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sensory terminals, which can preprocess 
the sensor outputs for more efficient data 
transfer and processing.[4–8] Although this 
near-sensor computing paradigm signifi-
cantly reduces redundant data, physical 
separation still exists between the sensors 
and computing units, deteriorating speed 
and energy efficiency.[9–12] A more prom-
ising approach is to completely eliminate 
this physical separation by integrating 
computing functions into the sensor 
(Figure  1b). In this in-sensor computing 
paradigm, the sensors not only transduce 
external stimuli to electrical outputs but 
also efficiently process the stimuli.[10,13–16] 
The fusion of sensing and computing 
functions in one physical element can 
significantly reduce data transfer and sim-
plify the system structure.

In addition to the benefits of time 
latency and energy consumption, the  

in-sensor computing paradigm also has a high computing com-
plexity because of the sensor array structure. Within the array, 
multiple sensor elements can simultaneously collect external 
stimuli.[17–19] Owing to the inherent computing capability of 
sensors, multiple computations are executed simultaneously. 
This high parallelism significantly increases the computing 
throughput. In addition, physical coupling between the sensor 
elements enables more computational functions. For example, 
the currents from individual sensors are summed according to 
Kirchhoff’s laws, which naturally realize matrix summation. 
This matrix summation plays an essential role in receptive 
fields and neural networks.

At both the single-device and array levels, the in-sensor 
computing paradigm can provide numerous benefits to system 
performance. To explore the inherent computing capability of 
the sensor to reduce data transfer, a thorough investigation 
of the interaction between external stimuli and materials is 
required, as well as new insights into the physics, materials, 
device structure, and integration technologies. Accordingly, 
we discuss the in-sensor computing paradigm at the device 
and array levels because these application scenarios involve  
different considerations in materials, devices, and system struc-
tures. Specifically, we explore the physical mechanism that 
leads to unique response characteristics and corresponding 
computing functions, such as feature enhancement, nocicep-
tors, highly secured cryptography, edge extraction, and pattern 
recognition. Finally, we discuss important points related to 
system integration and provide our perspective on future direc-
tions for in-sensor computing.

The number of sensor nodes in the Internet of Things is growing rapidly, 
leading to a large volume of data generated at sensory terminals. Frequent 
data transfer between the sensors and computing units causes severe 
limitations on the system performance in terms of energy efficiency, speed, 
and security. To efficiently process a substantial amount of sensory data, a 
novel computation paradigm that can integrate computing functions into 
sensor networks should be developed. The in-sensor computing paradigm 
reduces data transfer and also decreases the high computing complexity by 
processing data locally. Here, the hardware implementation of the in-sensor 
computing paradigm at the device and array levels is discussed. The physical 
mechanisms that lead to unique sensory response characteristics and their 
corresponding computing functions are illustrated. In particular, bioinspired 
device characteristics enable the implementation of the functionalities of neu-
romorphic computation. The integration technology is also discussed and the 
perspective on the future development of in-sensor computing is provided.

1. Introduction

The number of sensor nodes has increased rapidly in the past 
few years (40 billion by 2022) and this trend will continue in 
the future.[1–3] In a conventional sensory system (Figure 1a), the 
sensors generate raw and unstructured data, which are then 
transferred to the subsequent computing units and memory. 
The physical separation between the sensing, computing, and 
memory units causes inevitable data conversion and transfer. 
The corresponding time latency, energy consumption, and 
security threats are becoming intolerable in this era of big 
data. To further increase the efficiency and performance of the 
sensory system, significant innovations in materials, device 
physics, and computing architectures are required.

As the size of Si-based transistors continues to scale down, 
more complex and low-power circuits can be fabricated near the 
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2. In-Sensor Computing at the Device Level

Conventional sensors output real-time electrical signals 
proportional to the intensity of the input stimuli, whereas 
back-end computation circuits extract important temporal and 
spatial information. In the early ages of sensory computing, 
it was efficient to divide the computation tasks into separated 
hardware because the amount of sensory data was relatively 
limited. In addition, sensors and back-end computation circuits 
typically involve different materials, device structures, and man-
ufacturing technologies. Their integration with conventional 
packaging technology has accelerated the design and implemen-
tation of sensory computing systems. In the era of big data, the 
input of substantial raw and unstructured data from sensors to 
back-end circuits results in unavoidable analog-to-digital signal 
conversion and data transfer, which causes a heavy burden on 
the transmission bandwidth and power consumption.

In contrast, sensors with an inherent computing ability can 
execute signal conversion and information processing at the 
same physical unit, which significantly reduces data transfer and 
simplifies the system structure. In this computational sensor, the 
magnitude of the electrical outputs is not linearly proportional 
to the input stimulus intensity, meaning the sensor outputs do 
not longer faithfully reproduce the original stimuli. They become 
more concise representations that contain important tem-
poral, spatial, or relationship information. Specific computing 
functions are derived directly from the relationships between 
stimuli and the output magnitude, which are determined by the 
response characteristics of the materials. The underlying phys-
ical processes behind the interaction between external stimuli 
and materials should be thoroughly investigated to realize 
the desired response characteristics. Here, we first introduce 
computing functions and then discuss their direct realization 
through the response characteristics of sensory devices.

2.1. Feature Enhancement

The most basic and frequent task for the sensory system is 
to recognize patterns from complex environments, such as 
objects, sounds, and odors. The noisy environments render the 
accurate extraction of patterns difficult and costly. Researchers 
have adopted various sophisticated circuits for feature enhance-
ment and pattern recognition to increase system performance. 
Feature enhancement functions are usually placed close to the 
sensor terminals. As the patterns become more distinguish-
able, the workload of the subsequent processing units for 
accurate pattern recognition is reduced, thereby reducing the 
overall time and energy consumption. The simplest strategy 
for feature enhancement is to increase the responsivity over 
the entire intensity range, which amplifies the output differ-
ences between different intensity signals. However, this simple 
strategy exhibits poor performance in terms of efficiency and 
signal-to-noise ratio, which requires more complex processing.

