
Yadvinder MalhiUniversity of Oxford | OX · Environmental Change Institute
Yadvinder Malhi
About
677
Publications
398,649
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
72,022
Citations
Introduction
I am an ecosystem scientist who explores the functioning of the biosphere and its interactions with the atmosphere. I have a particular fascination with and love for tropical forests. I am Professor of Ecosystem Science at the School of Geography, University of Oxford. I lead the Ecosystems Programme, composed of an Ecosystems Lab focused on the natural science of tropical forests, and a Forest Governance Group focused on social science and policy. More info and blog at www.yadvindermalhi.org
Publications
Publications (677)
Despite the progress in the measurement and accessibility of plant trait information, acquiring sufficiently complete data from enough species to answer broad‐scale questions in plant functional ecology and biogeography remains challenging. A common way to overcome this challenge is by imputation, or ‘gap‐filling' of trait values. This has proven a...
The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological lev...
Climate change is shifting species distributions, leading to changes in community composition and novel species assemblages worldwide. However, the responses of tropical forests to climate change across large-scale environmental gradients remain largely unexplored. Using long-term data over 66,000 trees of more than 2,500 species occurring over 3,5...
1. Understanding how functional traits are related to species diversity and ecosystem properties is a central goal of ecology. Wood density is a trait that integrates many aspects of plant form and function and is highly variable among species. Previous studies of wood density across elevational gradients have been based on limited sampling and hav...
Societal Impact Statement
Forest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects...
Our current understanding of the effect of insect herbivory on ecosystem productivity is limited. Previous studies have typically quantified only the amount of leaf area loss or have been conducted during outbreak years when levels of herbivory are much higher than on average. These set-ups often do not take into account the physiological changes t...
Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank...
Protected areas are an important tool for wildlife conservation; however, research is increasingly revealing both biases and inadequacies in the global protected area network. One common criticism is that protected areas are frequently located in remote, high-elevation regions, which may face fewer threats compared to more accessible locations. To...
An upsurge of invasive forest pathogens (IFPs) has been causing widespread damage to forest ecosystems worldwide. Modelling future forest loss caused by IFPs is challenging, as it requires a sophisticated understanding of the pathogen-hosts-surrounding interactions. We developed a complexity-appropriate model using an evidence-based approach to pre...
Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land‐use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo.
EA was quantified at tree‐ and sta...
Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature’s Contributions to People (NCP)...
The 2015–2016 El Niño event led to one of the most intense and hottest droughts for many tropical forests, profoundly impacting forest productivity. However, we know little about how this event affected the Cerrado, the largest savanna in South America. Here we report 5 years of productivity of the dominant vegetation types in Cerrado, savanna (cer...
The scaling of organismal metabolic rates with body size is one of the most prominent empirical patterns in biology. For over a century, the nature and causes of metabolic scaling have been the subject of much focus and debate. West, Brown, and Enquist (WBE) proposed a general model for the origin of metabolic scaling from branching vascular networ...
Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We a...
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems¹ that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value⁴. Here we present empirically defined thresholds for categorizing the cons...
Improving tropical forest current biomass estimates can help more accurately evaluate ecosystem services in tropical forests. The Global Ecosystem Dynamics Investigation (GEDI) lidar provides detailed 3D forest structure and height data, which can be used to improve above‐ground biomass estimates. However, there is still debate on how best to predi...
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global...
Many ecophysiological theories have been proposed as universal rules to calculate plant photosynthesis given their living environment, where temperature and vapor pressure deficit (VPD) are commonly considered. Although these theories claim universality and have been applied in global modeling, they are often developed and tested using global datas...
The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio‐temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance a...
Utilizing terrestrial laser scanning (TLS) and three-dimensional modeling, this study quantitatively assessed the woody surface areas of 2161 trees across ecosystems encompassing both tropical and temperate forests. TLS enables precise measurement of tree structures at unprecedented scales. This research builds on theoretical scaling relationships...
The fire crises in the Amazon continues to increase the risk of large-scale forest dieback, threatening regional biodiversity and global climate. This issue gained international attention in 2019 when fires in the Brazilian Amazon led to a fire ban imposition. Despite the uncertainty of its impact, the fire ban was reenacted in subsequent years. He...
Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests’ gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest si...
Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank...
Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank...
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)³. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species co...
Improving tropical forest biomass predictions can accurately value tropical forests for their ecosystem services and establish confidence in carbon trading schemes such as REDD+. Optical remote sensing estimates of tropical forest biomass have produced spatially contradictory results that differ from ground plot biomass data. Recently, the Global E...
The functional stability of ecosystems depends greatly on interspecific differences in responses to environmental perturbation. However, responses to perturbation are not necessarily invariant among populations of the same species, so intraspecific variation in responses might also contribute. Such inter-population response diversity has recently b...
Soil nutrients can limit productivity on highly weathered soils, but vegetation can adopt a range of strategies to maintain productivity under low nutrient supply. Using a full nutrient flux approach, we examine nutrient use strategies across nine old-growth and logged lowland moist tropical forests in Malaysian Borneo. Soil nutrient availability w...
