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Abstract: Intensity Analysis has become popular as a top-down hierarchical accounting 

framework to analyze differences among categories, such as changes in land categories 

over time. Some aspects of interpretation are straightforward, while other aspects require 

deeper thought. This article explains how to interpret Intensity Analysis with respect to 

four concepts. First, we illustrate how to analyze whether error could account for  

non-uniform changes. Second, we explore two types of the large dormant category 

phenomenon. Third, we show how results can be sensitive to the selection of the domain. 

Fourth, we explain how Intensity Analysis’ symmetric top-down hierarchy influences 

interpretation with respect to temporal processes, for which changes during a time interval 

influence the sizes of the categories at the final time, but not at the initial time. We 

illustrate these concepts by applying Intensity Analysis to changes during one time interval 

(2000–2004) in a part of Central Kalimantan for the land categories Forest, Bare and Grass. 
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1. Introduction 

Intensity Analysis is a quantitative framework to account for differences among categories as 

summarized by a square transition matrix for which the rows’ categories are identical to the columns’ 

categories [1]. Analysis of land change through time is the most common application of the 

framework. Intensity Analysis’ seminal article [2] has more than 200 citations, including one in the 

first issue of the journal Land [3]. Applications of Intensity Analysis to land change span six 

continents, including: Africa [4], Asia [5], Australia [6], Europe [7], North America [1], and South 

America [8]. Through many case studies, we have identified four recurring important concepts that 

users must understand in order to apply and to interpret Intensity Analysis properly. The purpose of 

this article is to describe those concepts and to offer guidance concerning how to address the concepts 

in a manner that applies generally to other case studies. 

Our article examines concepts that apply to a single time interval, while the concepts apply also to 

case studies that analyze each of several consecutive time intervals. The first concept addresses how to 

interpret results when researchers suspect that the data have error but do not know exactly how much 

error. The second concept concerns the large dormant category phenomenon, where the inclusion of a 

single large category influences the results for all other categories. The third concept relates to the fact 

that it is frequently not obvious how to select the domain for a case study, so we illustrate conceptually 

how Intensity Analysis can be sensitive to the selection of the domain, with particular attention to 

inclusion of various amounts of persistence. The fourth concept relates to the fact that Intensity 

Analysis uses a top-down hierarchy in which the sizes of the categories at the initial and final times 

help to set uniform baselines for comparison to the observed transitions. However, the amounts of 

change and persistence during a time interval influence the sizes of the categories at the final time, but 

do not influence the sizes of the categories at the initial time. Thus, it can be more intuitive to interpret 

change intensities that are conditional on the sizes of the categories at the initial time, rather than the 

final time, depending on whether one views the change processes as top-down or bottom-up. 

This article illustrates the concepts with a case study that has three land categories, because three 

categories show the concepts as clearly as possible. Our case study is on the island of Borneo in 

Central Kalimantan, Indonesia. Figure 1 shows the location of the study area and its land changes 

between 2000 and 2004 among the categories: Forest, Bare and Grass. The domain covers 1,896 

square kilometers between the Sebangau and Katingan Rivers in the Sebangau National Park. The 

natural vegetation is mainly tropical peatland swamp forest, which has experienced extensive 

deforestation and forest degradation [9]. Commercial logging started during the 1960s in the Central 

Kalimantan province of Indonesian Borneo, and one-fifth of Kalimantan’s forests had been logged by 

1980 [10]. Land management practices have impaired the natural functioning of the peatland 

ecosystem and have increased the ecosystem’s susceptibility to fire [11]. Forest losses occurred during 

the drought of the 1982–1983 El Niño when 2.7 million ha of tropical rainforest burned, and again 
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during the 1997–1998 El Niño when almost five million hectares of forests were damaged [12]. 

Peatland fires occurred again in Central Kalimantan during the 2002 El Niño [13,14]. Deforestation in 

this region can lead to serious global consequences because tropical peat swamp forest ecosystems 

host exceptionally high biodiversity and immense amounts of carbon [14,15]. Therefore, it is important 

to study land change in Central Kalimantan. 

