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A B S T R A C T   

The combined effect of pollution source discharge and sediment adsorption leads to the rapid enrichment of 
heavy metals and other pollutants in lake sediments, which poses a serious threat to the lake ecosystem. 
Accurately identifying the risk areas of heavy metals in sediments is the key to lake sediment pollution control. 
Taking Taihu Lake as the study area, combined with the ecological risk status of heavy metals in sediments, the 
spatial clustering characteristics of pollution sources and the clustering information of sediment attributes, a 
potential toxic risk area identification method based on sediment source aggregation class (SLISA-SCA) was 
established. Through the source analysis of heavy metals in sediments, heavy metals such as Cr, Mn, Cu and Zn in 
Taihu Lake sediments were identified to have originated from natural sources and were subsequently disturbed 
by human activities to a certain extent. Cd was found to be strongly affected by human activities, and almost all 
Taihu Lake sediments were affected to varying degrees. In addition, the anthropogenic sources of heavy metals 
show high concentration clustering characteristics in the lake bay. By K-means cluster analysis of sediment at-
tributes, three significant differences were obtained, which were determined as potential high pollution risk 
areas, potential medium risk areas and potential low risk areas, and the proportions were 5.6%, 27.6% and 
66.8%, respectively. The SLISA-SCA model established in this study, from the perspective of source sinks, 
comprehensively considers the risks caused by pollution sources and sediment attributes to sediments and di-
vides Taihu Lake into five different risk control areas (high-risk control area, potential high-risk control area, 
potential risk control area, potential low-risk control area and low-risk control area). This study identified areas 
with different levels of heavy metal pollution in Taihu Lake sediments, proposes corresponding treatment 
measures, and provides a scientific and systematic method and technology for the pollution management of other 
river and lake sediments in the world.   

1. Introduction 

Heavy metals are typical inorganic pollutants produced in the pro-
cess of social and economic development (Kaur et al., 2022) and have 
carcinogenic, teratogenic, mutagenic and other effects on the human 
body. These pollutants are widely distributed in the environment and 
pose a serious threat to ecological security and human health (Esmaeili 
et al., 2022). Lake sediments are in a closed environment, which will 
make heavy metals and other pollutants more durable. When the lake 
environment was disturbed, various pollutants in sediments will be 

released again, posing a greater threat to the surrounding ecological 
environment and human health (Tao et al., 2019). There are more than 
1400 large lakes in the world, which are important sources of water for 
human beings, and their river basin was also an important area for 
human social and economic development. Lake pollution is closely 
related to the production and life of the people in this region. The 
contradiction of global freshwater resources is becoming increasingly 
acute, which is also a fatal threat to mankind (Xiao et al., 2019). If the 
polluted areas in the lake can be identified and the areas with different 
degrees of pollution can be divided, it will help to accurately control lake 
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pollution and improve the efficiency of lake pollution control. However, 
there is a lack of systematic analysis methods for the risk analysis and 
risk area identification of heavy metals and other pollutants in lake 
sediments. 

Exploring heavy metal pollution in sediments from pollution sources 
is an important prerequisite for the study of lake ecological risk. With 
the rapid development of China’s industrial economy, the scale and 
production capacity of various industries, such as the coal, building 
materials, metallurgy and chemical industries, are also soaring rapidly. 
The combustion of petroleum fossil fuels and the incomplete utilization 
of raw materials have inevitably led to the migration of heavy metals 
and other pollutants into the environment (Long et al., 2021). Studies 
have shown that the average daily production in China was 1.01 × 107 

tons of heavy metal-containing solid waste in 2020 (China Statistical 
Yearbook, 2020), and the source discharge of pollutants has directly and 
seriously threatened ecological security. Therefore, exploring the source 
and spatial distribution characteristics of heavy metals in lake sediments 
has important scientific guiding significance. Ti is relatively stable and 
difficult to migrate, so it is often used as a reference element to correct 
the migration of other heavy metals (Wan et al., 2016). The 
anthropogenic-natural (AN) model can eliminate the impact of heavy 
metal migration and accurately and quantitatively analyse the anthro-
pogenic and natural sources of heavy metals (Li et al., 2018). Compared 
with other pollutant source analysis methods, the isotope method needs 
to test the isotope data of each heavy metal, which requires considerable 
capital and manpower. Source analytic receptor models, such as the 
positive definite matrix method, have rotational uncertainty and human 
subjectivity, which will bring great errors to the analytical results. 
Kriging spatial interpolation can smooth the spatial variation in pol-
lutants, so it is often used to explore the distribution of pollutants in 
sediments (Ahn et al., 2019). In fact, spatial anomalies are very common 
in sediments. As industry and population gather in some areas, this may 
lead to point or line pollution of pollutants in nearby rivers and lakes 
(Khiari et al., 2021; Vega-Herrera et al., 2022). Therefore, more atten-
tion must be paid to the cluster distribution pattern of the lake area. 