The distribution of forest and savanna biomes and the role of resources (climate and soil) and disturbances (fire and herbivory) in determining tree-grass dynamics remains elusive and variable across geographies. This is especially problematic in Indian savannas which have been historically misclassified as degraded forests and are targeted for tre...
A key challenge for ecological science is to understand how biodiversity loss is changing ecosystem structure and function at scales relevant for policy1. Almost all biodiversity metrics are challenging to disaggregate into ecosystem functions, in particular animal-mediated functions such as pollination, seed and nutrient dispersal, and predation....
Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades...
Above‐ground biomass (AGB) is an important metric used to quantify the mass of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated at the plot scale (typically 1 ha) using inventory measurements and allometry. In recent years, terrestrial laser scanning (TLS) has appeared as a disruptive technology that can generate a...
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fung...
Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of or...
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequen...
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South Americ...
The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently...
Nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in woody tissue are poorly documented, but are necessary for understanding whole‐tree nutrient use and storage. Here, we report how wood macronutrient concentrations vary radially and along the length of a tree for 10 tropical tree species in Sabah, Malaysia. Bark nutrient conce...
Tropical forests cover large areas of equatorial Africa and play a significant role in the global carbon cycle. However, there has been a lack of in-situ measurements to understand the forests' gross and net primary productivity (GPP and NPP) and their allocation. Here we present the first detailed field assessment of the carbon budget of multiple...
Tropical forests cover large areas of equatorial Africa and play a significant role in the global carbon cycle. However, there has been a lack of in-situ measurements to understand the forests’ gross and net primary productivity (GPP and NPP) and their allocation. Here we present the first detailed field assessment of the carbon budget of multiple...
Seed dispersal is a fundamental process that is highly threatened by the rapid decline of large-bodied frugivores worldwide. The Brazilian Cerrado, the largest savanna in the world, represents an ideal site for investigating seed dispersal because of its biodiversity, environmental challenges, and knowledge shortfalls. We performed a systematic lit...
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-i...
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P) concentrations play an important role in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations.Here, we intercompare such global...
Drought and fire reduce productivity and increase tree mortality in tropical forests. Fires also produce pyrogenic carbon (PyC), which persists in situ for centuries to millennia, and represents a legacy of past fires, potentially improving soil fertility and water holding capacity and selecting for the survival and recruitment of certain tree life...
Aim: Global forests and their structural and functional features are shaped by many mechanisms that impact tree vital rates. Although many studies have tried to quantify how specific mechanisms influence vital rates, their relative importance among forests remains unclear. We aimed to assess the patterns of variation in vital rates among species an...
(1)
The research conducted, including the rationale
The direct effect of aridity on photosynthetic and water-transport strategies is not easy to discern in global analyses because of large-scale correlations between precipitation and temperature. We analyze tree traits collected along an aridity gradient in Ghana, West Africa, that shows little te...
Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account f...
Tropical forests are threatened by degradation and deforestation but the consequences for these ecosystems are poorly understood, particularly at the landscape scale. We present the most extensive ecosystem analysis to date of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing respo...
Quantifying climate mitigation benefits of biosphere protection or restoration requires accurate assessment of forest above‐ground biomass (AGB). This is usually estimated using tree size‐to‐mass allometric models calibrated with harvested biomass data.
Using three‐dimensional laser measurements across the full range of tree size and shape in a typ...
Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem...
Above Ground Biomass (AGB) is an important metric used to quantify the mass of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated at the plot scale (typically greater or equal to 1 ha) using inventory measurements and allometry. In recent years, Terrestrial Laser Scanning (TLS) has appeared as a disruptive technology...
In the high Arctic, plant community species composition generally responds slowly to climate warming, whereas less is known about the community functional trait responses and consequences for ecosystem functioning. The slow species turnover and large distribution ranges of many Arctic plant species suggest a significant role of intraspecific trait...
Anthropogenic climate change causes more frequent and intense fluctuations in the El Niño Southern Oscillation (ENSO). Understanding the effects of ENSO on agricultural systems is crucial for predicting and ameliorating impacts on lives and livelihoods, particularly in perennial tree crops, which may show both instantaneous and delayed responses. U...
The stratified nature of tropical forest structure had been noted by early explorers, but until recent use of satellite-based LiDAR (GEDI, or Global Ecosystems Dynamics Investigation LiDAR), there has been no way to quantify stratification across all tropical forests. Understanding stratification is important because by some estimates, a majority o...
“Least‐cost theory” posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia‐wide trait dataset s...
This review explains the science behind the drive for global net zero emissions and why this is needed to halt the ongoing rise in global temperatures. We document how the concept of net zero carbon dioxide (CO 2 ) emissions emerged from an earlier focus on stabilization of atmospheric greenhouse gas concentrations. Using simple conceptual models o...
Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are es...