Figure 1. Map in the upper left shows the location of the study site in the southern part of 

the island of Borneo, which is shared by Indonesia, Malaysia and Burnei. Kalimantan is the 

Indonesian portion of Borneo. The study site is in Central Kalimantan Province. The 

middle and lower maps on the left show land-cover categories at 2000 and 2004. Maps on 

the right show changes during 2000–2004. 
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2. Methods 

2.1. Data 

The underlying data are two Landsat scenes from path 118 and row 62: one ETM+ scene from  

16 July 2000 and one TM scene from 17 June 2004. The satellite images were geometrically corrected 

with ground control points that were evenly distributed in space, and the root mean square error was 

within one pixel. Atmospheric correction was performed using the FLAASH module, available in the 

ENVI 4.0 software. The atmospheric correction removed the influence of aerosols that affect 

reflectance values primarily in the short wavelength regions of the electromagnetic spectrum. 

We applied unsupervised image classification using the ISODATA clustering algorithm with  

100 initial spectral clusters. The spectral clusters were labeled using the information from color 

composites, NDVI images, land-cover spectral reflectance characteristics, and field knowledge. Three 

land-cover categories were assigned: Forest, Bare, and Grass. Forest is peat swamp forest. Bare is bare 

soil including burn scars that do not have vegetation. Grass is fern grass, sparse shrubs, and 

regenerating secondary forest. Then we applied a majority filter with a window size of 3 by 3 pixels to 

reduce isolated pixels in the land-cover maps. A mask eliminated pixels that are water or clouds at 

either time point. We do not have information concerning the accuracy of the maps because we do not 

have ground information for 2000 and 2004. 

After we created the classified maps, we constructed a transition matrix by overlaying the two land-

cover maps. Table 1 shows the matrix in terms of percent of the domain. The nine entries in the upper 

left show the transitions. The three diagonal entries indicate persistence of categories, and the six off-

diagonal entries indicate change from one category to a different category. We appended a column on 

the right that shows the categorical totals at 2000 and a row at the bottom that shows the categorical 

totals at 2004. We also appended an additional column on the right that indicates loss by category, and 

an additional row at the bottom that indicates gain by category. The entry in the extreme lower right 

indicates total change as a percent of the domain. 

Table 1. Transitions as a percent of the domain. Superscript α indicates a systematically 

avoiding transition. Superscript τ indicates a systematically targeting transition. 

  2004 2000 Interval 

Forest Bare Grass Total Loss 

2000 Forest 76.8 5.7α 4.0 86.5 9.7 

Bare 4.0α 5.5 1.8τ 11.2 5.7 

Grass 1.1 0.3τ 0.9 2.4 1.5 

2004 Total 81.9 11.4 6.7 100.0  

Interval Gain 5.1 6.0 5.8  16.9 

2.2. Change Budget 

Table 2 gives the mathematical notation that our article uses. Equation (1) gives the total change by 

summing all entries in the matrix then subtracting the diagonal entries, which show persistence. 

Equation (1) expresses the total change as a percent of the domain by multiplying by 100% and 
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dividing by the number of pixels in the domain. Total change can be separated into two parts: quantity 

change and allocation change. Equation (2) gives the quantity change expressed as a percent of the 

domain. The inner summation over i in the numerator of Equation (2) computes the net change for 

category j by adding the transitions in which category j gains, i.e., Cij, and then subtracting the 

transitions in which category j loses, i.e., Cji. The MAXIMUM function selects the categories for 

which the net change is positive, and then the summation over j accumulates the positive net changes. 

When one category gains, another category loses, and so the total net gain of all the categories is equal 

to the total net loss of the categories. Equation (3) computes the allocation disagreement in a manner 

that shows how quantity change and allocation change sum to the total change. 

Table 2. Mathematical notation for Intensity Analysis. 

Symbol Meaning 

J number of categories, which equals 3 in our case study 

i index for a category at the interval’s initial time point 

j index for a category at the interval’s final time point 

m index for the losing category for the selected transition 

n index for the gaining category for the selected transition 

Cij number of pixels that transition from category i to category j 

S total change as percent of domain, which equals the uniform intensity for the category level 

Gj intensity of gain of category j relative to size of category j at final time 

Li intensity of loss of category i relative to size of category i at initial time 

Rin intensity of transition from category i to category n relative to size of category i at initial time where i≠n 

Wn 
uniform intensity of transition from all non-n categories to category n relative to size of  

all non-n categories at initial time 

Qmj intensity of transition from category m to category j relative to size of category j at final time where j≠m 

Vm 
uniform intensity of transition from all non-m categories to category j relative to size of  

all non-m categories at final time 

EG
j hypothesized commission of category j error at final time 

OG
j hypothesized omission of category j error at final time 

EL
i hypothesized commission of category i error at initial time 

OL
i hypothesized omission of category i error at initial time 
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2.3. Intensity Analysis 

Intensity Analysis is a mathematical framework that compares a uniform intensity to observed 

intensities of temporal changes among categories. We use Intensity Analysis at two levels: category 

and transition.  

