
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Assessing of Urban Vegetation Biomass in
Combination with LiDAR and High-resolution
Remote Sensing Images

Ya Zhang & Zhenfeng Shao

To cite this article: Ya Zhang & Zhenfeng Shao (2021) Assessing of Urban Vegetation Biomass
in Combination with LiDAR and High-resolution Remote Sensing Images, International Journal of
Remote Sensing, 42:3, 964-985

To link to this article:  https://doi.org/10.1080/01431161.2020.1820618

Published online: 02 Dec 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://doi.org/10.1080/01431161.2020.1820618
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2020.1820618
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2020.1820618
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1820618&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1820618&domain=pdf&date_stamp=2020-12-02


Assessing of Urban Vegetation Biomass in Combination with 
LiDAR and High-resolution Remote Sensing Images
Ya Zhang and Zhenfeng Shao

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan 
University, Wuhan, China

ABSTRACT
The urban vegetation ecosystem is a vegetation ecosystem that is 
deeply influenced by human beings. The rapid urbanization process 
brings a great influence on the growth environment of urban 
vegetation. Urban vegetation has a certain mitigating effect on 
the urbanization process. It is irreplaceable by other urban ecosys
tems in functions such as maintaining atmospheric carbon–oxygen 
balance, reducing heat island effects, purifying, and beautifying the 
urban environment. At present, the estimation of aboveground 
biomass (AGB) mainly focuses on the original forest, grassland, 
desertification vegetation and crops, and the data sources are 
mostly medium- and low-resolution data such as Land Remote- 
Sensing Satellite Thematic Map (Landsat TM), Enhanced Thematic 
Mapper Plus (ETM+), and Moderate Resolution Imaging 
Spectroradiometer (MODIS). Compared with the research objects 
such as forest and grassland, urban vegetation has higher hetero
geneity of underlying surface within the city scope, and there are 
more mixed pixels of medium- and low-resolution data. Therefore, 
high-resolution data are needed for classification and estimation. 
This study uses Light Detection and Ranging (LiDAR) data to 
expand the sample size, combines high-resolution image data to 
classify urban vegetation areas, and quantitatively estimates and 
inverts biomass. The spatial and temporal variation of urban vege
tation biomass was analysed by comparing the inversion accuracy 
of five different models and the advantages and disadvantages of 
the research models. The research results show that: (1) In the 
absence of urban forest sample points, the biomass background 
data are expanded with the help of LiDAR data and more data is 
provided for further inversion; (2) Through five model method 
comparison experiments, the optimal method for estimation is 
based on the Random Forest (RF) model; (3) Analysed the changes 
of urban vegetation in the study area in the past 10 years, the 
development of different types of urban vegetation has experi
enced a trend of increasing first and then decreasing. Due to the 
high heterogeneity of features in urban areas, this study improved 
the inversion accuracy of estimating urban vegetation biomass by 
classification, and provided reference value and the basis for urban 
ecological management and regional planning.
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1. Introduction

Climate warming and the role of forest biomass in forest sequestration and greenhouse gas 
emissions caused by deforestation have received considerable attention. The surface bio
mass accounts for about 30% of the total carbon pool of terrestrial ecosystems, and the 
quantitative estimation of vegetation biomass provides an important reference for global 
carbon reserves and carbon cycle studies (Liu et al. 2019). Therefore, accurate measurements 
of vegetation biomass and other biophysical parameters are crucial for a better under
standing of the global carbon cycle and global warming. Estimating the biomass of urban 
vegetation on a regional scale is important for understanding vegetation growth, carbon 
assimilation process, and forest ecosystem (Mincey, Schmitt-Harsh, and Thurau 2013). In the 
construction of the urban ecological environment, vegetation plays an important role in 
purifying air and water body, weakening urban heat island effect (Shao Z et al. 2020b), 
suppressing noise, reducing wind speed, increasing surface runoff and regulating urban 
microclimate (Kumar and Mutanga 2017). Therefore, urban vegetation has a good indication 
of the urban ecological environment (Wilson et al. 2003). Accurate, rapid, and effective 
estimation and monitoring of urban vegetation biomass and its spatial distribution pattern 
can understand the basis of the carbon cycle and energy flow, and also the basis for 
measuring the role of urban vegetation in ecological regulation, environmental protection. 
It can provide a quantitative basis for the evaluation of the large-scale ecological quality and 
the effectiveness of forestry and ecological construction.