2.1.1. Superlinear Relationship

A more efficient strategy is to process signals from noisy back-
grounds and objects selectively. Particularly, low-intensity noise 
signals are suppressed, and high-intensity feature signals are 
enhanced. The output from the feature-enhancement circuits 
happens to exhibit a superlinear relationship with the stimulus 

intensity (the red line in Figure 2a, 
d I

d P

ln

ln
1> , I represents the 

output magnitude and P represents the stimulus intensity). 
The slope increases with an increase in the stimulation inten-
sity. In the near-sensor computing paradigm, the sensors and 
feature enhancement circuits are separated in physical space, 
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Figure 1. a) The architecture of conventional sensory system. The analog outputs from the sensory array are first converted to digital signals, then 
transferred to memory and computing units for processing. b) The schematic of the sensor array for in-sensor computing. At the device level, the 
computational sensors can execute computing functions during the transduction of external stimuli. At the array level, the physical coupling between 
sensor elements contributes to higher computing complexity.
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leading to inevitable data conversion and transfer. This physical 
separation can be completely alleviated by endowing the sensor 
with an in situ feature enhancement function, which requires 
a direct superlinear relationship between the stimulus inten-
sity and sensor output. However, common sensors (such as 
light, pressure, temperature, and magnetic sensors) usually 
exhibit linear or even sublinear response characteristics. The 
realization of superlinear response characteristics is relatively 
challenging, requiring careful investigation of device physics 
and materials. The detailed material composition and device 
structure may vary for the different types of sensors. However, 
to realize feature enhancement, the superlinear relationship 
between stimulus intensity and output magnitude applies to all 
stimuli.

Because theoretical models and quantitative calculations 
have been established for various photoelectric effects, we illus-
trate the photoresponse characteristics to clarify the superlinear 
relationship for computational sensors. Light illumination can 
generate free electrons and holes in semiconductors, leading 

to an increase in conductance. The free carrier concentration 
results from the dynamic equilibrium between excitation and 
recombination. At low light intensities, the small number 
of non-equilibrium carriers has a negligible impact on the 
recombination probability (σ), leading to a linear relationship 
between the photocurrent and light intensity. At very high light 
intensities, the recombination probability increases signifi-
cantly, leading to a slower increase in carrier concentration. To 
facilitate the increase in carrier concentration and realize super-
linear photoconductivity, the recombination probability should 
decrease with an increase in light intensity. This phenomenon 
requires at least two competing recombination centers with 
different capture probabilities (Figure  2b).[20–24] In a specific 
intensity range, the recombination traffic shifts from centers 
with a high capture probability to centers with a low capture 
probability. With an increased light intensity, the recombination 
process is suppressed, which requires a higher concentration of 
free carriers to achieve an equilibrium between excitation and 
recombination. Therefore, the carrier concentration exhibits 
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Figure 2. a) Feature enhancement through superlinear relationship between stimulus intensity and output magnitude. Compared to linear relationship 
d I
d P

ln
ln

1=



 , the output magnitude from low (high)-intensity stimuli is suppressed (enhanced). b) Schematic illustration of recombination centers and 

their capture probability σ. c) Illustration of the device structure and electrochemical reactions. The light illumination generates substantial electrons, 
which facilitate the redox reactions. d) As evolved with time, the low photoconductance relaxes quickly, whereas the high photoconductance still 
remains at a high level. e) Illustration of the device structure for photoassisted thermionic carrier emission. f) Illustration of the energy band structure 
at the interface. A high barrier between graphene and insulator determines the carrier transport process. The photoexcited electrons thermalize quickly 
to have a much higher electron temperature than the lattice, which raises the electron distribution. More hot electrons can overcome the energy barrier. 
g) The illustration of linear and sub-linear relationship between intensity and output magnitude. Under sublinear relationship, the features become 
blurrier. h) The device structure of n-type MOSFET. Under positive gate bias (+VG), the electrons in channel can overcome the interfacial barrier and 
get trapped in the gate dielectrics. i) Under light illumination, the surface potential on the conductive channel (ψs) decreases with time. With higher 
intensity, the degree of potential decrease is higher. The channel current (IDS) shares similar trends with the surface potential ψs.
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a superlinear relationship with the light intensity. Quantita-
tively, the intensity range for superlinear photoconductivity 
(dlnI/dlnP  >1) and the formulation of photoconductivity with 
light intensity can be calculated, which varies depending on 
the temperature, capture probability, and distribution of energy 
levels. Through careful defect engineering, superlinear photo-
conductivity can be realized in a modest light-intensity range. 
Compared with the original stimuli pattern, the output magni-
tude from the high-intensity stimuli is significantly enhanced. 
Therefore, the photoconductors in situ realize feature enhance-
ment functions during light-electrical signal conversion.

In the aforementioned scenario, the photoexcited carriers 
are trapped by defects in the materials and retained over a long 
time before recombination. Therefore, their contribution to the 
photoconductance is maintained for a longer time. Following 
the same strategy, the photoexcited carriers can facilitate photo-
conductance by involving electrochemical reactions, leading to a 
change in the valence state or lattice structure of the photo active 
materials, as shown in Figure  2c.[14,25–28] The corresponding 
electronic properties, such as conductivity, also change and are 
maintained for a relatively long time, which forms the physical 
basis of optoelectronic resistive switching memory. At higher 
light intensities, photoconductors usually switch to a more 
conductive state, which is maintained over a longer time. The 
combination of a higher photoconductance and retention can 
also lead to a superlinear relationship between conductance 
and light intensity. We used MoO3 as the photoactive material, 
the conductivity of which depended on the Mo valence state.[14] 
Under light illumination, the photoexcited carriers reacted with 
moisture and generate H+, which reduced MoOx to a more 
conductive state (Mo6+ to Mo5+). The resultant HyMoOx lattice 
was relatively stable and was maintained for a long time after 
the removal of illumination. The retention increased with light 
intensity, meaning the rate of conductance decrease was lower. 
As evolved with time, the low conductance state relaxed quickly, 
whereas the high conductance state remained at a high level, 
as shown in Figure  2d. Therefore, the resultant conductance  
exhibited a superlinear relationship with the light intensity. We 
could realize feature enhancement functions inside the sensor 
array.

The second strategy to realize superlinear photoconduc-
tivity is thermionic carrier emission across the interfacial 
barrier.[29,30] As the electrical bias can modulate the height of 
the interfacial barrier, the current exhibits a superlinear rela-
tionship with the electrical bias. In contrast to energy-band 
modulation, photo assisted thermionic carrier emission changes 
the carrier distribution by modulating the carrier temperature. 
A high electron temperature can be realized through light 
stimulation in graphene with strong electron-electron interac-
tions. As shown in Figure  2e, the device structure comprises 
two graphene layers sandwiching a tunneling layer (such as 
h-BN, WSe2), in which graphene functions as the photoactive 
layer and an interfacial barrier determines the transport prop-
erties. The photoexcited electrons thermalize quickly to have 
a much higher electron temperature than that of the lattice. 
As the elevated temperature raises the electron distribution, 
more electrons can overcome the interfacial barrier, resulting 
in a superlinear relationship between the photocurrent and the 
light intensity (Figure 2f).