Lake sediments are an important sink of pollutants. Sediment prop-
erties, such as total organic carbon (TOC) and clay, can adsorb pollut-
ants such as heavy metals. The adsorbed pollutants can be stored in 
sediments more permanently, therefore increasing the potential risk of 
pollutants in sediments (González-Gaya et al., 2019; Berrojalbiz et al., 
2011). Studies have shown that the higher the content of clay and 
organic matter in sediments is, the higher the concentration of pollut-
ants. However, in the current sediment risk research, the impact of 
sediment attributes on risk assessment is often neglected, and few 
studies include sediment attributes such as clay and organic matter 
content in the pollutant risk assessment system. The main reason for this 
phenomenon is that the sediment properties cannot have a threshold 
similar to heavy metals and other pollutants (Feng et al., 2017), which 
leads to the fact that the potential risk of sediment properties cannot be 
well evaluated. K-means clustering belongs to the classification method 
of unsupervised learning. It combines the data of different categories 
into the same category, with the advantages of simplification and effi-
ciency. It has been applied to the risk analysis of different pollutants 
(Morais et al., 2021; Schwarz et al., 2022). 

Early studies generally used the risk assessment methods of heavy 
metal pollution, such as the enrichment index, geoaccumulation index 
and potential ecological risk index (Hakanson, 1980; Muller, 1969; Cai 
et al., 2015). To some extent, these methods accurately identify whether 
the sample points are polluted and the degree of pollution, and these 
methods are still used today (Aguilera et al., 2021). With the develop-
ment and update of technology, geographic information technology has 
been widely used in the spatial prediction of pollution risk, which ex-
tends the previous point pollution risk assessment to surface pollution 
risk assessment, makes the evaluation results clearer and more specific, 
and makes substantial progress in the risk assessment of heavy metal 
pollutionm (Wu et al., 2019). As research on heavy metal pollution in 

sediments has formed a relatively perfect system, relevant research ex-
perts have generally reached a consensus: the pollution of heavy metals 
in sediments is jointly affected by the intensity (source) of anthropo-
genic emissions and the strong pot (sink) of sediment adsorption ca-
pacity. However, in the current research on the identification of heavy 
metal risk areas (Jia et al., 2020), few studies reasonably include the 
emission of pollution sources and the adsorption factors of collection 
areas in the evaluation system, which reduces the practical application 
value of these risk area identification methods. 

With the rapid development of industrial economy, the demand for 
fresh water resources has increased sharply, and the contradiction of 
water resources has become increasingly serious. As an important 
reservoir of fresh water, the environmental quality of lakes is very 
important. This study comprehensively considered the risk status of 
pollutant source‒sinks and takes Taihu Lake as the study area. The main 
research purposes are as follows: (1) to quantitatively analyse the 
sources of heavy metals in sedimentary materials and their spatial 
cluster distribution patterns; (2) to explore the spatial clustering char-
acteristics and potential risk status of sediment attributes in Taihu Lake; 
and (3) to establish a comprehensive risk area identification method of 
heavy metals in sediments based on source‒sink. 

