
Cluster Comput
DOI 10.1007/s10586-013-0275-6

HSGA: a hybrid heuristic algorithm for workflow scheduling
in cloud systems

Arash Ghorbannia Delavar · Yalda Aryan

Received: 1 March 2012 / Accepted: 7 May 2013
© Springer Science+Business Media New York 2013

Abstract In heterogeneous distributed computing systems
like cloud computing, the problem of mapping tasks to re-
sources is a major issue which can have much impact on sys-
tem performance. For some reasons such as heterogeneous
and dynamic features and the dependencies among requests,
task scheduling is known to be a NP-complete problem.

In this paper, we proposed a hybrid heuristic method
(HSGA) to find a suitable scheduling for workflow graph,
based on genetic algorithm in order to obtain the response
quickly moreover optimizes makespan, load balancing on
resources and speedup ratio.

At first, the HSGA algorithm makes tasks prioritization
in complex graph considering their impact on others, based
on graph topology. This technique is efficient to reduction
of completion time of application. Then, it merges Best-Fit
and Round Robin methods to make an optimal initial pop-
ulation to obtain a good solution quickly, and apply some
suitable operations such as mutation to control and lead the
algorithm to optimized solution. This algorithm evaluates
the solutions by considering efficient parameters in cloud
environment.

Finally, the proposed algorithm presents the better results
with increasing number of tasks in application graph in con-
trast with other studied algorithms.

Keywords Heterogeneous distributed computing systems ·
Cloud computing · Workflow scheduling · Heuristic ·
Genetic Algorithm

A. Ghorbannia Delavar (�) · Y. Aryan
Department of Computer, Payame Noor Universtiy,
P.O. Box 19395-3697, Tehran, Iran
e-mail: a_ghorbannia@pnu.ac.ir

Y. Aryan
e-mail: yld_Aryan@yahoo.com

1 Introduction

Heterogeneous distributed computing (HDC) system con-
sists of potentially millions of heterogeneous computing
nodes interconnected through arbitrary network architecture
and is made for the creation of high-throughput computing
resource pools, and domain virtual organizations, to meet
the requirements of widely varying applications.

Cloud computing is a paradigm for HDC system promised
to deliver the utility computing vision with some appealing
properties such as sharing the resources as services on the
Internet on-demand forming, and includes many dynamic
resources and requests.

It consists of a collection of heterogeneous computing
nodes, virtualized computers, and software services that are
dynamically provisioned among the competing end-user’s
applications based on their availability, performance, capa-
bility, and Quality of Service (QoS) requirements [1]. The
cloud environment provisions services in main three levels:
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). These levels support
virtualization and management of differing levels of the so-
lution stack [2].

Cloud computing service providers, make the large-scale
network servers form the pool of large-scale virtual re-
sources. IaaS level is the delivery of hardware (server, stor-
age and network), and associated software (operating sys-
tems virtualization technology, file system), and provides a
large amount of computational capacities to service remote
users in a flexible and efficient way. In this level, the re-
sources have provisioned in the form of Virtual Machines
(VMs) deployed within the cloud equipments consisting
of: Data-center, physical resources etc. for fulfilling the re-
quests. Resource management sub systems in HDC systems
are designated to schedule incoming tasks in getting the ser-
vice.

mailto:a_ghorbannia@pnu.ac.ir
mailto:yld_Aryan@yahoo.com


Cluster Comput

Task scheduling is a key process for IaaS that is map-
ping the requests on resources in an efficient manner by
considering cloud characteristics. It takes VMs as schedul-
ing units for mapping physical heterogeneous resources to
tasks. Each VM is an abstract unit of computing and storage
capacities in cloud. By some reason such as heterogeneous
and dynamic properties of resources, in addition to many
number of entry tasks with different characteristics this is-
sue is known to be a NP-Complete problem.

Since a good scheduling method would enhance the per-
formance of the distributed system significantly and there is
no direct method to find an optimal solution in polynomial
time, so the schedule decisions must rely on heuristic ways
on finding a solution as good as possible.