2.1.2. Modification to the Sublinear Relationship

As earlier mentioned, some sensors exhibit sublinear response 
characteristics, which degrade the contrast and blur objects. 
As shown in Figure 2g, the output magnitude increases slowly 
and saturates (the slope decreases constantly) as the stimulus 
intensity increases. This problem is common for pressure sen-
sors and can be solved by transferring the sensor outputs to a 
ring oscillator. The voltage signals from the pressure sensors 
are transformed into pulse trains that encode the intensity 
information as a frequency.[31,32] Conversely, the direct modifi-
cation of the sublinear response characteristics of the sensors 
is more efficient, which can increase the effective dynamic 
range. Therefore, the responsivity should be decreased and 
current saturation should be avoided under high-intensity 
stimuli. A similar effect has been reported in field-effect tran-
sistors (FETs), where a high gate bias induces electron injection 
from the channel to the gate dielectric. For example, in n-type 
FETs (Figure 2h), the accumulated negative charges in the gate 
dielectric deteriorate the gate control, leading to a decrease in 
the channel surface potential, and consequently, the channel 
current (Figure  2i). Light illumination can also induce high 
carrier concentration. Therefore, the photoresponsivity can be 
decreased under high-intensity light illumination through a 
gate bias. Compared with electron injection from the channel 
to gate dielectrics, charge transfer between the channel and 
interfacial traps occurs under a modest gate bias.[33,34] He et al. 
reported an organic phototransistor consisting of two comple-
mentary bulk heterojunctions (BHJs).[35] Under light illumina-
tion, one BHJ served as the photoactive layer and generated a 
substantial number of carriers. For another BHJ, the photo-
excited carriers were trapped in the gate dielectrics, shielding 
the gate voltage. Therefore, the channel current decreased with 
light illumination. With a higher light intensity or longer dura-
tion, the degree of gate field shielding was higher, leading to 
stronger inhibition of the photocurrent, as shown in Figure 2i. 
This light adaptation characteristic contributed to feature 
enhancement. Liao et al. reported similar adaptive characteris-
tics in phototransistors based on 2D materials.[36] Under light 
illumination, a substantial number of carriers were generated 
in the MoS2 channel. By applying a positive gate bias, electrons 
were trapped by the interfacial defects and the gate voltage was 
shielded. Therefore, the channel current gradually decreased 
with light illumination.

2.2. Sensitization

Pain perception is an important function of the sensory system 
that prevents potential or actual tissue injury. The essential 
nociceptor component realizes the important functions of 
threshold, relaxation, allodynia, and hyperalgesia, which can 
be efficiently realized through diffusive memristors.[37,38] The  
diffusive memristor receives the output from the sensor (such 
as thermal and pressure) and executes the computing functions. 
When the input stimulus intensity is below a certain threshold 
(harmless stimuli), the nociceptor exhibits no response. Once 
the stimuli are above the threshold (harmful stimuli), the 
nociceptor not only reduces its threshold (allodynia) but also 
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exhibits a higher response (hyperalgesia), meaning the nocic-
eptor increases its responsivity. After an injury, the nociceptor 
gradually relaxes to its original state, recovering its threshold 
and responsivity. This characteristic indicates that nociceptors 
can heal themselves to function normally instead of adhering 
to a sensitive injury state. In contrast to electrical implementa-
tions that require signal transformation and transfer, sensors 
with in situ nociceptive characteristics are desirable for fast and 
energy-efficient pain perception.

The space-charge-limited current bears an intrinsic similarity 
to nociceptive characteristics.[39,40] Using trap-rich materials 
as the functional layer, the sensors can exhibit the essential 
functions of threshold, relaxation, allodynia, and hyperalgesia. 
As shown in Figure 3a, the excited carriers first fill the traps 
without contributing to the current. As the intensity increases 
and the traps are completely filled, external stimuli can induce 
a notable current increase. The basic threshold function is well 
emulated through carrier trapping. Because a higher intensity 
induces more carriers, the resultant current increases with the 
stimulus intensity, indicating a higher degree of pain.

Kumar et al. used Sb-doped SnO2 as a photoactive layer, 
in which oxygen vacancies could capture photogenerated  
carriers.[40] As shown in Figure  3b, the current significantly 
increased after the light stimuli exceeded the threshold. 
Meanwhile, the magnitude of the photocurrent increased 
with increasing light intensity. The threshold characteristics 
under light illumination were also consistent with the elec-
trical results, confirming the importance of the traps. Above 
this threshold, a large fraction of traps was already full. There-
fore, low-intensity stimuli could induce a notable current. This 
characteristic emulated the allodynia function, in which the 
injured and vulnerable nociceptors decreased the threshold to 
protect themselves from strong stimuli. Meanwhile, stimuli 
with the same intensity would induce a higher current than 
before, which was known as hyperalgesia. After an injury, the 
light intensity at which the photocurrent started to increase 
decreased. Compared to the non-injured state, the photocurrent 
from the injured cells was higher at the same light intensity. 
The trap-rich Sb-doped SnO2 had response characteristics sim-
ilar to those of nociceptors. The relaxation function could also 
be realized through trap dynamics. After the external stimuli 
were removed, the traps gradually released the electrons/holes, 
causing the nociceptor to relax back to its original state. Notably, 
some optical nociceptive studies defined a threshold by hand, 
which required additional circuits.[41–43] With trap dynamics, the 
essential nociceptive functions can be well emulated in sensors, 
which significantly reduces complexity and time latency.

Nociceptors can also indirectly sense noxious stimuli. The 
nociceptor senses heat or pressure, whereas another type of 
stimuli has a destructive effect. This type of pain perception 
protects the sensory system from potentially harmful stimuli. 
Zhou et al. doped PMMA with azobenzene-functionalized 
Au nanoparticles, which served as the functional layer of a 
memristor.[44] The memristor exhibited threshold switching 
behaviors with trap dynamics, which formed the basis of its 
nociceptive characteristics. Meanwhile, once the intensity of 
UV illumination exceeded a threshold, the memristor changed 
the threshold and responsivity, which assisted in distinguishing 
noxious stimuli.

