On induced subgraphs of trees, with restricted degrees

Y. Caro
Department of Mathematics, Haifa University, Oranim, Israel

I. Krasikov and Y. Roditty
School of Mathematical Sciences, Tel-Aviv University, Ramat Aviv, Israel and Department of Mathematics Beit-Beil College, Kfar-Saba, Israel

Received 12 July 1991
Revised 9 December 1991

Abstract
It is proved that every tree T on $n \geq 2$ vertices contains an induced subgraph F such that all its degrees are odd and $|F| \geq \lceil n/2 \rceil$.

1. Introduction

More than 30 years ago, Gallai proved the following theorem (see [4, Problem 5.17] for a simple proof, or [3]).

Theorem 1.1. Let G be an arbitrary graph.

1. There exists a partition $V(G) = A \cup B$, $A \cap B = \emptyset$, such that in the induced subgraph on $\langle A \rangle$ and $\langle B \rangle$ all the degrees are even.

2. There exists a partition $V(G) = A \cup B$, $A \cap B = \emptyset$, such that in the induced subgraph $\langle A \rangle$ all the degrees are even and in the induced subgraph $\langle B \rangle$ all the degrees are odd.

Clearly, from Theorem 1.1 we infer that every graph G contains an induced subgraph H such that $|H| \geq |G|/2$ and all the degrees in H are even.

The following related conjecture seems to be surprisingly hard.

Conjecture 1.2. There exists a positive constant c such that every graph G with $\delta(G) \geq 1$ contains an induced subgraph H such that $|H| \geq c|G|$ and all the degrees in H are odd.

Correspondence to: Y. Roditty, School of Mathematical Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel.

0012-365X/94/$10.00 © 1994—Elsevier Science B.V. All rights reserved
SSDI 0012-365X(92)00186-3
Recently, some results were obtained (see [2]), of which we choose to mention here the following theorem.

Theorem 1.3. Let G be a graph on n vertices and suppose $\delta(G) \geq 1$. Then G contains an induced subgraph H in which all the degrees are odd and $|H| \geq \sqrt{(n-\sqrt{n})/6}$.

Theorem 1.4. Let G be a self-complementary graph on n vertices. Then G contains an induced subgraph H in which all the degrees are odd and $|H| \geq \lceil (n-1)/2 \rceil$.

Our main object in this paper is to prove Conjecture 1.2 in the case of trees and to show that $c = \frac{1}{2}$ is permitted. Some related problems will be considered.

The notations used in this article are standard following [1]. In particular, $\delta(G)$ and $\Delta(G)$ denote the minimal and maximal degrees of G, respectively. If $A \subseteq V(G)$ then $\langle A \rangle$ is the induced subgraph of G on the vertex set A. Finally, for $i = 0, 1$ let the function $f_i(G)$ denote the maximum cardinality of an induced subgraph H of G such that all the degrees in H are congruent to $i \pmod{2}$. Hence, by Theorem 1.1, $f_0(G) \geq |G|/2$.

2. Results and proofs

We start with one of the main results.

Theorem 2.1. Let T be a tree on $n \geq 2$ vertices. Then $f_1(T) \geq \lceil (n+1)/2 \rceil$ unless $T = P_4$, in which case $f_1(P_4) = 2 = n/2$.

Proof. We use induction on n. For $2 \leq n \leq 9$ the assertion of the theorem is easy to verify by direct checking (see [2] for the list of trees). Let t_i denote the number of vertices of degree i in T. Consider the following cases.

Case 1: Each vertex of even degree (even-vertex) is adjacent to an end-vertex.

Then by deleting an end-vertex from each even-vertex, we are done since we can proceed as follows:

1. By the assumption, $t_1 \geq \sum_{2} t_i$. If $t_i \neq 0$ for some odd $i \geq 3$ then $n = \sum t_i \geq 2 \sum t_i + 1$. Hence, $\sum t_i \leq (n-1)/2$ and after deleting one end-vertex from each even-vertex, we are left with at least $\lceil n-(n-1)/2 \rceil$ vertices. Moreover, if $t_1 > \sum t_i$ then again $\sum t_i \leq (n-1)/2$ and the same argument works.

2. We may assume that $t_1 = \sum t_i$ and, as $n \geq 5$, $t_i > 0$ for some $i \geq 4$.

Let v be an even-vertex such that $\deg(v) = d \geq 4$. Consider the components of $T \setminus v$, T_1, T_2, \ldots, T_d. Clearly, $|T_i| = 1$ for the adjacent end-vertex, but for $2 \leq k \leq d$, T_k is neither an isolated vertex nor a P_4 (because of the assumption of Case 1 and (1)).
Induced subgraphs of trees

By induction,

\[
f_1(T) \geq \sum_{k=2}^{d} f_1(T_k) \geq \sum_{k=2}^{d} \left\lceil \frac{|T_k| + 1}{2} \right\rceil \geq \sum_{k=2}^{d} \frac{|T_k| + 1}{2} = \sum_{k=2}^{d} \frac{|T_k|}{2} + \frac{d-1}{2} \geq n - 2 + \frac{3}{2} = n + 1.
\]

Hence, \(f_1(T) \geq \lceil (n+1)/2 \rceil \).