At the category level, we compare S from Equation (1) to Gj and Li from Equations (4) and (5).  

Equation (4) gives the observed intensity with which category j gains, relative to the size of category j 

at the final time point. If each category were to gain with the same intensity, then all the intensities 

would equal S from Equation (1). In other words, if the total change were to occur uniformly in the 

domain, then the intensity of each categorical gain would equal the global intensity S. If Gj > S, then 

we say category j is an active gainer. If Gj < S, then we say category j is a dormant gainer. This 

concept concerning gains applies also to losses. Equation 5 gives the observed intensity with which 

category i loses, relative to the size of category i at the initial time point. If each category were to lose 

with the same intensity, then all the intensities would equal S. If Li > S, then we say category i is an 

active loser. If Li < S, then we say category i is a dormant loser. 
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Equations (6) and (7) concern Intensity Analysis for the transition from an arbitrary category i to a 

particular gaining category n. Equation (6) gives the observed intensity with which category n gains 

from category i. If category n were to gain with the same intensity from all not i categories, then Rin 

would equal Wn from Equation (7). If Rin > Wn, then we say that the gain of n targets i. If Rin < Wn, then 

we say that the gain of n avoids i. 
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Equations (8) and (9) concern Intensity Analysis for the transition from a particular losing category 

m to a different category j. Equation (8) gives the observed intensity with which category m loses to 

another category j. If category m were to lose with the same intensity from all not j categories, then Qmj 

would equal Vm from Equation (9). If Qmj > Vm, then we say that j targets the loss of m. If Qmj < Vm, 

then we say that j avoids the loss of m. If the denominators of the ratios in Equations (4–6, and 8) are 

zero, then the change in the numerators must be zero, and the ratio does not exist. 
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The transition from category m to category n is a systematically targeting transition when the gain 

of n targets m while n targets the loss of m, i.e., when Rmn > Wn while Qmn > Vm. The transition from 

category m to category n is a systematically avoiding transition when the gain of n avoids m while n 

avoids the loss of m, i.e., when Rmn < Wn while Qmn < Vm. 

2.4. Error Analysis 

We do not have reference information to measure errors in the maps from the two time points. 

Nevertheless, we suspect our maps have some errors and we wonder whether errors in the maps could 

account for the deviations from uniform intensities that Intensity Analysis reveals. Equations in this 

subsection allow us to compute the minimum hypothetical error in the data that could account for the 

deviation between the uniform change intensity S and the intensity of each categorical gain or  

loss [16]. We compute these hypothetical errors based on a null hypothesis that the intensity of change 

is uniform. A larger hypothetical error gives stronger evidence against this null hypothesis. 

Equations (10–13) compute the hypothetical error in the map of the final time that could account for 

a deviation between Gj and S. Equations (10,11) apply to categories where Gj > S, which are Bare and 

Grass for the case study. Equation (10) computes the number of pixels of observed gain of category j 

that we hypothesize are errors of commission of category j at the final time. The Intensity Analysis 

web site [17] gives a mathematical derivation for Equation (10) and other equations that follow a 

similar logic, i.e., Equations (12,14,16). Equation (11) computes the commission error intensity of 

category j at the final time, where the numerator of Equation (11) is the hypothesized commission error 

of category j and the denominator is the size of observed gain of category j. Equations (12,13) apply to 

categories where Gj < S, which is Forest for the case study. Equation (12) computes the number of 

pixels of observed gain of a non-Forest category that we hypothesize are errors of omission of Forest at 

the final time. Equation (13) computes the omission error intensity, which is the result from 

Equation (11) divided by the size of the hypothesized gain of Forest. Commission error intensity is 

100% minus User’s accuracy. Omission error intensity is 100% minus Producer’s accuracy. 
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Equations (14–17) compute the hypothetical error in the map of the initial time that could account 

for a deviation between Li and S. Equations (14,15) apply to categories where Li > S, which are Bare 

and Grass for the case study. Equation (14) computes the number of pixels of observed loss of 

category i that we hypothesize are errors of commission of category i at the initial time. Equation (15) 

computes the commission error intensity of category i at the initial time, where the numerator of 