2.3. Logic Operation

The logical relationship between different signal sources is 
important. Logic operations are the functional units of modern 
digital circuits, which construct important modules including 
arithmetic/logic units, encoders, decoders, and selectors. Logic 
operations require multiple inputs, thus multiple electrodes in 
electrical implementations. In contrast, in-sensor logic func-
tions can mitigate this problem by receiving multiple inputs at 
the same spatial site, such as light,[27,45,46] sound,[47] magnetic 
fields,[48,49] and chemicals,[50,51] as shown in Figure 3c. The input 
pulses with different features (e.g., wavelength, intensity, and 
chemical type) represent stimuli from different sources. They 
stimulate the sensor simultaneously and induce different current 
magnitudes. The currents are summed inside the sensor, which 
execute the integration function. The detailed logic operation 
depends on the response characteristics and threshold, as shown 
in Figure 3d. Signals 1 and 2 induce output currents higher than 
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Figure 3. a) Left: Device structure of the artificial nociceptor. The active 
layer consists of trap-rich semiconductors. b) Under light illumination, 
the photoexcited carriers first fill in the traps. After the traps are com-
pletely filled, the light illumination contributes to notable photocurrent. 
The photocurrent increases significantly after the light intensity exceeds 
a threshold. The injured nociceptor exhibits lower threshold and higher 
responsivity. c) Illustration of in-sensor logic operations. Signals from 
multiple sources can simultaneously stimulate the sensor. The sources 
can differ in either the signal types or signal features, such as wavelength, 
intensity, chemical type. d) Top (Signal 1–4): Different combinations of 
the signals. Bottom: Output magnitude under different combinations. 
The dashed line indicates the threshold. e) Schematic of in-sensor PUF 
design. The sensor array integrates the sensing function with security. The 
intrinsic variation of characteristic parameters produces a PUF pattern 
and encrypts the information accepted from the sensor.
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the threshold, which construct the “OR” operation. Signals 3 and 
4 induce output currents lower than the threshold; however, the 
simultaneous input of signals 3 and 4 induces an output cur-
rent higher than the threshold. Therefore, signals 3 and 4 can 
construct an “AND” operation. He et al. adopted light pulses of 
different wavelengths to represent different signal sources.[52] 
Short-wavelength light pulses induced a higher photocurrent 
than long-wavelength light pulses. By setting an appropriate 
threshold according to the output magnitude, they realized the 
“OR” and “AND” operations inside the optical sensors.

2.4. Highly Secured Cryptography

An increasing number of sensory devices are being connected 
to the Internet of Things, generating a large volume of data. 
Sensory terminals collect audio, images, videos, and other 
information. Information security has become a significant 
challenge during the transmission of these data for further 
computations. To secure information and avoid unauthorized 
leakage, highly secure algorithms, and hardware should 
be designed to provide reasonable solutions. A promising 
approach from the hardware side is a security scheme based on 
the physical unclonable function (PUF), which is regarded as 
a promising cryptographic hardware key with irreproducibility 
and high-level security.[53,54] It provides a clone-proof device for 
key authentication and encryption.[55,56] Conventional PUFs 
based on silicon complementary metal–oxide–semiconductor 
(CMOS) technologies are highly integrated and complicated. 
Owing to the local mismatches of devices and the rapid devel-
opment of machine learning, it is difficult for such PUFs to 
achieve a balance between concise design and high robustness. 
They are weak in handling mathematical attacks because they 
can be predicted using large-scale machine learning tech-
niques.[57] Currently, most PUFs are studied as isolated devices 
in applications only for security, which are still independent of 
the sensory terminal. The isolated design introduces additional 
power consumption and physical attack problems. Attackers 
can disconnect the security scheme from the system and delay 
the authentication process. Unauthorized individuals may also 
use reverse engineering techniques to design copycats.

Under these circumstances, security at sensory terminals 
shows significant potential to overcome conventional draw-
backs. Here, we propose a combination device called an 
in-sensor cryptography device, which requires the realization of 
sensory functions with a high level of security. The architecture 
is shown in Figure 3e. Such an aim is challenging based on the 
design of conventional PUFs.

The development of nanomaterials presents a highly secured 
alternative to generating robust and tamper-resistant PUFs 
inside sensors by leveraging the inherent physical disorder and 
natural randomness of devices.[58–62] The characteristic para-
meters, such as the optical response (Raman characteristic 
peak and responsivity) and electrical response (e.g., mobility 
µFE, threshold voltage Vth, and subthreshold slope SS) follow a 
random distribution owing to the defects, moisture, and other 
uncontrollable factors in the device fabrication process.[63,64] It 
meets the basic requirements to generate a PUF. In addition, 
multiple sensory functions were observed. As earlier mentioned, 
optical lenses (to capture images), computational  units  (to 

process data), and nociceptors (to accept environmental stimuli) 
are given as examples. In this case, in-sensor cryptography that 
authenticates the device at the sensory terminals with secu-
rity key generation based on its own characteristics can be 
constructed.

Uniformity, uniqueness, and randomness are the three key 
criteria to evaluate a PUF system. Both conventional silicon 
PUFs and novel PUF designs can achieve promising results.[65] 
Bit error rate (BER), also known as the reliability that equals 
1-BER, is defined to describe the bit error at the output of the 
PUF device owing to the influence of noise, temperature, and 
other possible effects. This parameter is introduced to deter-
mine the stability of the device. The ideal BER is 0%. Conven-
tional PUFs may encounter a large BER owing to circuit noise 
and mismatches of the components involved, for example, 
temperature coefficients or aging effects.[65] Many novel PUFs 
based on 2D materials have a lower BER because of their stable 
characteristics. Theoretically, switchable attributes or charac-
teristic parameters with long-range random distribution can 
be used to generate keys. Sensors can generate their own PUF 
keys to authenticate or encrypt data received from the sensing 
function. For example, we can extract PUF keys based on opto-
electronic and electrical parameters.