2. Materials and methods 

2.1. Sample collection and processing methods 

Taihu Lake is located in the subtropical zone, with a mild and humid 
climate. The lake covers an area of 2427.8 km2, with hills and mountains 
in the west and southwest and plains and water networks in the east. The 
water system of Taihu Lake flows from west to east, with an average 
annual runoff of 7.5 × 1010 m3 and a water storage capacity of 4.4 ×
1010 m3, which is an important freshwater resource in the Yangtze River 
Delta region of China. The average depth of Taihu Lake is approximately 
1.8 m, which makes Taihu Lake a shallow lake. Taihu Lake Basin is one 
of the largest comprehensive industrial bases in China, and industrial 
production technology and equipment have a good foundation. The 
industrial category structure is electronics, machinery, chemistry, met-
allurgy, textile and food, and the industrial output value of these six 
industries accounts for more than 85% of the total industrial output 
value. A stainless steel grab was used to collect sediment samples from 
Taihu Lake at an average interval of 3 km, and the sample collection 
density was appropriately increased in the area close to the shore and in 
the lake bay (Fig. 1). The first 2 cm of each sediment sample was selected 
and stored in a polyethylene self-sealing bag, and the sample number 
was marked on the bag. The 63 surface sediment samples collected were 
placed in an incubator with dry ice and transported back to the labo-
ratory. Freeze-drying All sediment samples were freeze-dried, and 
foreign substances such as shells and plant roots were removed. The 
sediment particle size was measured by a Mastersize 2010 laser particle 
size metre produced by Malvern Company in the UK. The organic matter 
in the sediment was determined by the potassium dichromate volu-
metric method and external heating method. Heavy metals in sediments 
were determined by inductively coupled plasma emission spectrometry 
(ICP‒OES) and inductively coupled plasma‒mass spectrometry (ICP‒ 
MS). The specific operation steps are in the supplementary materials. 

2.2. Quantitative source analysis 

For the source analysis of heavy metals in sediments, taking Ti as the 
reference element can eliminate the impact of heavy metal migration, 
eliminate noise, and more accurately and sensitively analyse the 
contribution of anthropogenic sources and natural sources (Wan et al., 
2016). The specific calculation formula is as follows: 

[M]anthropogenic = [M]sample − [M]natural (1) 
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[M]natural = [Ti]sample × [M]background

/
[Ti]background (2)  

Ranthropogenic = [M]anthropogenic

/
[M]sample (3) 

In Formulas (1) and (2), [M]anthropogenic, [M]natural and [M]sample 
represent the anthropogenic, natural and total concentrations of metal 
M in sediment samples, respectively. [Ti]background and [Ti]sample 
represent the natural background value and total concentration of Ti in 
sediments, respectively. [M]background indicates the concentration of 
metal M in the natural background material. Ranthropogenic is the 
anthropogenic source contribution rates. The background values of el-
ements in Taihu Lake sediments are selected from Ref. Li et al. (2018). 

2.3. Local indicators of spatial association 

The global Moran index method was proposed by Patrick, an 
Australian statistician, in 1950. It is an important statistical index used 
to study the spatial autocorrelation of a region. The so-called spatial 
autocorrelation, similar to time series autocorrelation, refers to the 
overall spatial correlation of the spatial attributes of a spatial variable at 
different locations in the study area and the spatial attributes of its 
surrounding adjacent locations. Because of its harsh and complex re-

quirements, Anselin proposed local indicators of spatial association 
(LISA) in 1995. The methodology holds that for the subregions centred 
on any spatial elements in the study area, the autocorrelation statistical 
index can be calculated to express the spatial correlation in different 
subregions to better analyse its distribution law (Anselin, 1995). The 
specific calculation formula of LISA is as follows: 

Cj =

[
(
xj − x

)
∗

∑n

i=1,i∕=j

wi,j ∗ (xi − x)

]/
∑n

i=1,i∕=j
(xi − x)2

n − 1
(4) 

In Formula (4), Cjis the local Moran index corresponding to the j-th 
sample, wi,j represents the spatial weight value between sample i and 
sample j, and n is the total number of samples of variable x. LISA analysis 
was completed by geoda software (http://geodacentre.github.io/). 

2.4. K-means clustering 

The basic principle of the traditional K-means clustering algorithm is 
that first, the user selects K scenes as the initial clustering centre in 
advance, where k is the number of typical scenes expected at the end of 
clustering (Vasilaki et al., 2018). Then, the Euclidean distance from each 
remaining sample scene to the initial cluster centre was calculated, and 

Fig. 1. Study area and sampling map.  
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the remaining sample scenes were classified into their adjacent initial 
cluster centres to form a cluster according to the proximity principle. 
Finally, the average Euclidean distance of scenes in K clusters was 
calculated, and the value of the average Euclidean distance of each 
cluster was taken as the new cluster centre. Therefore, the process of 
scene compression was completed by using the traditional K-means 
clustering algorithm until the new cluster centre and the old cluster 
centre were no longer changed and the cluster centre was output. The 
flow chart of scene compression is shown in Fig. S1 By calculating the 
distance between each sample and each cluster centre, the k-means al-
gorithm marks the samples according to the principle of nearest distance 
(Peng et al., 2018; Gautam et al., 2022): 

dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

k=1

(
xik − xjk

)2

√

(5)  

where each micro trip has P parameters, xikand xjkare the k character-
istics of samples i and j, and dijis the distance of each micro trip. If the 
same sample data are clustered repeatedly, the appropriate K value 
should produce the same or similar clustering results; i.e., stability was 
regarded as an indicator of whether the K value is appropriate. Ac-
cording to the clustering stability test results, it was finally determined 
that all driving units were grouped into three categories. K-means 
clustering analysis was carried out in SPSS 26.0 (Statistical Graphics 
Crop, Princeton, USA). 