Equation (15) is the hypothesized commission error of category i and the denominator is the size of 

observed loss of category i. Equations (16) and (17) apply to categories where Li < S, which is Forest 

for the case study. Equation (16) computes the number of pixels of observed loss of a non-Forest 

category that we hypothesize are errors of omission of Forest at the initial time. Equation (17) 

computes the omission error intensity, which is the result from Equation (16) divided by the size of the 

hypothesized gain of Forest. 
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3. Results 

3.1. Change Budget 

Figure 2 shows the total change as the percent of the domain separated into components of quantity 

and allocation. Change occurs in 16.9 percent of the domain, and 12.3 of those percentage points 

derive from allocation change. Figure 3 shows the gain, persistence and loss of each category. The size 

of a category at 2000 is the union of its persistence and loss. The size of a category at 2004 is  

the union of its persistence and gain. Forest accounts for 86 percent of the domain at 2000 and  

81 percent at 2004. 
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Figure 2. Total change separated into quantity and allocation. 

 

Figure 3. Gain, persistence and loss by category. 

 

3.2. Intensity Analysis 

Figure 4 shows the intensity of gains and losses by category. If a bar stops before the uniform line, 

then the category is dormant; thus, Forest is a dormant loser and a dormant gainer. If a bar extends 

beyond the uniform line, then the category is active; thus, both Grass and Bare are active losers and 

active gainers. 

Figure 4. Intensity of gains and losses by category. 
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Figures 5–7 compare the observed transition intensities to the hypothesized uniform transition 

intensities. If a bar stops before the uniform line, then the transition avoids. If a bar extends beyond the 

uniform line, then the transition targets. The upper part of Figure 5 shows that the gain of Forest 

targets Grass and avoids Bare, while the lower part of Figure 5 shows that Grass targets and Bare 

avoids the loss of Forest. Figure 6 shows that the gain of Bare targets Grass and avoids Forest, while 

Grass targets and Forest avoids the loss of Bare. Figure 7 shows that the gain of Grass targets Bare and 

avoids Forest, while Bare targets and Forest avoids the loss of Grass. Thus, the systematically targeting 

transitions are from Grass to Bare and from Bare to Grass; while the systematically avoiding 

transitions are from Bare to Forest and from Forest to Bare. 

Figure 5. Intensity of transitions given Forest’s gain on the positive axis and given Forest’s 

loss on the negative axis. 

 

Figure 6. Intensity of transitions given Bare’s gain on the positive axis and given Bare’s 

loss on the negative axis. 
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Figure 7. Intensity of transitions given Grass’ gain on the positive axis and given Grass’ 

loss on the negative axis. 

 

3.3. Error Analysis 

Figure 8 shows the intensities of the hypothetical errors that could account for the deviations 

between observed category level change intensities and the hypothesized uniform change intensity, 

i.e., the deviations in Figure 4. The three bars in Figure 8 concerning the map of 2004 indicate 

hypothetical errors that could account for deviations from a uniform gain. Specifically, if the actual 

omission error intensity for Forest at 2004 is less than 67 percent, then there is evidence that Forest is 

dormant in terms of gains. The three bars concerning the map of 2000 indicate hypothetical errors that 

could account for deviations from a uniform loss. Specifically, if the actual omission error intensity for 

Forest at 2000 is less than 38 percent, then there is evidence that Forest is dormant in terms of losses. 

By similar logic, if the commission error intensities are less than 81 percent for both Bare and Grass at 

both 2000 and 2004, then there is evidence that Bare and Grass are active in terms of both gains and 

losses, because 81 percent is the minimum among the bars for Bare and Grass in Figure 8. 

Figure 8. Hypothetical error intensities within the change region that could account for 

deviations from uniform category level losses and gains. If the actual error intensities are 

less than the ones in the figure, then there is evidence that the category level gains and 

losses are non-uniform. 