Oberoi et al.[64] fabricated an atomically thin and photo-
sensitive memtransistor based on monolayer MoS2 to be 
used as a PUF device. The Gaussian distribution of its device 
parameters, such as µFE, Vth, and SS, showed the randomness 
of such devices. This study generated PUF keys based on IDS 
when VDS = 1 V and VBG = 0 V. The performance test showed 
rather good results where the randomness (entropy equals 
0.98), uniqueness (inter-hamming distance equals 0.5), and 
statistical relationship were approximately equal to their ideal 
value. In addition, the read-out energy was ≈1 nJ, as calculated 
using ∑IDSVDSτread, where τread  = 100 µs. It was a low power 
consumption value.[64] MoS2-based PUFs were also good exam-
ples.[63] It provided a concise layout and introduced different 
types of parameters (optical responses) used for key generation. 
Meanwhile, numerous studies have revealed the optical active 
characteristics of MoS2, which denoted its ability to capture 
images. Hence, this device could integrate image sensing and 
security to realize multiple functions.[64]

It shows a large potential to merge different types of func-
tions, such as sensing, computing, and storage, with security.  
Sensory terminals have been realized through different 
material systems and the variation in inherent characteristics 
enables these sensors to generate high-performance PUF keys. 
As a hardware security scheme, PUFs use different entropy 
sources to provide natural randomness. Various parameters 
derived from the electrical and optoelectronic characteristics 
can be used to generate keys (such as resistance, intensity, and 
dark current). We propose integrating cryptography functions 
into sensors that can authenticate devices without introducing 
extra schemes to prevent external physical attacks and reduce 
latency and energy consumption.

3. In-Sensor Computing at the Array Level

In a conventional sensory system, the sensor array size is 
much larger than the scale of back-end processing circuits. 
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The transmission bus and back-end electronic circuits adopt 
a multi plexing strategy to increase the processing capability, 
which leads to a tradeoff between the hardware resources 
and working speed. However, serial signal transmission and 
processing still increase the time latency. Because the com-
putational sensor can simultaneously execute information 
processing during signal conversion, highly parallel computa-
tions can be realized in the sensor array. This high parallelism 
arises from the inherent computing ability of the array ele-
ments. In addition, conventional sensors work independently 
and transfer their respective outputs to back-end processing 
units. To avoid data interference, the sensors do not interact. 
However, physical coupling between sensors can lead to unique 
computational functions, even for noncomputational sensors. 
For example, by applying a read voltage to an interconnected 
sensor array, all sensor output currents are summed based on 
Kirchhoff’s laws, which represent the spatial average. More 
complex computing functions can be realized by constructing 
an interconnected computational sensor array. In this section, 
we explore two types of computing functions through physical 
coupling between sensory elements. The response characteris-
tics of the individual sensors, their interaction, and the array 
structure are discussed in detail.

3.1. Receptive Field

Computational models of biological vision have always been 
a significant source of inspiration for the design of computer 
vision algorithms. Small receptive fields in the primary visual 
system function as fundamental processing units that locally 
filter a given property of the image according to the spatiotem-
poral structure of the receptive field. They extract features in 
the front-end and transfer them to deep hierarchical neural 
networks for further computing processes. The visual receptive 
field with a center-surround structure is often identified as the 
elementary region of the retina. In the two concentric circles 
of the receptive field, the off-center and on-center retinal gan-
glion cells have different optical response characteristics. One 
responds to dark spots surrounded by light backgrounds, 
whereas the other responds to light spots surrounded by 
dark backgrounds. This specific spatial alignment of retinal 
ganglion cells enables feature filtering functions, such as edge 
and motion detection.[66] Edge detection is a technique used to 
identify abrupt changes in image intensity and is often used 
as a basic building block for more complex algorithms. These 
changes can be detected using first- or second-order deriva-
tives. Edge detection aims to simplify image processing and 
accelerate visual perception. It is important in object tracking in 
self-driving vehicles, drones, or robots.[67] In digital image pro-
cessing, the first derivatives of pixel changes for 2D grayscale 
images are defined according to Equation (1):
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where f is the pixel intensity of point (x,y). A discrete gradient 
can be expressed by calculating the difference in current pixels 
along the partial differential direction according to Equation (2):

f x y f x y f x y f x y( 1, ) ( , ) and ( , 1) ( , )+ − + −  (2)

In this case, we simply add and subtract by convolving the 
image with filter operators to obtain the gradient for discrete 
pixels.[68] Basic edge detection filters include Sobel, Prewitt, 
and Roberts operators (Figure 4a).[69] The receptive field is 
characterized by a higher-level operator and the difference-of-
Gaussian kernel, allowing the extraction of edge and contrast 
information.[70]

To realize edge detection, optoelectronic sensors should be 
designed to have positive and negative light responses, corre-
sponding to the positive and negative weights in the convolu-
tion operator. A positive photoresponse is common in various 
photoconductors, in which device conductance increases under 
light illumination. To realize a more challenging negative 
photoresponse, researchers have used trap dynamics to sup-
press the device conductance.[71] As shown in Figure 4b,[72,73] the 
light illumination increases the channel conductance without 
an electric field, producing an ON photoresponse. When a 
positive bias is applied at the gate electrode, the electrical field 
forces the photoexcited electrons to migrate toward the gate 
and are trapped in the gate dielectric. The negative charges 
in the dielectric suppress channel conductance, producing an 
OFF-photoresponse. Meanwhile, heterojunction-based devices 
can exhibit opposite photoresponses under light illumination 
with different wavelengths.[45,74–76] The composite materials 
have different response characteristics to light illumination 
with long and short wavelengths owing to characteristics, such 
as the bandgap and thermal effect.

Assembling these ON- and OFF-photoresponse devices into 
a filter kernel array according to a specific convolutional oper-
ator enables hardware implementation of edge detection. The 
photocurrent resulting from the analog multiplication and accu-
mulation (MAC) operation is a dot product of the incident light 
power and the photoresponsivity vectors, as shown in Figure 4c. 
The resulting non-volatile photocurrents can be summed 
using Kirchhoff’s current law to obtain the convolution result 
in the output. Wang et al. designed an artificial receptive field 
in which the light was switched column-wise to represent a 
contrast-reversing edge moving from the left to the right side. 
When the edge reached the boundaries of the ON- and OFF-
photoresponse devices, the receptive field exhibited a positive/
negative peak in photocurrent variation.[73] One notable chal-
lenge is to practically convolve the entire picture. A selector can 
be used to control the light input for each pixel and switch the 
image pixels for the convolution computation each time.