2.5. Establishment of the SLISA-SCA model 

The SLISA-SCA model was mainly composed of two parts (Fig. 2): 
first, the source of heavy metals in sediments was used to quantitatively 
analyse the contribution of human activities in each region of Taihu 
Lake, cluster analyse its spatial distribution, and evaluate the ecological 
risk of heavy metals. The second was the attribute of the heavy metal 
sink area, which was classified by K-means clustering, and its potential 
risk status was explored. Finally, based on the source sink risk analysis of 
heavy metals in sediments, a conceptual model was established to 

partition the risk of heavy metal pollution in Taihu Lake. 

3. Results and discussion 

3.1. Characteristics of heavy metals 

The spatial distributions of the concentrations of heavy metals such 
as Pb, Cr, Zn, Cu and Mn in sediments are similar (Fig. 3a). The con-
centration was relatively high in the lake bay area, which was basically 
concentrated in Zhushan Bay, Meiliang Bay and Gonghu Bay. In the 
centre and southeast of Taihu Lake, the concentration of heavy metals 
was relatively low. The concentration of the heavy metal Cd was the 
highest near the west bank of Taihu Lake, higher in Zhushan Bay and 
Gonghu Bay, and lower in the centre and southeast of Taihu Lake. The 
area close to the shore and the lake bay area were most affected by 
human activities, and the corresponding pollutant concentration will be 
higher. The flow direction of Taihu Lake (from west to east) and the 
special handicraft industry of coastal cities affect the spatial distribution 
of heavy metals to a great extent. Combined with the ecological risk 
analysis of heavy metals (Fig. 4), it was found that the areas with 
pollution risk of heavy metals in Taihu Lake sediments were also basi-
cally distributed in Lake Bay areas, especially Zhushan Bay. The pollu-
tion risk areas of different heavy metals vary greatly. The areas with 
pollution risks of the heavy metals Cr, Mn, Ni, Cu, Zn, Cd and Pb 
accounted for 34.9%, 7.9%, 6.3%, 15.9%, 4.8%, 96.8% and 66.7%, 
respectively. Among them, Cd pollution in the sediments of Taihu Lake 
was the most serious, which basically covers the whole Taihu Lake. This 
situation required management to pay enough attention and take rele-
vant pollution control measures immediately. 

Investigations and studies have shown that Yixing City on the West 
Bank of Taihu Lake, with the reputation of “ceramic capital”, produces a 
large number of ceramic products year round and sells them at home and 
abroad. However, raw materials for ceramic production, such as 
gehuang and cadmium red, contained a large amount of Cd. In the 
process of ceramic production, they inevitably enter the lake environ-
ment through atmospheric dust, wastewater infiltration and waste 

Fig. 2. Flow chart of heavy metal risk identification in sediments based on source-sink analysis.  
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transportation, which poses a great threat to the ecological security of 
Taihu Lake. Studies have shown that the ceramic industry in Yixing has 
caused serious Cd pollution to the surrounding soil, sediment and lake 
water (Liao et al., 2015). Compared with the concentrations of heavy 

metals in the sediments of other lakes at home and abroad (Table 1), Cr, 
Mn and Cu in the sediments of Taihu Lake were at a medium level, while 
the heavy metals Pb and Cd are at a high level. The environmental 
management department should pay attention to this situation, and 

Fig. 3. Spatial distribution (a) and statistical characteristics (b) of heavy metal concentrations in sediments of Taihu Lake.  
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Fig. 4. Risk of heavy metals in sediments.  

Table 1 
Concentrations of heavy metals in sediments of Taihu Lake and other lakes (mg kg− 1).   

Cr Mn Ni Cu Refs.  