The software running on HDC system is called an appli-
cation. Each application is a workflow, which is composed
of intercommunicated tasks. These tasks are scheduled to
run over different processors in the systems [3].

Many methods are proposed for this problem. Some of
them have used heuristic and evolutionary methods. Each
method often focuses on limited number of parameters and
main objectives such as the completion time of all tasks
(makespan), such as Min-min, Max-min or Sufferage. More-
over some classical solution scheduling algorithms often
rely on list-based methods, such as Heterogeneous Earliest
Finish Time (HEFT) or Critical Path, that often are used in
simple model systems and do not accurately reflect real par-
allel systems [4]. The Heterogeneous Earliest Finish with
Duplicator (HEFD) [5] used duplication of parent tasks in
scheduling. A dynamic list scheduling (DLS) method is pre-
sented in [6] for cloud computing systems. It does not con-
sider task priority of DAG workflow, also there are some
evaluated workflow scheduling algorithms in [7] that are
useful in homogeneous systems.

Some meta-heuristic based methods are presented to
solve NP problems such as: particle swarm optimiza-
tion (PSO) [8], tabu search (TS) [9], simulated annealing
(SA) [10], genetic algorithm (GA) etc. In contrast, GA by
[11, 12, 14] are known to give good results in several opti-
mization domains and provide robust search techniques that
allow a high-quality solution to be obtained from a large
search space and parallel search in polynomial time by ap-
plying the principle of evolution. It could present several
solutions to evaluate the efficient parameters.

Some of GA based methods have already been used in
the scheduling of workflows [13, 14]. But they don’t con-
sider heterogeneous components characteristics and is not
suitable for HDC system like cloud systems. Some of GA
based methods apply random manner to prepare the initial
population, or use different prioritization method for task
ordering in the same level in the workflow, such as Most
Completed Tasks, Most Outstanding Tasks, Least Depen-
dent Tasks, Most Dependent Tasks [15], and some of them

use simple graph with the most two output nodes. The num-
ber of GA based solutions are proposed in [16, 21] for het-
erogeneous systems too.

In this paper, we suggest a hybrid heuristic method
(HSGA) based on GA to find a proper scheduling solu-
tion for HDC system like cloud environments with com-
plex computational applications. The HSGA proposed algo-
rithm tries to decrease the number of GA operation iteration
with starting the algorithm by an optimized initial popula-
tion, considering the balance the load on resources. It makes
the solutions by two evaluation functions, a function mea-
sures priority of each task in workflow, based on their influ-
ence on the others, and another function evaluate the value
of the produced solutions. It focuses to decrease the com-
pletion time of application as makespan and failure rate, and
increasing the load balancing subjects.

The rest of this paper is organized as follow: in Sect. 2 the
related work are discussed, in Sect. 3 the Problem definition
is described, Sect. 4 is about proposed algorithm, in Sect. 5
the evaluating of performance of HSGA is presented, and
the conclusion in Sect. 6 would end the paper.

2 Related works

In this section, we mention some algorithms such as Greedy
(First-Fit), Round Robin, LAGA and NGA which are heuris-
tic and based on GA methods.

In some policies, First-Fit [22] or RR (Round Robin)
are used by some cloud system such as Eucalyptus [23]. In
these methods the starvation problem is almost solved and
the makespan is decreased. But, the requests will run on all
resources and would not support the optimal usage of re-
sources and a proper load balancing.

The LAGA algorithm has proposed for large-scale dis-
tributed systems like Grid and Cloud, based on GA. It is
a computation-intensive and reliability-driven reputation al-
gorithm that considers the tasks’ runtime using the task fail-
ure rate (task failures per unit time) of resources in order
to define the reputation and evaluate the reliability of re-
sources. This method computes a task ordering procedure
by resource completion time in each generation and selects
a resource with the least failure rate in mutation operation.
It focuses on completion time and schedule failure rate [16].