In contrast to the receptive field array with rotational symmet-
rically arranged ON- and OFF-photoresponse devices, the recep-
tive array with photoresponsive devices along one direction 
(Figure 4d), corresponds to a sub-region of the concentric receptive 
field and is direction-sensitive for moving objects. In addition to 
static image processing, Wang et al. used the short-term memory 
effects of volatile resistive random access memory (RRAM) 
devices and realized the direction recognition of motion.[77] Such 
feature extraction of dynamic images benefited from the specific 
spatiotemporal structure inspired by the direction-selective gan-
glion cells. The imitation of spatiotemporal correlation within the 
receptive field array relied on the appropriate relaxation process of 
the response to electrical stimuli for each device.

Adv. Mater. 2022, 2203830
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3.2. Artificial Neural Networks

A sensor array emulating the receptive field can extract impor-
tant features from external stimuli in situ. Sensors with 
positive and negative responses can emulate synapses with 
positive and negative weights, respectively. The computing 
function of the sensor array is limited by a simple synaptic 
weight matrix. In-sensor computing also requires high-level 
sensory processing techniques for more complicated tasks 
such as recognition, classification, and localization. To realize 
high-level sensory processing through an in-sensor com-
puting paradigm, reconfigurable sensory devices can be inter-
connected to directly implement an artificial neural network 
(ANN) (Figure 5a). Accordingly, biological cognitive processes 
can be compactly realized in such a single chip without trans-
ferring the data outside, thus improving both time and energy 
efficiency.

Depending on the executed tasks, the sensor array can be 
specifically designed to implement an ANN. The essential MAC 
operation using the sensor array is shown in Figure  5b. The 
inputs to the synaptic array are external stimuli S. The sensors 
with different weights interact with the external stimuli and 
output multiplication results, which are summed to obtain the 
MAC results Oi.

The multiplication process can be executed through the 
stimuli-electronic conversion process; that is, the multiplica-
tion of the stimuli intensity (S) and responsivity (W) results in 
output currents (O). Figure 5c shows a schematic of the sensor 
array, in which the dimension of the input stimuli is n and the 
stimuli contain m classes; that is, the dimensions of the input 
and output layers are n and m, respectively. Thus, the sensor 
array consists of n elements (the dashed-line rectangle). Each 

element is divided into m sub-elements. All subelements with 
the same color are physically connected in parallel to sum 
the resulting currents according to Kirchhoff’s current law, 

I S w
k

n

km
1

mk∑=
=

. Such an operation can be regarded as the infer-

ence process of the ANN.
During the training process, the responsivity of each sensor 

must be continuously modulated controllably. Mennel et al.[15] 
designed photodiode arrays based on 2D materials to implement 
an ANN directly in image sensors. They adopted double local 
bottom-gate electrodes to electrostatically dope channel mate-
rials. Thus, the photoresponse of 2D semiconductors could be 
increased or decreased by altering the applied gate voltage. Photo-
diodes simultaneously converted and processed light stimuli 
without data transfer. The speed of the system was limited only 
by the optical-electrical conversion process. Therefore, ultrafast 
image recognition at the nanosecond level could be realized with 
the rational design of an in-sensor computing architecture.

However, this study was limited to the demonstration of a 
small-scale network with 27 devices; much is yet to be done 
prior to the application of this promising technology in large-
scale networks or practical applications. First, 2D semicon-
ductors are difficult to uniformly produce over a large area, 
and it is incompatible with the fabrication process of mature 
CMOS technology. Second, photodiodes cooperating with the 
electrostatic doping method lack non-volatile characteristics, 
which require a continuously applied voltage and cause high 
power consumption. This problem can be resolved using opto-
electronic devices with long-term memory characteristics, for 
example, floating gate devices.

In addition to the process in which sensors transduce 
external stimuli to device conductance, the multiplication 

Adv. Mater. 2022, 2203830

Figure 4. a) Masks for Sobel, Prewitt, and Roberts operators. b) Left: schematic of ON-photoresponse. Right: schematic of the OFF-photoresponse. 
c) Sketch of the artificial receptive field for edge-detection. The OFF-device is positioned at the center, surrounded by ON-devices. The yellow sphere 
represents the receptive field of the ON-devices. The blue sphere represents the receptive field of the OFF-device. d) Skeleton of the receptive field for 
motion detection. The ON/OFF-devices are aligned in one direction.
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process can also be executed through the light transmission 
process.[78–81] As illustrated in Figure 5d, external stimuli modu-
lated the light signal to encode the intensity strength. The light 
signals in different channels were then transmitted through the 
waveguide to realize the multiplication operation. The weighted 
inputs were still light signals, which were summed through 
the accumulation of carriers, electric currents, or structural 
changes in the photodetector. Photonics for neuromorphic com-
puting has received much interest because of its ultralow power 
consumption, high speed, and high parallelism. Frequent and 
costly MAC operations can be directly implemented in the 
optical elements. An optical neural network can be integrated 
with an electronic neural network to complete the entire task 
by exploiting the advantages of optical and electronic elements. 
For example, nonlinear activation functions are easier to realize 
in electronic devices. The overall performance of the sensory 
system was significantly enhanced by placing optical elements 
at the front end.

Regarding the scalability of an ANN with an in-sensor com-
puting paradigm, a large neural network with more output 
nodes significantly increases the complexity of the interconnec-
tion between individual sensors. Thus, interconnect routing and 
layout design require specific consideration. Another impor-
tant question is the full hardware implementation with online 
training ability. A specific hardware design is required to realize 
a training algorithm and the development of hardware-friendly 
algorithms. However, spiking neural networks provide a 

promising alternative solution to enhance efficiency and reduce 
the footprint through spike time coding.[82,83] For example, 
n types of stimuli signals can be encoded as n different spike 
timings of just one output neuron, which drastically reduces 
the chip area and hardware implementation complexity. How-
ever, hardware demonstrations of in-sensor computing-based 
spiking neural networks have rarely been reported because of 
the complexity of implementing spike coding with the sensor 
device itself. The aforementioned strategy is not limited to the 
visual system. It can also be extended to other physical stimuli 
such as auditory, tactile, thermal, or olfactory sensing.

4. Integration Technologies

To satisfy the requirements for the practical application of 
in-sensor computing, a technology that can integrate large-scale 
sensor arrays into state-of-the-art silicon technology should be 
developed. With an increasing need for information processing 
in different application fields, the development of in-sensor 
computing is moving toward more specialized information 
processing units. To realize highly integrated and more energy-
efficient processing systems, the hardware implementation of 
in-sensor computing can adopt a universal and compact layout 
to fit the existing digital signal processing scheme, which 
requires a co-design between sensor units, array layout, and 
peripheral circuits (Figure 6).

