · · · at = 0 and by induction
hypothesis, σk1(a1)Rσk2 (a2)R · · ·Rσkt−1(at−1) = 0 for any positive integers
k1, k2, . . . , kt−1. Hence σ

k1(a1)Rσk2(a2)R · · ·Rσkt−1(at−1)σ
kt−1 (at) = 0 and by

the fact that R is σ-skew IFP we have that

σk1(a1)Rσk2 (a2)R · · ·Rσkt−1(at−1)Rσn+kt−1 (at) = 0

for any positive integer n ≥ 1. Let kt = n+ kt−1 and σm
t (at) = at. Then kt =

qmt+r, where 0 ≤ r < mt and take a positive integer u such that n = umt+(r−
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kt−1) ≥ 1. Consequently σkt(at) = σn+kt−1 (at) = σumt+(r−kt−1)+kt−1(at) =
σumt+r(at) = σr(at). So σk1(a1)Rσk2(a2)R · · ·Rσkt(at) = 0 for any positive
integers k1, k2, . . . , kt. �

The σ-Wedderburn radical of R, denoted by Wσ(R), is given by

Wσ(R) =
∑

{I | I is a σ-nilpotent σ-ideal of R}.

By [13, Lemma 3.1], Wσ(R) = {a ∈ R |
∑

∞

i=0 Rσi(a)R is σ-nilpotent}. Note
that for any automorphism σ of R, Wσ(R) ⊆ Pσ(R).

Proposition 2.9. If R is a σ-skew IFP ring with σ of locally finite order, then

Wσ(R) = Pσ(R) = NI(σ)(R) = NU (σ)(R).

Proof. By Proposition 2.7, it is enough to show that Wσ(R) ⊇ Pσ(R). Let

a ∈ Pσ(R) and A =
∑

∞

i=0 Rσi(a)R =
∑k−1

i=0 Rσi(a)R, where σk(a) = a.
Then for any integer s ≥ 1, there exists a positive integer n = n(s) such that
aσs(a)σ2s(a) · · ·σ(n−1)s(a) = 0. Since R is σ-skew IFP, we have, by Lemma
2.8, that σk1(a)Rσk2(σs(a))R · · ·Rσkn(σ(n−1)s(a)) = 0 for any positive inte-
gers k1, k2, . . . , kn. For σ

l1(a), σl2(a), . . . , σln(a) ∈ A, take k1 = l1, . . . , kn = ln
and we have that

σl1(a)Rσs(σl2(a))R · · ·Rσ(n−1)s(σln(a))

= σk1(a)Rσs(σk2 (a))R · · ·Rσ(n−1)s(σkn(a))

= σk1(a)Rσk2 (σs(a))R · · ·Rσkn(σ(n−1)s(a))

= 0.

So A is a σ-nilpotent σ-ideal, and it follows that a ∈ A ⊆ Wσ(R). �

It is clear that IFP rings are abelian, but the converse is not true. We also
have the following result.

Proposition 2.10. Let R be a σ-skew IFP ring. Then we have

(1) e2 = e ∈ R if and only if eσ(e) = σ(e)e = e. In particular, e = σ(e).
(2) R is abelian.

(3) R[[x;σ]] is abelian.

Proof. (1) Let e be an idempotent in R. Then (e− 1)e = 0 = e(e− 1), and we
have that (e − 1)σ(e) = 0. Thus, by assumption, eσ(e − 1) = 0 and it follows
that eσ(e) = σ(e) and eσ(e) = e since σ is an automorphism. Hence e = σ(e)
and consequently σ(e)e = e2 = e. Suppose that eσ(e) = σ(e)e = e for e ∈ R.
Then (1− σ(e))e = 0, and by assumption (1 − σ(e))σ(e) = 0. So, e2 = e.

(2) Let e2 = e ∈ R. Then (1 − e)e = 0 = e(1 − e). By Lemma 1.4(2) and
(1), we have 0 = (1 − e)Rσ(e) = (1 − e)Re and 0 = eRσ(1 − e) = eR(1 − e).
So, R is abelian.

(3) Note that if e2 = e ∈ R[[x;σ]], then e ∈ R by the same method as in the
proof of [12, Lemma 19]. Using (1) and (2), we get R[[x;σ]] is abelian. �
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Finally, we consider the classical right quotient rings of skew power-serieswise
Armendariz ring and skew IFP rings. Recall that a ring R is right Ore if there
exists the classical right quotient ring Q(R) of R. Let σ be an automorphism
of a right Ore ring R. Then for any ab−1 ∈ Q(R) where a, b ∈ R with b regular,
the induced map σ̄ : Q(R) → Q(R) defined by σ̄(ab−1) = σ(a)σ(b)−1 extends
to an automorphism of Q(R).

Proposition 2.11. Suppose that R is a semiprime right Ore ring. Then the

following statements are equivalent:
(1) R is σ-rigid.
(2) R is σ-skew power-serisewise Armendariz.

(3) R is σ-skew IFP.

(4) Q(R) is σ̄-rigid.
(5) Q(R) is σ̄-skew power-serisewise Armendariz.

(6) Q(R) is σ̄-skew IFP.

Proof. The directions (1)⇒(2)⇒(3) and (4)⇒(5)⇒(6) follow from Theorem 1.1
and Lemma 1.4(2). It is easy to show (1)⇔(4). (6)⇒(4): Suppose ab−1σ̄(ab−1)
= 0 for ab−1 ∈ Q(R). Then

ab−1σ(a) = 0 ⇒ ab−1Q(R)σ2(a) = 0 ⇒ aQ(R)σ2(a) = 0 ⇒ aRσ2(a) = 0.

Since R is semiprime we have that

σ2(a)a = 0 ⇒ σ2(a)Q(R)σ2(a) = 0 ⇒ σ2(a)Rσ2(a) = 0 ⇒ aRa = 0 ⇒ a = 0.

By the same method as above, we also get the direction (3)⇒(1). �
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