The NGA has proposed for heterogeneous multiproces-
sor systems, based on GA method too, that focus on com-
pletion time of application and communication delay time.
The fitness function in NGA does the evolution in two dif-
ferent phases. First phase is fitness of task that the authors
said it equipped system with the knowledge all the tasks are
executed and scheduled in legal order. Here legal order is
schedule a pair of tasks on single processor while the pair of



Cluster Comput

(a) A simple-structure graph (b) A complex-structure graph

Fig. 1 The simple and complex graphs in workflows

tasks is independent to each other. The second phase is fit-
ness of processor which attempts to minimize the processing
time [21].

Although to send and receive the requests and data
among resources, the communication cost affects the re-
sponse time to requests as a major factor, these algorithms
do not consider it. They just used computation time to cal-
culate the completion time of request without effective com-
munication time.

In this study we use in complex computational intensive
requests which is assigned on pool of resources with fully
connected graph, and suggest an entry task ordering using
in terms of request execution time, and making initial popu-
lation method by contribution of the optimal characteristics
by Best-Fit and Round Robin methods, to find the response
quickly. This proposed algorithm considers the completion
and communication time.

3 Problem definition

In cloud computing environment, there is data-center sys-
tem, which is assumed to collect and save the static and dy-
namic information of resources and tasks. Some key static
information are: physical memory storage space, virtual
memory storage space, disk storage space etc., and some
dynamic information such as: the load average of the node
itself, the number of the running tasks, the current running
tasks’ number of threads, and the status of these tasks, CPU
usage etc., are captured periodically or based on the polling
strategy or others, and are sent to the Data Receiver of the
master node through the communication component. These
data are updated frequently, and in real-time form to provi-
sion the response as services [24]. Clearly, this heterogeneity
in cloud systems is effective in response to requests.

We can use some static and dynamic information for
scheduling. Since a lot of tasks are received in the cloud
system in each time, so the workload and other dynamic in-
formation impress to select a good candidate resource for
task.

Each application in distributed systems is a workflow that
contains a set of tasks, which tasks are connected to each
other by precedence constraints. Each task will be executed
and give an output dataset. This data set is then sent to the
next task as defined by the structure of the workflow. Most
workflow application can be represented in the form of a
DAG (Direct Acyclic Graph): a graph whose nodes are the
tasks and whose edges are the precedence constraints [4],
such as Montage, Epigenomics, SIPHT, LIGO [17], Cyber
Shake, SPHINX projects, etc. [8, 18–20].

According to many workflow projects, the workflow ap-
plication structures can be categorized as either simple-
structure or complex-structure. In the simple workflows,
nodes are related together considering certain level, but the
complex-structure application like [25] has more relation
among nodes where the level of some nodes is not certain
(see Fig. 1).

When the size of the workflow is increased the pro-
cessing time may become very long. Because of their
heterogeneity—the cloud platform have hosts with differ-
ent properties and calculation capacities.

Some of applications are computation-intensive and
some are communication-intensive. The communication to
computation ratio (CCR) is a measure that indicates whether
a task graph is communication-intensive, computation-
intensive or moderate [26]. The CCR factor is computed
by the average communication cost divided by the average
computation cost on target system.

At a cursory glance, the used notations in this paper are
described in Table 1.



Cluster Comput

Table 1 Definitions of the notations

Notation Definition

V The set of v nodes that present as tasks in application
graph

E The set of e edges or dependencies between tasks in
application graph

vi A task in application graph

w(ei, j) The weight of edge between task vi and vj in graph

pMIPS
j The number of resource instruction per minutes as

processing speed

Tpred(vi ) Set of predecessors of task vi

Tsucc(vi ) Set of successors of task vi

Tready(vi ,pj ) The time when all the predecessors of task vi have
been executed

Tavail(pj ) The time when processor pj is available to the
execution of task vi

TST (vi ,pj ) The start time of task vi

TFT (vi ,pj ) The finish time of task vi

Tpriority(vi) The priority of task vi

CC(vi , vj ) The cost of data transferring between two tasks vi and
vj

Tc(vi , vj ) Size of output data from vi to vj

Ck,l The bandwidth of link between two resources pk and
pl

d(vi) Depth of task vi in critical path

p
f
i Probability of task failure per unit time

p
f r
i The failure factor of resource

pt
i The time when resource pi completes all its assigned

tasks of workflow in current scheduling

Generally, an application graph with precedence con-
strained tasks is represented by a directed acyclic graph
(DAG), G = (V ,E) that V is the set of v nodes presented as
tasks and E is the set of e edges or dependencies among
tasks indicating the relation and precedence constraints.
Each task in graph has a weight w(vi) that is the length or
the same number of instructions of the task, and the data
transfer rate among tasks is introduced by the weigh w(ei,j )

of edges.
In the workflow graph, each task does not dispatch until

its precedence tasks are completed. So the start time of each
task is:

TST(vi,pj ) = max
{
Tavail(pj ), Tready(vi,pj )

}
(1)

where Tavail(pj ) is the time when processor pj is available
for the execution of task vi , Tready(vi,pj ) is the time when
all the predecessors of task vi are executed and all neces-
sary input data are available and could be transmitted to the
processor pj , it can be computed as:

Tready(vi,pj ) = max
{
TFT(vk) + w(ek,i)

}
,

vk ∈ Tpred(vi) (2)

Fig. 2 An example of
resource’s connections

where TFT(vk) is the finish time of predecessor, and w(ek,i)

is the weight between task and its predecessor. The finish
time of each task can be computed as:

TFT(vi,pj ) = TST(vi,pj ) + (
w(vi)/p

MIP
j

)

+ CC(vi, vj ) (3)

where w(vi) is the workload or length of task vi . In the
workflow graph, the tasks with Tpred = ∅ are entry tasks,
and the tasks with Tsucc = ∅ are exit tasks.

The experiment is conducted on the complex graph that
was depicted in Fig. 1(b). In these graphs some tasks are not
in certain level. So the task selection to send to the ready
queue is important.

Also in our study, the resources are fully connected by
different links, like in Fig. 2.

When the tasks are being assigned to the resources, the
cost of data transfer between two tasks can be computed as
follow:

CC(vi, vj ) = Tc(vi, vj )/Ck,l (4)

Since the cloud systems have some properties that should
be considered in the scheduling process, the important con-
straints used in method are:

• The amounts of entry requests are always more than the
amount of resources. So each resource can process more
than one request

• The request characteristics are always variable and inde-
terminate, such as: arrival time, execution time etc.

• The cloud environment is a collection of heterogeneous
resources

• The resources have dynamic hardware and software char-
acteristics such as: average of workload on node, CPU
usage, failure rate, etc.

As mentioned, in several methods the GA is used to find a
suitable solution in NP problems such as workflow schedul-
ing. Typically the normal genetic algorithm steps are so:

1. Create initial population considering the task graph
topology

2. Evaluate the solutions by fitness function
3. Select the some solution for next population
4. Doing the crossover and mutation operations
5. If the stop conditions are not met, repeat 2–5 steps.



Cluster Comput

4 Proposed algorithm

In this approach, a hybrid heuristic method, based on GA is
used, by considering the cloud system characteristics. Gen-
erally, the pseudo-code of proposed algorithm is in Algo-
rithm 1.

Algorithm 1 Pseudo code of HSGA method
Input: Set of available resources and unmapped tasks of an
application.
Output: An optimized generated schedule.

1. Find depth of each task in application graph
2. Set the priority if each task by (5) considering the

graph topology
3. Update resource properties
4. Make a list of available resources

// make initial population
5. for each chromosome do
6. Find the best fit resources for each task based on the

execution time
7. Go to the next place in resource list
8. If the counter of index=last resource then
9. Go to the first place in resource list
10. End
11. Evaluate all chromosomes using (8)
12. While the stop conditions are met
13. Random selection gene crossover operation
14. mutation operation
15. Select the best chromosomes as elites
16. End while
17. Save the best solution
18. Dispatch all mapped tasks on candidate resources due

to obtain the best solution

4.1 Encoding

In GA method, every solution is encoded as a chromosome.
Each chromosome has N genes, as the chromosome length.
In workflow scheduling each schedule appears in a chromo-
some form. Each schedule contains the tasks of application
and the related candidate resources. Figure 3 depicts a chro-
mosome in HSGA method.