 

0 10 20 30 40 50 60 70 80 90 100

20
00

 E
rr

o
r

(L
os

se
s)

20
04

 E
rr

o
r

(G
ai

ns
)

Hypothetical Error Intensity (percent of category)

Forest Omission Bare Commission Grass Commission



Land 2013, 2 362 

 

4. Discussion 

4.1. Error Analysis 

It is common that researchers do not know the sizes and types of errors in the data, especially 

because satellite images are widely available for historic dates but it is impossible to go back in time to 

collect ground reference information that would be necessary to assess accuracy. If accuracy 

information were to exist, then it would be desirable to compare the hypothetical error intensities to the 

actual error intensities, but ignorance of actual errors is not a sufficient reason to ignore possible errors 

and is not a sufficient reason to disregard historic satellite images. Researchers can draw on their 

experience with similar types of classifications as researchers interpret the hypothetical errors. Figure 8 

shows that the Forest omission hypothetical error is substantially smaller than the other hypothetical 

errors, thus the conclusion that Forest is dormant in terms of losses has weaker evidence than the other 

conclusions concerning categorical losses and gains shown in Figure 4. 

4.2. Large Dormant Category Phenomenon 

The Kalimantan case study illustrates one type of the large dormant category phenomenon, in which 

the presence of a large dormant category causes the intensities of other categories to be greater than 

they would be in the absence of the large dormant category [1]. Forest accounts for the majority of the 

domain at both time points (Table 1), and Forest is dormant in terms of both gains and losses  

(Figure 4), thus Forest is a large dormant category. Forest’s large size plays a role in the results that 

Forest is dormant in both gains and losses, and that gains of both Bare and Grass avoid Forest, while 

Forest avoids the losses of both Bare and Grass (Figures 6 and 7). Nevertheless, Forest plays a 

substantial role in the total change, because change occurs in approximately 17 percent of the Central 

Kalimantan domain, and 15 of those percentage points involve transitions with Forest (Table 1). Forest 

is dormant due mainly to its large persistence, which is included in the denominators of Equations 

(4,5). We performed sensitivity analysis to see how much Forest persistence must be eliminated from the 

domain in order for Forest to become active. We found that if 89 percent or more of the Forest 

persistence were eliminated from the domain, then Forest would become active in losses, and Forest 

would become a targeting category in the four transitions analyzed in Figures 6 and 7. If 97 percent or 

more of the Forest persistence were eliminated from the domain, then Forest would become active also 

in gains. 

Our case study illustrates one type of the large dormant category phenomenon that is different than 

a second type in which the large dormant category plays a small role in total change. Water is a typical 

example of the second type of large dormant category. Water might be necessary to include in some 

land change studies where humans convert water to land via infill or convert land to water via dams. It 

is not clear how much of the persistent water should be included in a study of change, especially for 

coastal studies where most of the water category persists as ocean. The size of any category affects the 

intensities of other categories; thus, researchers can be tempted to exclude water to eliminate this 

effect. In fact, we masked water from the Kalimantan case study because water is small and not 

particularly relevant to our research question. If water were excluded from an analysis, then the 

analysis might miss some important transitions that involve water, depending on the research question. 
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The large dormant category phenomenon requires more research to determine general principles 

concerning how to select a study’s domain. 

4.3. Sensitivity to the Selection of the Domain 

Selection of the domain is influential regardless of whether one uses Intensity Analysis or some 

other analytical technique. For example, Equation 1 computes the total change as a domain’s percent, 

which includes persistence in the denominator. Equation (1) is usually the first calculation in an 

investigation of land change. This subsection illustrates how Intensity Analysis is sensitive to the 

amount of persistence that the domain includes for each category, thus it is usually helpful to consider 

how the results of Intensity Analysis can be sensitive to the selection of the domain, especially 

concerning possible elimination of some persistence or entire categories, such as water. 

Tables 3–6 give four examples to illustrate the major points. Each table has ten pixels, six of which 

show change, thus S = 6/10. All tables are identical in terms of the changes, meaning the off-diagonal 

transitions are identical across the four tables. Each table is symmetric, meaning each table is identical 

to its transpose. The only differences among the tables are the amounts of persistence for each 

category, which are on the matrices’ diagonal entries. 

Table 3 shows that the size of Bare equals the size of Grass at both time points. Intensity Analysis 

computes transition intensities, given the sizes of the categories at the time points. The transition from 

Bare to Forest is larger than the transition from Grass to Forest, thus Intensity Analysis indicates that 

the gain of Forest targets Bare and avoids Grass. The transition from Forest to Bare is larger than the 

transition from Forest to Grass, thus Intensity Analysis indicates that Bare targets the loss of Forest 

and Grass avoids the loss of Forest. For Tables 3–5, 3/4 of the final Forest derives from Forest’s gain 

and 3/4 of the initial Forest loses. Thus, Forest is active in both gains and losses for Tables 3–5, 

because 3/4 is greater than 6/10. 