Mean Range Mean Range Mean Range Mean Range  

This study 80.0 38.4~281.0 850 438~2081 41.9 15.8~147.6 31.7 12.6~156.7  
Laizhou Bay       10.6 6.2~14.4 Liu et al. (2019) 
Bohai       34.1 20.2~60.7 Liu et al. (2019) 
Yellow River 51.7 40.1~69.2   26.5 19.8~39.6 18.5 13.5~24.7 Liu et al. (2019) 
Yueqing Bay 61.5      34.2  Yao et la. (2021) 
Bellandur wetland, Indian  33.9~199.4    15.1~138.4  105~1147.8 Ramachandra et al. (2018) 
East Sea-Byeong, Korea 73.9  1589  37.4  32.7  Kim et al. (2021)  

Zn Cd Pb Ti Refs.  

Mean Range Mean Range Mean Range Mean Range  

This study 104.6 38.7~422.3 0.51 0.15~1.81 32.0 17.9~51.7 4324 3894~4862  
Laizhou Bay 62.6 13.0~112.2 0.33 0.21~0.47 14.1 10.0~20.4   Liu et al., 2019; Liu and Fan, 

2019 
Bohai 100.0 53.0~197.4 0.61 0.25~2.53 30.9 24.3~43.4   Liu et al. (2019) 
Yellow River 62.2 40.6~84.2 0.15 0.09~0.28 21.6 18.1~28.4   Liu et al. (2019) 
Yueqing Bay 107.3  0.12  28.4    Yao et la. (2021) 
Bellandur wetland, Indian  125.7~2001  1.6~55.3  31.2~308.2   Ramachandra et al. (2018) 
East Sea-Byeong ocean dumping site, 

Korea 
116.0  0.31  33.9    Kim et al. (2021)  
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clarifying the sources of Pb and Cd in the sediments of Taihu Lake has 
become the primary task of pollution control. 

3.2. Sources and spatial clustering characteristics of heavy metals 

The sources of heavy metals can also be divided into natural sources 
and anthropogenic sources. Natural heavy metals of Taihu mainly come 
from soil erosion, nineral weathering and biogeochemical cycles (Li 
et al., 2018). Anthropogenic sources of Taihu mainly come from in-
dustrial, agricultural production and life processes (Liu et al., 2021; Niu 
et al., 2020). Different heavy metals may have the same or similar 
pollution sources or may come from different pollution sources. To 
explore the source characteristics of heavy metals in Taihu Lake sedi-
ments, the correlation and significance between different heavy metals 
were analysed (Table S3). The heavy metals Cr, Mn, Ni, Cu, Zn, Cd and 
Pb in Taihu Lake sediments are significantly correlated at the level of 
0.01, and the correlation between the heavy metals Cr, Mn, Ni, Cu and 
Zn is more than 0.8 (R2 value is 0.64). This indicated that there were 
similar pollution sources of heavy metals in the sediments of Taihu Lake, 
and some heavy metals may have the same pollution sources. In 
contrast, the correlation between the heavy metal Cd and other elements 
in Taihu Lake sediments was relatively weak, maintained at approxi-
mately 0.5 (R2 value was approximately 0.25), which indicated that in 
addition to the similar pollution sources between Cd and other elements, 
there were also their own unique pollution sources. These special 
pollution sources were different from other elements, and the heavy 

metal Pb also had similar characteristics to Cd in pollution sources. 
To further determine the types of pollution sources and their 

contribution of heavy metals in sediments, we analysed the sources of 
heavy metals in sediments of Taihu Lake (Table S4). According to the 
analysis of the heavy metal source analysis model, the sources of heavy 
metals were divided into natural sources and anthropogenic sources. 
Basically, the natural source variation range of each heavy metal was 
narrow and relatively stable, and the value was small, which was in line 
with the content characteristics of natural source elements, indicating 
that the source analysis results have high reliability. Compared with the 
natural source concentration of heavy metals in the sediment of Taihu 
Lake, the anthropogenic source concentration of heavy metals varies 
widely, which was several to dozens of times that of its natural source. 
The coefficient of variation of the heavy metals Cr, Mn, Ni and Cu 
exceeded 100%, indicating that they have been strongly disturbed by the 
external environment. The anthropogenic source contribution rates of 
Cr, Mn, Ni, Cu, Zn and Pb in sediments were 34.2%, 11.7%, 11.9%, 
24.5%, 12.0% and 34.1%, respectively, which indicated that the envi-
ronment of Taihu Lake has been seriously disturbed by human beings. 
Most of the heavy metal sources in the sediments of Taihu Lake 
contribute 74.4% of the Cd (Fig. 5c). This phenomenon needs to be given 
enough attention. Heavy metals in Taihu Lake have been obviously and 
strongly disturbed by human beings. Taihu Lake Basin is the largest 
comprehensive industrial base in China, and its electronics, machinery, 
chemistry, metallurgy, textile and other industries account for more 
than three quarters of its total industrial output value. As we all know, 