Adv. Mater. 2022, 2203830

Figure 5. a) Schematic of artificial neural network. S represents the input vector. W represents the synaptic weight matrix. O represents the weighted 
inputs vector. The bottom panel shows the MAC operation in the synapse array. Y represents the output vector of the activation function. b) Schematic 
of the MAC operation through the sensor array. The inputs to the array are the external stimuli S. The sensors with different weights interact with the 
external stimuli and output the multiplication results, which are summed to get the MAC results Oi. c) Schematic of the sensor array in which the sensor 
responsivity encodes the synaptic weight. The weighted inputs are the output currents of the sensors, which are summed through Kirchhoff’s current 
law. d) Schematic of the sensor array in which the light waveguide encodes the synaptic weight. The weighted inputs are still light signals, which are 
summed through the accumulation of carriers, electric current, or structural change in the photodetector.
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For the hardware implementation of the in-sensor com-
puting paradigm, the emerging sensors usually involve 
materials and structures different from Si-based units, which 
require the fabrication process of the emerging sensors to be 
CMOS-compatible. The two-terminal sensor can tune the con-
ductance by intrinsic property changes in the functional layers 
under environmental stimulations,[14,84,85] such as MoOx

[14] 
and defective SnS.[85] When two-terminal sensors are assem-
bled into the cross-bar array, the sneak leakage current from 
neighboring cells leads to operational errors. Thus, a selective 
cell is required to suppress the leakage current for large-scale 
integration. A promising solution is to connect a cell selector 
in series to each sensor, which is inspired by in-memory com-
puting based on RRAM. Compared with a two-terminal sensor, 
a three-terminal sensor requires an additional gate electrode to 
tune or retain the conductance of the functional layer.[36,73,86–88] 
For such a sensor, a selective cell is unnecessary because weight 
writing is performed by changing the gate voltage of each 
sensor. In summary, two-terminal sensors have the advantage 
of high-density integration, but exhibit disadvantages in terms 
of reliable performance. In contrast, three-terminal sensors 
have better controllable performance but inevitable additional 
power-line problems.

The integration of sensors with selective cells is another 
major challenge, particularly for large-scale arrays. In practical 
implementations, the structure of sensors and selective cells 
should be compatible to achieve overall high performance. 
In the general design of in-sensor computing, individual 
sensors must be accessed element-by-element, such as 

reading the conductance or programing the characteristics. 
Conventionally, a transistor can be introduced to construct a 
one-transistor-one-sensor unit,[89,90] as shown in the schematic 
of the array level in Figure  6. Individual or parallel access to 
sensor cells can be achieved by switching the corresponding 
transistor ON. In addition to three-terminal transistors, two-
terminal selectors with intrinsic nonlinearity have smaller 
feature sizes that are more suitable for high-density integra-
tion.[91] For the highest integration density, two-terminal sen-
sors and selectors can be serially connected to construct a dense 
crossbar array, which may result in poor reliability. By replacing 
the two-terminal selector with a three-terminal transistor, 
reliability increases at the cost of integration density. The trade-
off between performance and integration should be carefully 
considered.

At the array level, the position and interconnection of the 
basic sensing units should be carefully designed depending 
on the desired computing functions. Using feature enhance-
ment as an example, the sensing units are isolated, transfer-
ring their respective outputs to the post-processing units. The 
layout is similar to that of the conventional layout. However, 
for array-level in-sensor computing, the layouts of the sensing 
units differ significantly. Unlike the electrical signals directly 
generated from the peripheral circuits in the RRAM array, 
the input signals in in-sensor computing are in the form of 
environmental stimuli (e.g., light, sound, or pressure). As 
previously illustrated, the layout design should consider the 
interaction between the environmental stimuli and the sensing 
units (Figure 6).

For in-sensor computing, the sensor array executes some 
preliminary computing functions, which reduce some periph-
eral units, such as current-voltage converters. They are required 
to bridge the sensor and array in edge computing, which is 
unnecessary in in-sensor computing. However, array outputs 
still require complex processing to complete the task. In the 
case of the receptive field, the sensor array can extract impor-
tant features such as edges. To complete object recognition, a 
complex neural network consisting of numerous synapses and 
neurons is required. The analog outputs are first transferred 
to an analog-to-digital converter and subsequently to digital 
processing units and memory (Figure  6). For overall system 
performance, the back-end processing units and peripheral 
circuits should be carefully designed. In device-level in-sensor 
computing, the number of outputs is the same as that of 
sensory nodes. Therefore, the number of information post-
processing units, such as the analog-to-digital converter, also 
increases when the array size increases. By interconnecting all 
computing sensors and realizing computation through physical 
coupling, the number of output nodes decreases slightly. To fur-
ther reduce the number of postprocessing units, a multiplexing 
strategy can be adopted. However, this leads to an increase in 
the information processing time because the processing speed 
largely depends on the speed of the selective cell and the size 
of the array. Meanwhile, the shared interconnection between 
different sensors reduces the resistance variation caused by 
resistive wires as the fabrication node decreases to the nano-
meter scale, further improving the computing precision of the 
overall system. This trade-off requires careful consideration, 
based on the requirements of the sensory system.

Adv. Mater. 2022, 2203830

Figure 6. The hardware implementation of in-sensor computing by co-
design among device, array, and system. At the device level, the sensors 
with intrinsic computing ability are primarily based on emerging mate-
rials, whereas selector devices are based on silicon. The integration of dif-
ferent materials needs careful investigation. At the array level, the layout 
depends on the interaction between environmental stimuli and sensing 
units. The sensing unit consists of sensors and selector devices thus 
individual access to single sensors is possible. At the system level, since 
the input signals come from the outside environment, a careful design of 
signal communication only between the sensors to the post-processing 
unit is required, for example, the processed sensory information can be 
directly converted to a digital form by analog-to-digital converter and 
saved in memory.
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5. Conclusions and Perspectives

In-sensor computing is an efficient approach to solving real-
time and data-intensive problems. It integrates essential 
computing functions into the sensor array, which processes 
information during the transduction of external stimuli into 
electronic signals. Redundant data are significantly reduced, 
thereby mitigating the pressure on analog-to-digital signal 
conversion and data transfer. Therefore, in-sensor computing 
allows for higher energy efficiency and speed.