Case 2: Suppose there is an even vertex \(v \) which is adjacent to no end-vertex.

(1) Suppose first that \(\text{deg}(v) = 2 \). Then \(T \setminus v \) has two components \(T_1, T_2 \) of orders \(m_1, m_2 \). If \(T_1, T_2 \neq P_4 \), then by induction,

\[
f_1(T) = f_1(T_1) + f_1(T_2) \geq \frac{m_1 + 1}{2} + \frac{m_2 + 1}{2} = \frac{m_1 + 1}{2} + \frac{m_2 + 1}{2} = \frac{n + 1}{2}.
\]

Hence, \(f_1(T) \geq \lceil (n+1)/2 \rceil \).

If now \(T_1 = P_4 \) and \(T_2 \neq P_4 \) then there are exactly two cases as indicated in Fig. 1. In both cases we can delete vertex \(u \) instead of \(v \), and apply induction, since \(n > 9 \), to obtain the required result.

Finally, suppose \(T_1 = T_2 = P_4 \). Then \(T \) must be one of the trees in Fig. 2. In each case we may consider the induced graph on the vertex set \(\{a, b, c, u, d, e\} \) and find that \(f_1(T) = 6 \geq \lceil (n+1)/2 \rceil \).

(2) Assume now that \(\text{deg}(v) = 2k \geq 4 \). Consider the \(2k \) components of \(T \setminus v \), say \(T_1, T_2, \ldots, T_{2k} \), of corresponding orders \(m_1, m_2, \ldots, m_{2k} \). Assume \(t \) of the components are \(P_4 \). By induction we have

\[
f_1(T) \geq \sum_{i=1}^{2k} f_1(T_i) \geq \sum_{i=1}^{2k} \frac{m_i + 1}{2} = \sum_{i=1}^{2k} \frac{m_i}{2} + k - \frac{t}{2}.
\]

Now if \(t \leq 2k - 2 \) then \(k - t/2 \geq 1 \) and we obtain

\[
f_1(T) \geq \left\lceil \sum_{i=1}^{2k} \frac{m_i}{2} + 1 \right\rceil = \left\lceil \frac{n + 1}{2} \right\rceil.
\]

Fig. 1.
Hence, we may assume that $2k - 1 \leq t \leq 2k$. From each of the components $T_i = P_4$, $1 \leq i \leq 2k - 2$, take an edge whose vertices are not adjacent to v and consider the last component $T = T_{2k-1} \cup T_{2k} \cup \{v\}$. By induction and the construction above (as $T \neq P_4$), we have

$$f_1(T) \geq (2k - 2)f_1(P_4) + f_1(T') \geq 4k - 4 + \frac{1}{2} \left[\frac{m_{2k-1} + m_{2k} + 1}{2} \right]$$

$$\geq 4k - 4 + \frac{m_{2k-1} + m_{2k}}{2} + 1 = \frac{n + 1}{2}.$$

Hence, $f_1(T) \geq \lceil (n + 1)/2 \rceil$. This completes the proof of the theorem. □

We conjecture that the following stronger result holds.

Conjecture 2.2. For every tree T on $n \geq 2$ vertices $f_1(T) \geq (2n - 2)/3$.

One may see that Conjecture 2.2 is sharp for paths and some spiders, but for forests the lower bound $n/2$ is best possible, as one may choose a forest consisting of P_4 trees only.

The proof technique of Theorem 2.1 can be used to obtain a sharp estimate to the following problem:

Estimate $f(k, T)$:= the largest order of an induced subgraph of a tree T in which $\deg(v) \equiv 0 \pmod{k}$ for every vertex v.

Theorem 2.3. Let T be a tree on $n \geq 2$ vertices. Let $k \geq 3$ be an integer. Then

$$f(k, T) \geq \frac{(k-2)n + 2}{k-1}.$$

This bound is the best possible.
Proof. Apply induction on \(n \). For \(n = 2 \) it is easy to check. Suppose we have proved it for \(2 \leq m \leq n - 1 \). We prove it for \(m = n \). Consider two cases.

Case 1: There is a vertex \(v \), \(\deg(v) \equiv 0 \pmod{k} \), which is not adjacent to any end-vertex.