Fig. 5. Influence degree of sediment particle size and TOC on heavy metals (a), redundancy analysis of sediment particle size and TOC and heavy metals (b), 
contribution of pollution sources to heavy metals (c). 
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electronics, metallurgy, chemistry and other industries are important 
sources of heavy metal pollution (Avellaneda et al., 2022). In the process 
of production and processing, it is inevitable to discharge waste rich in 
heavy metals into the surrounding environment. 

3.3. Cluster analysis of sink sediment attributes 

The properties of sediments in the collection area can significantly 
affect the enrichment of pollutants to a certain extent. The sediment 
attribute data of Taihu Lake were tested and described (Table S2): the 
average concentration of sediment TOC was 17.7 mg kg− 1, with a 
variation range of 11.8~32.6 mg kg− 1. The average proportion of clay 
particles was 11.3%, and the variation range was 7~19%. The average 
proportion of silt was 79.2%, and the variation range was 73~86%. The 
average proportion of sand is 9.5%, and the variation range is 3~17%. 
The high content of TOC in sediments was mainly distributed in Zhushan 
Bay, Meiliang Bay, Gonghu Bay and East Taihu Lake (Fig. S2a), and the 
TOC content is relatively low in the southern, western and central areas 
of Taiyuan. The clay content showed similar spatial distribution char-
acteristics to TOC. The content of sand and gravel was mainly concen-
trated in the middle and high sand and gravel areas in western Taihu 
Lake and southern Taihu Lake. Five years ago, the total organic carbon 
content in Taihu Lake sediments was 6.86 mg g− 1, and the clay content 
was 11.0%. In contrast, the content of clay particles in Taihu Lake 
sediments has not changed, while the content of total organic matter has 
increased significantly, which indicates that the accumulation of organic 
matter in Taihu Lake sediments has been significantly affected in recent 
years. The correlation between different properties of sediments and 
various heavy metals is obvious (Table S3). There was a significant 
positive correlation between TOC and clay content and various heavy 
metals, while there was no significant correlation between gravel and 
silt content and various heavy metals. By taking the concentration 
indices of heavy metals in sediments as species factors and sediment 
particle size, TOC and other indices as environmental factors, redun-
dancy analysis was carried out. The analysis results are shown in Fig. 5a 
and 5b. The contents of TOC and clay particles in sediments of Taihu 
Lake have significant effects on all heavy metals, and their influence 
degrees reach 28.6% and 69.2%, respectively, which largely determines 
the enrichment capacity of heavy metals in sediments. The content of 
sediment silt and sand has a weak effect on the enrichment of heavy 
metals. 

The characteristics of sediment TOC and particle size affect or 
determine the enrichment capacity of heavy metals and other pollutants 
to a great extent and pose a potential threat to the ecological security of 
lakes. To clarify the combined characteristics of different attribute 
indices of sediments in Taihu Lake and classify the combined charac-
teristics of different attributes, this study carried out cluster analysis (K- 
means clustering) on different attribute indices of sediments. In the K- 
means clustering algorithm, the number of categories K had an impor-
tant impact on the accuracy of the clustering results, but usually the 
accurate value of K was unknown at first. If K was greater than the true 
value, the same class of data will be wrongly divided into multiple 
classes, which will lead to the fuzzy boundary of the clustering results. In 
contrast, merging different categories of data into the same category will 
reduce the compactness of the cluster. Therefore, clustering stability was 
usually used to determine the K value (Luxburg et al., 2010; Bendavid 
et al., 2007). The basic idea of this method was that if the same sample 
data wre clustered repeatedly, the appropriate K value should produce 
the same or similar clustering results; i.e., stability was regarded as the 
index of whether the K value is appropriate. According to the clustering 
stability test results, it was finally determined to cluster all driving units 
into three categories (Tables S6, S7). Because there was no change or 
only a small change in the cluster centre, convergence was realized. The 
maximum absolute coordinate change of any centre was 0. The current 
iteration was 7, and the minimum distance between the initial centres 
was 8.506. 