Here, first, the tasks of graph are ordered on priority
based on their influence on the other tasks in the graph for

Fig. 3 A sample encoding of a schedule as a chromosome in HSGA

execution according to Sect. 4.3, the tasks should mapped
on the suitable resources from a set of available resources.

In this algorithm, to make a chromosome, each task is
mapped to a selected resource from a virtual list of available
resources, according to the data-center information. The vir-
tual list will be updated in some operations such as initial
population.

4.2 Initial population

Let us say, a set of multiple possible solutions (chromo-
somes) is assumed to be referred to as a population. The
initial population is made randomly in normal genetic algo-
rithm.

Making a good and goal oriented initial population that
would lead to find the response in a rapid manner is the con-
cern here. For this purpose, to build the initial population,
after the tasks are sorted by priority, they will be placed in
the first row of genes in the chromosome, and for each task, a
suitable resource will be select with minimum running time
for task from virtual resource list.

This process is repeated for all genes as Best-Fit. In
this manner, in first chromosome for each gene, the algo-
rithm selects the fittest resource from the first place in vir-
tual list, but for the second chromosome, it finds the best
resource from the second place in virtual list. The fittest
candidate-resource will be searched from the next point, af-
ter last chromosome was started from the last place in vir-
tual list and so on like Round-Robin method but for re-
source selection. This process, continue to making a pop-
ulation. But in making each chromosome, if the counter is
finished, the resource selection will be continued from first
place.

This method assures that all resources will be selected for
making population. Thus, all possible solutions can almost
be made, and attended the balance the load on resources.

After each available resources are selected as the candi-
date, the virtual list will be updated based on the rest pro-
cessing capacity on current resources’ workload for desig-
nated tasks.

4.3 Task prioritization

Because of, the tasks on complex application graph cannot
be partitioned into levels easily, and each task’s length and
successors are different with the others, the task selection
based on graph topology is an important problem. Since
each task produces some outputs as input data set for its
successors, the predecessor task should be executed before
children. Completion time of each task influences the com-
pletion time of application. So an ordering method is being
proposed that could be computed the priority of tasks based
on task influence, according to the follow equation:



Cluster Comput

Fig. 4 Crossover operation method in proposed algorithm

Tpriority(vi) = w(vi) +
β∑

d(vj)=α

(
d(vj ) ∗ w(ei,j )

)
,

vj ∈ Tpred(vi) (5)

where d(vj ) is the depth of task vj in critical path. The
critical path for each task is the longest path from it to an
exit task. Each task has some successors, and each succes-
sor has a depth. According to the complex graph shown in
Fig. 1(b) the set of task successors of v4 are: Tsucc(v4) =
{v8, v15, v9, v10}. So the execution of task v4 is efficient for
its successors and the execution of each successor of v4 is
efficient for their successors alternatively, as well. Also v8

should be executed more quickly than v15, but v10 can be
execute with v21 at the same time. The depth of task v10 is 1.
So we can select the more important successors of each task
with an important depth. Thus the limited range of depth se-
lection is between α and β for selecting the most important
successors for (4). Where β is the most depth of successors
with the longest sequence and α can be computed as:

α = β − floor of (β/2) (6)

The priority of each task with respect to its dependencies in
graph topology will be computed, and a list of task ordering
is prepared by descending to make the first row of chromo-
somes.

4.4 Crossover

Here, a random gene selection crossover is used. Two par-
ents randomly and their some genes are selected randomly.
Then two other solutions by change in resource sections of
selected genes are created. For example in some selected
genes randomly such as second, fourth and last genes, the
candidate resources are changed by each ether, in two ran-
dom selected chromosomes. Figure 4 illustrates the before
and after crossover in mentioned example.

4.5 Mutation

A chromosome and one of its genes will be chosen randomly
and a resource will be selected randomly from virtual list of
resources. The selected resource will be replaced with se-
lected gene if its failure rate is better than the last candidate
resource as [16], but here there is another condition. This
candidate resource is not the resource with most workload
in current schedule. The failure factor of resource can be
computed as:

p
f r
i = p

f
i

/
pMIPS

i (7)

where, p
f
i is probability of task failure per unit time on re-

source pi as failure rate of resource, and pMIPS
i is the com-

puting power of resource as number of machine instructions
per second. The selecting and checking new candidate re-
source for a better result will be repeated in a limited case.