Table 4 shows that the size of Bare is twice the size of Grass at both time points. The transition 

from Bare to Forest is twice the transition from Grass to Forest, and the transition from Forest to Bare 

is twice the transition from Forest to Grass. Thus, Intensity Analysis indicates the intensities are 

uniform for both transitions from Forest and for both transitions to Forest. 

Table 5 shows that the size of Bare is five times the size of Grass at both time points. The transition 

from Bare to Forest is less than five times the transition from Grass to Forest, thus the gain of Forest 

avoids Bare and targets Grass. The transition from Forest to Bare is less than five times the transition 

from Forest to Grass, thus Bare avoids the loss of Forest and Grass targets the loss of Forest. 

Table 6 shows that the size of Bare is twice the size of Grass at both time points. The transition 

from Bare to Forest is twice the transition from Grass to Forest, and the transition from Forest to Bare 

is twice the transition from Forest to Grass. Thus, Intensity Analysis indicates that the intensities are 

uniform for both transitions from Forest and for both transitions to Forest, as in Table 4. In contrast to 

Table 4, Table 6 indicates that 3/7 of the final Forest derives from gain and 3/7 of the initial Forest 

loses. Thus, Forest is dormant in both gains and losses, because 3/7 is less than 6/10. 
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Table 3. Matrix that shows Forest’s gain targets Bare and Bare targets Forest’s loss. 

  Final Time Initial Interval 

Forest Bare Grass Total Loss 

Initial Time Forest 1 2 1 4 3 

Bare 2 1 0 3 2 

Grass 1 0 2 3 1 

Final Total 4 3 3 10  

Interval Gain 3 2 1  6 

Table 4. Matrix that shows uniform transition intensities to Forest and from Forest for 

active Forest. 

  Final Time Initial Interval 

Forest Bare Grass Total Loss 

Initial Time Forest 1 2 1 4 3 

Bare 2 2 0 4 2 

Grass 1 0 1 2 1 

Final Total 4 4 2 10  

Interval Gain 3 2 1  6 

Table 5. Matrix that shows Forest’s gain avoids Bare and Bare avoids Forest’s loss. 

  Final Time Initial Interval 

Forest Bare Grass Total Loss 

Initial Time Forest 1 2 1 4 3 

Bare 2 3 0 5 2 

Grass 1 0 0 1 1 

Final Total 4 5 1 10  

Interval Gain 3 2 1  6 

Table 6. Matrix that shows uniform transition intensities to Forest and from Forest for 

dormant Forest. 

  Final Time Initial Interval 

Forest Bare Grass Total Loss 

Initial Time Forest 4 2 1 7 3 

Bare 2 0 0 2 2 

Grass 1 0 0 1 1 

Final Total 7 2 1 10  

Interval Gain 3 2 1  6 

We had considered excluding persistence from the equations as we developed Intensity Analysis. 

Specifically, we considered making the denominator of Equation (6) equal to the loss of category i 

rather than the size of i at the initial time, in which case we would have made the denominator of 

Equation (7) equal to the sum of losses of all not n categories rather than the size of all not n categories 

at the initial time. Also, we considered making the denominator of Equation (8) equal to the gain of 

category j rather than the size of j at the final time, in which case we would have made the 

denominator of Equation (9) equal to the sum of gains of all not m categories rather than the size of all 
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not m categories at the final time. Alas, we realized that this would defeat the purpose of Intensity 

Analysis, because it would imply that all the Forest transitions in Tables 3–6 have uniform intensities 

equal to one, but Tables 3–6 have different patterns that we designed purposely to portray different 

processes. The next subsections describe how Intensity Analysis can offer insight to the relationship 

between pattern and process. 

4.4. Top-Down Hierarchy and Temporal Processes 

Intensity Analysis has a top-down hierarchy in which broader information determines the context 

for more detailed information. Specifically, Intensity Analysis interprets category level intensities Li 

and Gj relative to the broader intensity of total change S (Table 2). Then, Intensity Analysis interprets 

transition level intensities Rin and Qmj relative to category level intensities Wn and Vm. Categories’ sizes 

influence the calculation of the detailed transition level intensities, while the various transition 

intensities do not influence the category level calculations. For example, it is possible to compute 

Equations (1–5) using knowledge of only the matrix’s diagonal entries and category sizes at the initial 

and final times. Then, Intensity Analysis computes the transition intensities, conditional on the 

category sizes. 