Consider \(F = T \setminus \{v\} \). Let \(n_1, n_2, \ldots, n_k \) be the orders of the components of \(F \). Obviously, we have \(\sum_{i=1}^{k} n_i = n - 1 \). By the induction hypothesis we get

\[
\begin{align*}
\sum_{i=1}^{k} \frac{(k-2)n_i + 2}{k-1} &\geq \frac{1}{k-1} \left\{ (k-2) \sum_{i=1}^{k} n_i + 2tk \right\} \\
&= \frac{1}{k-1} \left\{ (k-2)(n-1) + 2tk \right\} \geq \frac{(k-2)n + 2}{k-1}.
\end{align*}
\]

Case 2: Each vertex of degree \(0 \pmod{k} \) is adjacent to at least one end-vertex.

For each such vertex choose one end-vertex and delete it. Then in the resulting tree \(T' \) there are no vertices of degree \(0 \pmod{k} \). Let \(t_i \) denote the number of vertices in \(T \) with degree \(i \). Then \(\sum_{i=1}^{n} it_i = 2n - 2 \) and \(\sum_{i=1}^{n} 2t_i = 2n \).

By subtracting the last two equalities we obtain \(\sum_{i=1}^{n} (i-2)t_i = -2 \) and, hence, \(t_1 - 2 = \sum_{i=1}^{n} (i-2)t_i = \sum_{k|i} (k-2)t_i \). Adding \(2 + \sum_{k|i} t_i \) to both sides, we get \((k-1) \sum_{k|i} t_i + 2 \leq t_1 + \sum_{k|i} t_i \leq n \). Hence \(\sum_{k|i} t_i \leq (n-2)/(k-1) \). Thus, the number of end-vertices to be deleted is at most \((n-2)/(k-1) \) and the resulting forest is of order at least

\[
\frac{n - 2}{k - 1} \geq \frac{(k-2)n + 2}{k - 1}.
\]

In order to see that the above bound is in general optimal, consider the trees, each of degree \(k \), of the form shown in Fig. 3.

We leave the easy details to the reader. \(\square \)

Finally, let

\[
f_{1,k}(T) := \text{the largest order of an induced subgraph of a tree } T \text{ in which } \deg(v) \equiv 1 \pmod{k} \text{ for every vertex } v.
\]

The problem of estimating the lower bound of \(f_{1,k}(T) \) is a natural generalization of the problem concerning \(f_1(T) \).

Fig. 3.
Theorem 2.4. Let \(k \geq 2 \) be an integer and let \(T \) be a tree on \(n \geq 2 \) vertices. Then
\[
f_{1,k}(T) \geq \frac{2(n-1)}{3k}.
\]

Proof. For \(k = 2 \) we already know the stronger result of Theorem 2.1. Suppose \(k \geq 3 \). Consider the tree as rooted at a vertex \(v \). For \(j = 1, 2, 3 \), let \(E_j \) be the set of all edges at distance \(j \) (mod 3) from \(v \). Then \(\sum_{i=1}^{3} E_i = n-1 \). Without loss of generality, assume that \(E_1 > (n-1)/3 \). The edges of \(E_2 \) induce a forest \(F \), whose components are stars. Let \(t_i \) denote the number of stars in \(F \) having \(i \) edges. Then
\[
|E_1| = \sum_{i=1}^{n} it_i \geq \frac{n-1}{3} \quad \text{and} \quad |F| = \sum_{i=1}^{n} (i+1)t_i.
\]

From each star on \(i \) edges, we have to delete \((i-1)(\text{mod} \ k)\) edges (and hence \((i-1)(\text{mod} \ k)\) vertices), in order to obtain a star whose degrees are \((1 \text{mod} \ k)\). Hence,
\[
f_{1,k}(T) \geq \sum_{i=1}^{n} t_i((i+1)-(i-1)(\text{mod} \ k)) \geq \sum_{1 \leq i < k} 2t_i + \sum_{i \geq k} t_i(i+1-(k-1))
\]
\[
> \frac{2 \sum_{i=1}^{k-1} it_i}{k} + \frac{2 \sum_{i=k}^{n} it_i}{k} = \frac{2 \sum_{i=1}^{n} it_i}{k} \geq \frac{2(n-1)}{3k}.
\]

We conjecture that the following stronger lower bound holds.

Conjecture 2.5. Let \(T \) be a tree on \(n \geq 2 \) vertices and \(k \geq 3 \) be an integer. Then
\[
f_{1,k}(T) \geq \frac{n+2k-4}{k-1}.
\]

Note added in proof. We have recently learned to know that Conjecture 2.2 was proved by A.J. Radcliffe and A.D. Scott.

Acknowledgment

We would like to thank the referee for his comments.

References