The mutation operation causes, GA does not stop in the
local minimum, but this method in mutation leads to the
finding of a good solution in a rapid manner.

4.6 Evaluation and selection solutions

To recognize the value of a solution, we should evaluate it by
a fitness function with efficient parameters in quality of so-
lution. In GA, the fitness function is applied on all solutions
and computes their value, and then a solution with the best
value, based on parameters placement policy, is obtained as
the minimum or maximum for the fittest solution.

The fitness value of each solution is computed through:

Fitness =
m∑

i=1

(
pt

i × p
f
i

)
(8)

where pt
i is the time when resource pi completes all its as-

signed tasks of workflow in current scheduling. In this func-
tion, total spent time of each resource for current application
is considered, that is effective on the makespan.

Also we consider p
f
i in order to reduce failure rate of

executing of tasks as much possible.
The chromosome with minimum fitness value is consid-

ered as the best solution among the others.

Target is: minimizing (fitness) (9)

The algorithm tries to find the solution by minimizing the
fitness value as much possible by crossover and mutation
operations. Some of the best of chromosomes are will be
selected by elitism method for next iteration.

5 Performance evaluation

This section presents the comparative evaluation HSGA
with two algorithms, LAGA and NGA and demonstrates and



Cluster Comput

Table 2 Simulation parameters

Parameter Value

Number of tasks in application 20–100

Task lengths 12–72 (×105 MI)

The number of resources 30

Resource speeds 500–1000 (MIPS)

Bandwidth between resources 10–100 (mbps)

Failure rates of resource 10−4–10−3

CCR value 0.25

Table 3 HSGA algorithm parameters

Parameter Value

Population size 20

Crossover rate 0.5

Mutation rate 0.5

Elitism selection rate 0.75

Number of iteration 20

Fig. 5 Makespan for application with increasing the number of tasks

evaluates the three subjects: makespan of application, fail-
ure rate and load balancing of resources. The experiments
are conducted considering cloud characteristics with respect
to heterogeneously in resource properties and various prop-
erties for applications.

The simulation parameters are listed in Table 2 and the
parameters used by HSGA algorithm based on GA are listed
in Table 3.

The average results are presented in Fig. 5.
In Fig. 5, other algorithms are compared with proposed

one. The results show, the completion time of application
(makespan) for HSGA is less than LAGA in about by
19.145 %, and in about by 34.39 % in contrast with NGA. It
shows the makespan by HSGA is better than the others.

Fig. 6 The load balancing with increasing the number of tasks

Fig. 7 The Speedup of algorithms in different number of tasks

Also the balance the load on the resources in Fig. 6 is
demonstrated. According to the used method in [14], the
load balancing of proposed method is better than LAGA in
about by 11.88 %, and it was reduced in about by 10.38 %
better than NGA.

By illustrated chart in Fig. 7, we understand the speedup
(is computed by dividing the sequential execution time by
the makespan of parallel execution) in Different number of
tasks by HSGA algorithm is better than LAGA in about by
18.22 % and than NGA in about by 33.77 %.

We compute the failure rate of produced solution like
the method in [21], that has suggested to distributed sys-
tems, such as grid and cloud. So according to the Fig. 8,
we perceive the produced solution by proposed algorithm
has failure frequency near to the LAGA method in about by
−0.16 % (a little value) that it is little important in cloud
systems, because the failure probability of resources is so
low, due to software level agreement (SLA) and more con-
sistency of resources than grid computing. Also it is better
than NGA about 8.67 %.



Cluster Comput

Fig. 8 The failure frequency of algorithms in different number of tasks

6 Conclusion

In this paper, a hybrid heuristic scheduling method is sug-
gested for workflow of applications in cloud computing en-
vironment by fully connected resources with different com-
munication costs. It is based on GA, that uses the optimize
characteristics Best-Fit and Round-Robin algorithms.