Furthermore, Intensity Analysis’ equations concerning the matrix’s rows are symmetric with its 

equations concerning the matrix’s columns. However, a temporal change process is not symmetric in 

time because the change during a time interval influences the sizes of the categories at the final time 

but not at the initial time. Therefore, it can be more intuitive to interpret intensities that are conditional 

on the initial time, than to interpret intensities that are conditional on the final time. Specifically, at the 

category level, it can be more intuitive to compare Li to S, than to compare Gj to S, because Li is 

conditional on the size of category i at the initial time but Gj is conditional on the size of category j at 

the final time. For the same reason, it can be more intuitive to compare transition intensities Rin to Wn 

than to compare Qmj to Vm at the transition level. For intensities that are conditional on the final time, 

the degree of difficulty of interpretation depends on how one envisions the hierarchy of the change 

process. If a change process is top-down, i.e., where broader categorical changes dictate the detailed 

transitions, then interpretation is straight forward because the change process matches the structure of 

Intensity Analysis. If change processes are bottom-up, i.e., where various detailed transitions combine 

to form broader patterns at the category level, then it can be challenging to interpret results that are 

conditional on the final time. To illustrate, let us revisit Tables 3–6. 

We designed symmetry into Tables 3–6 to illustrate the point that Intensity Analysis is symmetric 

with respect to the initial and final times. Tables 3–6 are symmetric with respect to the diagonal, thus 

the tables’ symmetry matches the symmetry of the equations in Intensity Analysis. In the hierarchy of 

Intensity Analysis, the calculation of transition intensities during the interval does not influence the 

sizes of the categories at the initial time, which makes temporal sense. Also, the calculation of 

transition intensities during the interval does not influence the sizes of the categories at the final time, 

which can be initially counter intuitive, but can still make sense when the process has a top-down 

hierarchy. For example, consider a case where the initial map is completely Forest, and the transition 

from Forest to Bare is twice the size of the transition from Forest to Grass, as in the Forest row of 

Table 6. Imagine that a process of growth of construction drives the conversion to Bare, while a 



Land 2013, 2 366 

 

process of growth of logging drives the conversion to Grass. Intensity Analysis models the change by 

accounting first for the fact that the size of Bare is twice the size of Grass at the final time. Therefore, 

Intensity Analysis would consider both transitions from Forest to be uniform. The explanation would 

be that the growth of construction is twice the growth of logging in the entire domain, and these two 

top-down processes explain why the size of the transition from Forest to Bare is twice the size of the 

transition from Forest to Grass. In this explanation, the two broader category level top-down processes 

can completely account for the transitions. This illustrates how one must interpret results by 

considering the change processes.  

Let us illustrate further with our case study by considering transitions to Forest, while focusing on 

transition intensities that are conditional on the initial time. We hypothesize that Forest would grow 

more from Grass than from Bare, because we hypothesize a natural process of recovery from Bare to 

Grass to Forest. However, the size of the transition from Bare to Forest is larger than the size of the 

transition from Grass to Forest (Table 1). This seems at first to contradict our hypothesis, but Intensity 

Analysis resolves the contradiction by considering the sizes of Bare and Grass at the initial time. There 

is more Bare than Grass at the initial time; thus, if Forest were to gain with uniform intensity from both 

Bare and Grass at the initial time, then the size of the transition from Bare to Forest would be larger 

than the size of the transition from Grass to Forest. Intensity Analysis shows that the gain of Forest 

targets Grass and avoids Bare (Figure 5), which matches our hypothesized process of Forest gain. 

Now let us consider the transitions from Forest, while focusing on transition intensities that are 

conditional on the final time. We hypothesize that the change processes of Forest loss in our study area 

are fire, agriculture, and logging [15]. Uncontrolled fires are likely to produce Bare, whereas 

agriculture and logging are likely to produce Grass. The size of the transition from Forest to Bare is 

larger than the size of the transition from Forest to Grass (Table 1), which seems initially to support a 

hypothesis that fire is more responsible than other drivers for Forest’s loss. However, transition 

intensities indicate that Bare avoids the loss of Forest while Grass targets the loss of Forest (Figure 5), 

which seems to support a hypothesis that fire is less responsible than other drivers for Forest’s loss. 