According to the cluster analysis, there were significant differences 
among the three types of sediments (Table S7). The contents of TOC, 
clay, silt and sand of the first type of sediment were 23.9 g kg− 1, 14.2%, 
78.0% and 8.7%, respectively. The contents of TOC, clay, silt and sand of 
the second type of sediment attribute were 19.5 g kg− 1, 11.8%, 80.7% 
and 8.7%, respectively. The contents of TOC, clay, silt and sand of the 
third type of sediment attribute were 15.2 g kg− 1, 10.3%, 78.8% and 
9.3%, respectively. In summary, there were obvious differences in the 
attribute characteristics of the three types of sediments. The first type of 
sediment had the highest content of organic matter and clay, had a 
strong adsorption capacity for heavy metals and other pollutants and 
was basically distributed in the lake bay area (Fig. S2b). This area is 
strongly disturbed by human activities. Therefore, the area of the first 
type of sediment was determined to be a potential high pollution risk 
area. The content of organic matter and clay particles in the second type 
of sediment was relatively high, and the adsorption capacity of heavy 
metals and other pollutants was relatively strong, which was roughly 
distributed in the lake bay and the area near the shore. This area also 
receives relatively strong interference from human activities. Therefore, 
the area of the second type of sediment was determined to be a potential 
medium-risk area. The third type of sediment had the lowest content of 
organic matter and clay, the adsorption capacity of heavy metals and 
other pollutants was very small, and the content of gravel was the 
highest. It was mainly distributed in southern Taiyuan and the central 
area, and the interference from human activities was weak. Therefore, 
the area of the third type of sediment was determined as a potential low- 
risk area. The proportions of potential high-risk areas, medium-risk 
areas and low-risk areas of heavy metals in sediments of Taihu Lake 
are 5.6%, 27.6% and 66.8%, respectively. 

3.4. Identification of potential risk areas 

Combined with the sources of heavy metals in sediments and the 
attribute characteristics of sediments in the collection area, we estab-
lished a new method to comprehensively evaluate the pollution risk 
status of heavy metals in sediments from the following three aspects: the 
ecological risk of heavy metals in sediments, the spatial clustering 
characteristics of anthropogenic sources of heavy metals, and the attri-
bute clustering characteristics of sediments in the collection area. If the 
geoaccumulation index (Igeo, details are in the supplementary mate-
rials) was greater than 0, it indicated that there was an ecological risk of 
heavy metals in sediments. If the geoaccumulation index was less than 0, 
it indicated that there was no ecological risk of heavy metals in sedi-
ments. There were three spatial clustering characteristics of anthropo-
genic heavy metal concentrations: high-high, low-low and not 
significant. High-high means that each point in the area is surrounded by 
high concentration points of heavy metals, indicating that the area has 
high pollution risk. Low-low means that each point in the area is sur-
rounded by low concentration points of heavy metals, indicating that the 
area has no pollution risk or low pollution risk. The nonsignificant area 
runs through the points of high concentration and low concentration, 
showing an irregular state. There may or may not be heavy metal 
pollution risk in this area. To some extent, the attribute characteristics of 
sediments in the collection area determine the enrichment capacity of 
pollutants and become a potential risk index. According to cluster 
analysis, the sediment attributes of Taihu Lake were divided into three 
cluster combinations: potential high-risk areas, potential risk areas and 
potential low-risk areas. According to the established comprehensive 
risk assessment method, the study divides the risk status of Taihu Lake 
into five types: high-risk control area, potential high-risk control area, 
potential risk control area, potential low-risk control area and low-risk 
control area. For example, if an area exceeds the ecological risk 
threshold of heavy metals, the spatial clustering characteristics of 
anthropogenic sources of heavy metals show a high-high area, or the 
clustering of sediment attributes shows potential risks, this area is the 
health risk control zone of heavy metal pollution. The classification of 
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different levels of potential risk control areas is mainly based on the 
clustering characteristics of sediment attributes, and the special cir-
cumstances of the other two factors are also considered. The specific 
classification information and standards are shown in Table S8. 