The proposed method, makes a goal oriented initial popu-
lation by the virtual list of resources and their updated prop-
erties. For making the initial population, it uses two stages
evaluation. At first stage, all tasks of application will be or-
dered by a priority method with respect to their influence
to each other based on graph topology. In the second stage,
the candidate resources will be assigned by combination of
features of two methods, Best-Fit and Round robin to se-
lect good candidate resources. Consequently this technique
for making initial population makes to find the good solu-
tion in a rapid manner considering the load balancing, that
is as close as the best possibility. Also we use some suitable
parameters to increasing the quality of evaluation of popu-
lation in fitness function.

The HSGA results are compared to LAGA and NGA al-
gorithms. The produced solution through this proposed al-
gorithm is perceived, the HSGA decreases the running time
of tasks, in comparison with LAGA, and NGA, whereas it
supports the load balancing and reliability with important
parameters. Also it improves the makespan of application in
about by 19.14 %, load balancing in about by 10.38 % and
speedup ratio in about by 18.22 % at least. In the next work
we want to present a method that support mapping the re-
sources on tasks for communication intensive applications
with efficient result.

Acknowledgements This research is sponsored by the Payam Noor
University.

References

1. Ranjan, R., Buyya, R.: Decentralized overlay for federation of en-
terprise clouds (2010). http://www.techrepublic.com/whitepapers/
decentralized-overlay-for-federation-of-enterprise-clouds/
1828007

2. Ghorbannia Delavar, A., Aryan, Y.: A synthetic heuristic algo-
rithm for independent task scheduling in cloud systems. Int. J.
Comput. Sci. Issues 8(6), 289 (2011)

3. Tanga, X., Li, K., Li, R., Veeravalli, B.: Reliability-aware schedul-
ing strategy for heterogeneous distributed computing systems.
J. Parallel Distrib. Comput. 70, 941–952 (2010)

4. Nicod, J.-M., Philippe, L., Toch, L.: A genetic algorithm to
schedule workflow collections on a SOA-Grid with communica-
tion costs. LIFC Laboratoire D’informatique de l’Universite de
Franche-COMTE, EA 4269 (2011)

5. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication
for heterogeneous computing systems. J. Parallel Distrib. Comput.
70, 323–329 (2010)

6. Li, J., Qiu, M., Niu, J., Gao, W., Zong, Z., Qin, X.: Feedback
dynamic algorithms for preemptable job scheduling in cloud sys-
tems. In: 2010 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (2010)

7. Casanova, H., Desprez, F., Suter, F.: On cluster resource allocation
for multiple parallel task graphs. J. Parallel Distrib. Comput. 70,
1193–1203 (2010)

8. Pandey, S.: Scheduling and management of data intensive applica-
tion workflows in grid and cloud computing environments. Doc-
toral thesis, Department of Computer Science and Software Engi-
neering, the University of Melbourne, Australia (December 2010)

9. Porto, S., Ribeiro, C.: A tabu search approach to task scheduling
on heterogeneous processors under precedence constraints. Int. J.
High Speed Comput. 7, 45–72 (1995)

10. Kalashnikov, A., Kostenko, V.: A parallel algorithm of simulated
annealing for multiprocessor scheduling. J. Comput. Syst. Sci. Int.
47, 455–463 (2008)

11. Yoo, M.: Real-time task scheduling by multi objective genetic al-
gorithm. J. Syst. Softw. 82, 619–628 (2009)

12. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling al-
gorithms for grid computing. Department of Computer Science
and Software Engineering, The University of Melbourne, VIC
3010, Australia (2009). http://www.cloudbus.org/reports

13. Yoo, M.: Real-time task scheduling by multi objective genetic al-
gorithm. J. Syst. Softw. 82, 619–628 (2009)

14. Omara, F.A., Arafa, M.M.: Genetic algorithms for task scheduling
problem. J. Parallel Distrib. Comput. 70, 13–22 (2010)