The transition intensity from Forest to Bare is less than the transition intensity from Forest to Grass 

due in part to the fact that Bare is more prevalent than Grass at the final time. However, the sizes at the 

final time are influenced by persistence and change during the time interval. This example 

demonstrates how results from Intensity Analysis can help to formulate hypotheses concerning  

process of change.  

If Intensity Analysis were to give information identical to the information that we could see easily 

by a direct comparison of the sizes of the transitions, then there would be no need for Intensity 

Analysis. Intensity Analysis probes the transition matrix to reveal the matrix’s detailed patterns. The 

transition matrix describes patterns of change, which are caused by processes of change. Researchers 

must use qualitative knowledge concerning processes of change in order to interpret Intensity Analysis 

in a manner that can help to develop a cause and effect understanding. Intensity Analysis can help to 

assess the evidence for a particular hypothesized process of change, and can help to develop new 

hypotheses concerning processes of change. For proper interpretation, researchers must consider 

whether the hypothesized processes of change match the hierarchical structure of Intensity Analysis. 

  



Land 2013, 2 367 

 

4.5. Next Steps in Research Agenda 

We are beginning to develop a method to detect whether top-down processes can account for 

detailed transitions or whether various bottom-up transitions are required to account for a particular 

matrix, because usually there can be many possible combinations of transitions that are consistent with 

a set of marginal totals and persistence for each category. If the matrix’s marginal totals could explain 

all the transitions, then there would be evidence that top-down processes are operating. If the matrix’s 

marginal totals cannot explain the transitions, then there would be evidence that bottom-up processes 

are operating. Future research should examine this approach to link patterns with processes. 

It is interesting to compare Intensity Analysis to the Markov approach, which is a popular method 

to analyze a transition matrix [1,18,19]. Markov’s architecture assumes bottom-up processes in which 

the transition intensities within each row of the matrix determine the changes over time. The Markov 

matrix computes the proportion of the initial category that transitions to categories at the subsequent 

time, conditional on the size of the selected initial category, and independent of the other initial 

categories. For the Kalimantan case study, the Markov transition from Forest to Bare is greater than 

the Markov transition from Forest to Grass, because the size of the transition from Forest to Bare is 

greater than the size of the transition from Forest to Grass. The Markov matrix ignores the size of the 

categories at the final time, which explains why Markov’s results are different than Intensity Analysis’ 

results concerning the transition intensities for a selected losing category. Markov is not designed to 

analyze a pattern of gains in the way Intensity Analysis does, because Markov does not compare the 

distribution of transitions within each column. 

Some potential applications of Intensity Analysis are not temporal, and would therefore not have 

the above-mentioned complications concerning interpretation of temporal cause and effect 

relationships. For example, Intensity Analysis could compare two classifications of a single image, 

where the rows indicate the categories according to one method of classification and the columns 

indicate the categories according to an alternative method of classification. The research question 

would ask how the two classifications are associated. In this situation, there is not a cause and effect 

relationship among the rows and columns, because the process of one classification does not affect the 

process of the other classification. For such cases, the symmetrical architecture of Intensity Analysis 

matches the symmetry of the research question concerning the association between the two methods 

of classification. 

5. Conclusions 

This article examines the design of Intensity Analysis and offers guidance concerning its 

interpretation. We illustrate four important concepts using a matrix of transitions among the categories 

Forest, Bare, and Grass over one time interval in Central Kalimantan, Indonesia. These four concepts 

concern: error analysis, the large dormant category phenomenon, sensitivity to the selection of the 

domain, and the top-down hierarchical symmetric structure of Intensity Analysis. The results illustrate 

how Intensity Analysis gives information that is different than the information obtained from a direct 

comparison of the sizes of the entries in the transition matrix. In our case study, Forest is the only 

dormant category for both gains and losses, in spite of being involved in most of the changes. The 
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transition from Forest to Bare is systematically avoiding, in spite of being the largest transition. These 

types of insights can help researchers test and develop hypotheses concerning processes of change. 

This article’s concepts are generally applicable, so we hope researchers of other case studies will 

benefit from these ideas during the application and interpretation of Intensity Analysis. 
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