Combined with the established new comprehensive risk assessment 
method for sediments, this study divided the risk status of various heavy 
metals in Taihu Lake sediments (Fig. 6). The high-risk control areas of 
heavy metal Pb in sediments are mainly distributed in Zhushan Bay, 
Meiliang Bay and Gonghu Bay, and the potential high-risk control areas 
were mainly distributed in Xukou Bay and East Taihu Lake, accounting 
for 7.4% and 2.6%, respectively. Potential risk control areas and po-
tential low-risk control areas were mainly distributed in the lake bay and 
near the lake shore, and low-risk control areas were mainly distributed 
in the centre of the lake, accounting for 35.9%, 25.6% and 28.5%, 
respectively. The comprehensive risk zoning of Sediment Heavy Metals 
Cr, Mn, Ni, Cu and Zn showed similar characteristics to Pb (Fig. S3). The 
high-risk control area of heavy metal Cd in sediments was mainly 
distributed in West Taihu Lake and Zhushan Bay, the potential risk 
control area covers almost the whole Taihu Lake, and the distribution 
area of the potential high-risk control area and low-risk control area was 
very small, accounting for 14.7%, 80.6%, 3.2% and 1.5%, respectively. 
Based on this pollution zoning, the environmental management 
department can take different governance measures according to 
different pollution conditions of heavy metals in sediments. For 
example, for high-risk and potentially high-risk control areas, measures 
such as regular dredging and algae removal can be taken to cut off the 
enrichment of heavy metals. For potential risk areas, we can strengthen 
the restriction intensity of lake operation activities in this area and 
observe sediment and water quality in real time. Environmental man-
agers should recommend the generalization of domestic and industrial 
wastewater treatment and the implementation of equipment such as 
constructed wetlands aimed at depurating rainwaters flowing on streets, 
roads and pavements. In addition, regarding all measures to be taken in 
all areas of Lake Taihu, environmental managers should recommend the 
generalization of domestic and industrial wastewater treatment and the 
implementation of equipment such as constructed wetlands aimed at 
depurating rainwaters flowing on streets, roads and pavements. 

This method has been well applied in this study and addressed gaps 
for the study of classification methods for indicators lacking classifica-
tion thresholds, such as sediment attributes. The newly established 
SLISA-SCA model combined the risk clustering characteristics of the 
sediment heavy metal source sink and its own pollution risk level to 

make a reasonable risk zoning for the study area, and the model reduced 
the uncertainty of risk identification and zoning caused by only using 
spatial interpolation. Compared with other technologies, the SLISA-SCA 
model has stronger reliability and a wider scope of application for risk 
identification and management (Table 2). However, there were still 
some problems in this model that need to be further improved: 1. The 
bioavailability of different forms of heavy metals in sediments varies 
greatly. If conditions permit, it is best to test the content of free and 
residual heavy metals in sediments to better evaluate the ecological risk 
of heavy metals in sediments; 2. Black carbon components such as char 
and soot have strong adsorption. These indicators can also be considered 
when classifying sediment attributes. 

4. Conclusions 

Lake sediments are in a closed environment, in which heavy metals 
and other pollutants are rapidly enriched. When the lake environment is 
disturbed, various pollutants in the sediment will be released again, 
posing a greater threat to the surrounding human health and ecological 
environment. The study of the risk of heavy metal pollution in the lake 
system is complex, and the heavy metals in the area with a great impact 
of human activities show a strong enrichment at this point, which will 
strengthen the spatial heterogeneity of heavy metals. LISA can overcome 
this defect and is a good method to identify specific pollutant hotspots. 
In addition, the TOC and clay properties of sediments have a strong 
ability to adsorb heavy metals and other pollutants, which can greatly 
increase the potential ecological risk of heavy metals in sediments. 

This study used a model to analyse the anthropogenic and natural 
sources of heavy metals in Taihu Lake sediments and found that human 
activities significantly accelerated the enrichment of heavy metals in 
sediments. Using LISA and K-means clustering analysis, the spatial 
clustering characteristics of heavy metal elements and attribute char-
acteristics in sediments are analysed, and different potential risk types 
caused by sediment attributes were identified. Based on this, the SLISA- 
SCA model established in this study, from the perspective of source 
sinks, comprehensively considers the risks caused by pollution sources 
and sediment attributes to sediments and divides Taihu Lake into a high- 
risk control area, potential high-risk control area, potential medium-risk 
control area, potential risk control area, potential low-risk control area 
and low-risk control area. The SLISA-SCA model reduced the uncertainty 
of risk identification and zoning and provides a more intuitive and 
objective spatial view of heavy metal risk management and control. 

Fig. 6. Identification of heavy metal Pd and Cd risk areas in sediments based on new method analysis.  
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Compared with other technologies, this model had stronger reliability 
and a wider scope of application for risk identification and management, 
and this research provides important technical and theoretical support 
for the management of river and lake pollution. 
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results. 
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