15. Fida, A.: Workflow scheduling for service oriented cloud comput-
ing. A thesis submitted to the College of Graduate Studies and
Research in Partial Fulfillment, Department of Computer Science
University of Saskatchewan Saskatoon (2008)

16. Wang, X., Yeo, C.S., Buyya, R., Su, J.: Optimizing the makespan
and reliability for workflow applications with reputation and a
look-ahead genetic algorithm. Future Gener. Comput. Syst. 27,
1124–1134 (2011)

17. http://www.ligo.caltech.edu/advLIGO/
18. https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowGenerator
19. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The

cost of doing science on the cloud: the montage example. In: Proc.
of the 2008 ACM/IEEE Conference on Supercomputing (SC ’08),
Piscataway, NJ, USA, pp. 1–12 (2008)

20. In, J.-U., Arbree, A., Avery, P., Cavanaugh, R., Katageri, S.,
Ranka, S.: Sphinx: a scheduling middleware for data intensive ap-
plications on a grid. Technical report GriPhyN 2003-17, GriPhyn
(Grid Physics Network) (2003)

http://www.techrepublic.com/whitepapers/decentralized-overlay-for-federation-of-enterprise-clouds/1828007
http://www.techrepublic.com/whitepapers/decentralized-overlay-for-federation-of-enterprise-clouds/1828007
http://www.techrepublic.com/whitepapers/decentralized-overlay-for-federation-of-enterprise-clouds/1828007
http://www.cloudbus.org/reports
http://www.ligo.caltech.edu/advLIGO/
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator


Cluster Comput

21. Singh, J., Singh, H.: Efficient tasks scheduling for heterogeneous
multiprocessor using genetic algorithm with node duplication. In-
dian J. Comput. Sci. Eng. 2(3), 402 (2011)

22. Brent, R.P.: Efficient implementation of the first-fit strategy for
dynamic storage allocation, Australian National University. ACM
Trans. Program. Lang. Syst. 11(3), 388–403 (1989)

23. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-man, S.,
Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-
computing system. In: IEEE International Symposium on Cluster
Computing and the Grid (CCGrid ’09) (2009)

24. Ge, J., Zhang, B., Fang, Y.: Research on the resource monitor-
ing model under cloud computing environment. In: Wang, F.L., et
al. (eds.) WISM 2010. LNCS, vol. 6318, pp. 111–118. Springer,
Berlin (2010)

25. Ghorbannia Delavar, A., Aghazarian, V., Litkouhi, S., Khajeh
Naeini, M.: A scheduling algorithm for increasing the quality of
the distributed systems by using genetic algorithm. Int. J. Inf.
Educ. Technol. 1(1), 58–62 (2011)

26. Mezmaz, M., Melab, N., Kessaci, Y., Lee c, Y.C., Talbi, E.-G.,
Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective hybrid meta-
heuristic for energy-aware scheduling for cloud computing sys-
tems. J. Parallel Distrib. Comput. 71(11), 1497–1508 (2011)

Arash Ghorbannia Delavar re-
ceived the M.Sc. and Ph.D. de-
grees in computer engineering from
Sciences and Research University,
Tehran, Iran, in 2002 and 2007. He
obtained the top student award in
Ph.D. course. He is currently an as-
sistant professor in the Department
of Computer Science, Payam Noor
University, Tehran, Iran. He is also
the Director of Virtual University
and Multimedia Training Depart-
ment of Payam Noor University in
Iran. Dr. Arash Ghorbannia Delavar
is currently editor of many com-

puter science journals in Iran. His research interests are in the areas of
computer networks, microprocessors, data mining, Information Tech-
nology, and E-Learning.

Yalda Aryan received a B.Sc. in
computer engineering from Azad
University, Arak, Iran, in 2000. She
is M.Sc. student in computer engi-
neering in Payam Noor University.
Her research interests include com-
putational intelligence, Grid com-
puting and cloud computing.


	HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems
	Abstract
	Introduction
	Related works
	Problem definition
	Proposed algorithm
	Encoding
	Initial population
	Task prioritization
	Crossover
	Mutation
	Evaluation and selection solutions

	Performance evaluation
	Conclusion
	Acknowledgements
	References


