About
8
Publications
1,954
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
301
Citations
Publications
Publications (8)
The representation based classification has achieved promising performance in high-dimensional pattern classification problems. As we know, in real-world applications the samples are usually corrupted by noise. However, representation based classification can take only noise in the test sample into account and is not able to deal with noise in the...
A limited training set usually limits the performance of face recognition in practice. Even sparse representation-based methods which outperform in face recognition cannot avoid such situation. In order to effectively improve recognition accuracy of sparse representation-based methods on a limited training set, a novel virtual samples-based sparse...
In this paper, we improve the minimum squared error (MSE) algorithm for classification by modifying its classification rule. Differing from the conventional MSE algorithm which first obtains the mapping that can best transform the training sample into its class label and then exploits the obtained mapping to predict the class label of the test samp...
The sparse representation classification (SRC) method proposed by Wright et al. is considered as the breakthrough of face recognition because of its good performance. Nevertheless it still cannot perfectly address the face recognition problem. The main reason for this is that variation of poses, facial expressions, and illuminations of the facial i...
An improvement to the nearest neighbor classifier (INNC) has shown its excellent classification performance on some classification tasks. However, it is not very clearly known why INNC is able to obtain good performance and what the underlying classification mechanism is. Moreover, INNC cannot classify low-dimensional data well and some high-dimens...
Minimum squared error based classification (MSEC) method establishes a unique classification model for all the test samples. However, this classification model may be not optimal for each test sample. This paper proposes an improved MSEC (IMSEC) method, which is tailored for each test sample. The proposed method first roughly identifies the possibl...
In this paper, we propose a coarse to fine K nearest neighbor (KNN) classifier (CFKNNC). CFKNNC differs from the conventional KNN classifier (CKNNC) as follows: CFKNNC first coarsely determines a small number of training samples that are “close” to the test sample and then finely identifies the K nearest neighbors of the test sample. The main diffe...
Feature selection (FS) methods have commonly been used as a main way to select the relevant features. In this paper, we propose a novel unsupervised FS method, i.e., locality and similarity preserving embedding (LSPE) for feature selection. Specifically, the nearest neighbor graph is firstly constructed to preserve the locality structure of data po...