The computing functions are derived from two aspects: 
the device level and array level (summarized in Table 1). 
For in-sensor computing at the device level, the response 
characteristics of the sensors can be exploited to process infor-
mation. Depending on the desired computing functions, the 
response characteristics can vary significantly, which requires 
careful investigation of materials and devices. We introduce the 
representative computing functions and explain their basic prin-
ciples. Feature enhancement aims to amplify the output con-
trast between stimuli with different intensities. The superlinear 
relationship between the stimulus intensity and output magni-
tude produces the best effect, whereas a sublinear relationship 
degrades the contrast. Nociceptors spontaneously modulate the 
threshold and responsivity according to the stimulus history. 
Once the stimulus intensity is above a certain threshold, nocic-
eptors decrease the threshold and responsivity to increase sen-
sitivity. This computing capability also originates from a unique 
sensing process. Because sensors can collect multiple signals 
simultaneously, they can process the interaction between them, 
such as logic or spatiotemporal relationships. Device variations 
can also be exploited to construct PUFs to endow the sensor 
with high security. To realize these basic principles, we propose 
a corresponding physical mechanism and device structure. We 
mainly discuss the photoelectric effect for clarity; however, the 
basic principles can be applied to other types of stimuli.

For in-sensor computing at the array level, the inherent 
computing ability of the sensor renders the array element a 
computing unit. Because multiple sensors can simultane-
ously interact with external stimuli, multiple computing opera-
tions are executed simultaneously, thereby contributing to high 
parallelism. In addition, the interconnected structure can provide 
high computing complexity by exploiting the physical coupling 
between sensors. The receptive field and ANN can be realized 
inside the sensor array, significantly reducing the cost of hard-
ware resources, energy consumption, and time latency. In-sensor 

computing has proven to be highly promising in this era of big 
data. This revolutionary change in system architecture provides 
many benefits. Meanwhile, substantial efforts are also required 
for materials, devices, integration, fabrication, and algorithms.

The development of in-sensor computing is still in its 
infancy. Prior experimental studies on in-sensor computing 
were restricted to specific materials and small arrays. In addi-
tion to the general requirements of sensors (e.g., robustness, 
high dynamic range, and reliability), the device response char-
acteristics should remain stable and predictable. Trap dynamics 
or electrochemical reactions can induce structural changes 
and degrade material reliability. To expand the array size for a 
higher computing ability, the properties of the device should 
be uniformly distributed. Meeting all these requirements in 
emerging materials is still challenging; thus, more research on 
the materials, device structure, and fabrication should be con-
ducted. To apply the in-sensor computing paradigm close to 
practical applications, utilizing the mature and low-cost silicon 
technology is efficient, which can significantly reduce the fab-
rication cost and improve the compatibility with back-end 
processing units and peripheral circuits, integration density,  
and reliability. Compared with the conventional design, the 
in-sensor computing paradigm poses a different requirement  
for device characteristics. For example, to emulate synapse func-
tions in an ANN, the device response characteristics should be 
programmable instead of being fixed. The photo responsivity of 
the p–n junction-based photodetector can be gradually changed 
by an external force. By applying a gate bias to electrostatically 
modulate the doping density, the p–n junction can exhibit 
different magnitudes of photoresponse, emulating synaptic 
weight modulation.[94,95]

Meanwhile, we discuss only a few representative applications. 
More computing functions and corresponding algorithms are 
expected, particularly for spatiotemporal patterns. In practice, 
external stimuli are consistently changing, rendering the pre-
cise extraction of spatiotemporal information difficult and 
costly. For example, in video processing, conventional methods  
adopt frame-based sampling to obtain multiple images at 
different times. Subsequently, these images were processed 
using complex algorithms to extract spatiotemporal informa-
tion. Because of the large volume of redundant data generated 
at sensory terminals, many resources are consumed. This can 
be mitigated by the in-sensor computing paradigm, to a certain 
extent. For example, dynamic vision sensors only respond to 
dynamic objects, which significantly reduces data volume. To 
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Table 1. The summary of in-sensor computing at device level and array level.

Computing function Desired characteristics Ref.

Device level Feature enhancement Superlinear relationship between stimulus intensity and output magnitude [14,20–22,30]

Modification to sublinear relationship [35,36]

Sensitization Trap dynamics [39,40,44]

Logic operation Sense multiple stimuli simultaneously at the same spatial site [27,49,52]

Highly secured cryptography Entropy sources that provide a random distribution in characteristic parameters [63,64,92]

Array level Receptive field Positive- and negative-response; interconnected sensors [72,73]

Artificial neural network Programmable responsivity, linear response; interconnected sensors [15,93–95]

Programmable transmittance; photodetector [79–81]
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process temporal information, memory is essential to store the 
previous information. Nociceptors process the temporal infor-
mation on the responsivity changes according to the previous 
state (injured or normal). The trapped carriers require some 
time to be fully released, which forms the basis of memory. 
Therefore, trap dynamics or electrochemical reactions essen-
tial to compute functions can also be exploited to process tem-
poral information. The computing capability of the sensory 
system can be significantly expanded if sensing, computing, 
and memory can be combined. The benefits of in-memory 
computing, such as functional polymorphism and information 
overhead, can also be expected.[11,12,18,19,72,96–101]

The hardware implementation of sensory systems is a 
complex and delicate task that involves different materials, 
device structures, and functional modules. The in-sensor com-
puting paradigm reduces the data transfer between the sensor 
array and back-end processing units. However, a sensor array 
utilizing emerging materials may not exhibit high performance 
in terms of energy consumption and speed. Trap dynamics 
or redox reactions are much slower than those of conven-
tional devices based on the field effect. Therefore, although 
some computing functions are already executed by the sensor 
array, the energy efficiency and speed of the entire system 
may be restricted by the sensor array. Inspired by in-memory 
computing, various computing functions must be carefully 
evaluated to determine the most appropriate ones for in-sensor 
computing. For example, an RRAM array is suitable for highly 
parallel and low-precision computing functions. When used 
as an accelerator for deep learning[102,103] or combined with a 
high-precision CMOS processor for scientific computation,[104] 
it achieves the best compromise. The same strategy can be 
applied to in-sensor computing. The precision requirement of 
the receptive field function is relatively low (positive and nega-
tive responses), meaning the non-ideal factors of the sensors 
(such as reliability, parameter drift, and variation) have a 
negligible effect on the computing function. Currently, ANNs 
that require a high integration density and high precision of 
device responsivity may face challenges in practice.
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