Remote-sensing data are widely used in various aboveground biomass (AGB) mapping, 
using spectral features obtained from satellite images to estimate parameters such as 
vegetation index, texture features, and Leaf Area Index (LAI) that is highly related to AGB 
(Fung and Siu 2000; Zhang et al. 2014). Over the years, AGB has been estimated using 
remote-sensing reflectance and various vegetation indices. Previous studies can be 
broadly divided into two categories. The first is the research status of natural ecosystem 
biomass estimation in forest and grassland. Zhang et al. (2014) combined the high- 
resolution LAI data and the maximum height of the canopy to evaluate the uncertainty 
of the California forest area through a remote-sensing parameter model, and accurately 
described the changes and trends of forest biomass. Zhang R et al (2019) used ground 
observation, Moderate Resolution Imaging Spectroradiometer (MODIS) data, climate and 
topography data and combined with historical ground survey data to produce a 1 km 
resolution estimation map of subtropical regional forest biomass, which not only 
improved the estimation accuracy of biomass but also emphasized the importance of 
the subtropical forest to regional biomass estimation. Jin et al. (2014) established 
a regression model of ground quadrate biomass and remote-sensing spectral data 
based on the measured data of xilingol league sample site in Inner Mongolia and five 
consecutive years of MODIS remote-sensing data, and analysed the spatial and temporal 
distribution characteristics of grassland grass yield by using the obtained optimal model. 
Muukkonen and Heiskanen (2005) constructed a forest biomass estimation model based 
on the spectral characteristics of the image by using neural network and regression. Li 
et al. (2013) estimated the grassland aboveground biomass of multi-temporal remote- 
sensing data based on a statistical model and artificial neural network method, and 
compared the estimation accuracy of the two methods. Most of the studies in this part 
focus on typical vegetation ecosystems in large areas.
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Another type is the current status of urban vegetation monitoring research. Urban 
vegetation refers to trees as the main body in the city and its surrounding areas, and its 
surroundings, reaching a certain scale and coverage, which can have an important impact 
on the surrounding environment, and has obvious ecological and cultural values body. The 
monitoring of urban vegetation in foreign countries began in the 1970s, and many places 
use a combination of data to regularly monitor urban vegetation (Li X et al. 2019). However, 
the current monitoring of urban vegetation mainly focuses on the quantitative study of the 
spatial structure and distribution of urban vegetation using landscape ecological indicators, 
and few studies have conducted quantitative inversion studies from the aspect of vegeta
tion biomass (Ren et al. 2017). Tao et al. (2013) explored the interaction between urban 
green space and residential land, and analysed the combination of quantitative research 
and planning of urban green space by using landscape pattern index method and network 
analysis method by analysing the spatial and temporal dynamic changes of urban vegeta
tion and structure, and its application to the evaluation of ecosystem services are discussed. 
Wang et al. (2015) estimated the spatial distribution of forest leaf biomass in Shanghai city 
by combining regression analysis with spatial analysis based on the measured leaf biomass 
data of the sample site from June 2011 to June 2012 and the remote-sensing information of 
the same period, and discussed the remote-sensing estimation method of forest leaf 
biomass at the regional scale. Johnson (2013) and Zhou, Yu, and Qin (2014) used multi- 
source data and object-based change detection to extract and analyse vegetation changes 
at multiple levels. Although great progress has been made in using various remote-sensing 
data to improve the spatial explicit AGB estimation, there are still large uncertainties in the 
local scale of AGB regional estimation. Due to the different utilization modes of urban 
vegetation and the influence of geographical environment and other factors, most research 
areas have different conditions. In the actual study, appropriate image data and algorithms 
should be selected according to different monitoring scales to estimate biomass.

Fast and accurate image classification is the basis for the application of remote-sensing 
technology. With the continuous progress of remote-sensing technology, the number of 
bands ranges from single band to hyperspectral, and the resolution ranges from kilometres 
to metres (Gao et al. 2013; Mutanga, Adam, and Cho 2012). It also puts forward higher 
requirements for its classification and recognition technology (Ali et al. 2015). The results of 
object-oriented classification can be used to implement the quantitative analysis of dynamic 
change monitoring (Willhauck et al. 2000). Urban vegetation and environmental monitoring 
are quite different from grassland, forest, and other regional ecosystems. The city contains 
complex types of ground features, resulting in complex underlying surfaces and different 
vegetation planting structures (Shao et al. 2020d). Unlike grasslands or forests, there are 
relatively single underlying surface types and pure vegetation coverage areas. Different 
vegetation environments in urban landscapes may cause slight changes. The characteristics 
of vegetation landscapes in urban areas are highly heterogeneous (Rafiee, Mahiny, and 
Khorasani 2009). Many forest patches in the city play an important role in the urban 
vegetation ecosystem. At the same time, the urban vegetation also includes green vegeta
tion such as grassland, so it is necessary to consider the classification of urban vegetation.

Aerial images have the characteristics of high spatial resolution and can reflect the 
canopy characteristics of ground vegetation. However, due to the shortcomings of spatial 
distribution and low spectral resolution of aerial images, large area monitoring cannot be 
realized. At the same time, the acquisition cost of aerial images is high, and it is easy to get 
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data due to weather conditions (Lucas, Lee, and Bunting 2008). Satellite remote-sensing 
image data due to its wide coverage, access to convenient, revisit cycle short, etc., in the 
research of urban vegetation coverage has been widely used (Wallis et al. 2019), but due to 
its resolution cannot be achieved to distinguish the vegetation canopy of a finer level, so in 
this study, consider using multi-source data to fill in the form of a single data source faults. In 
the urban vegetation ecosystem, the estimation of vegetation in the entire study area 
requires the use of multi-source satellite data to avoid the limitation of a single data source. 
Monitoring and analysis are performed to varying degrees according to areas where human 
activities are concentrated and some ecologically fragile areas (Guo Y et al. 2012).

In this study, we will classify the features in the study area, extract the vegetation area in 
the features, and divide the urban vegetation into forest and grassland for estimation (Clark 
2020). Obtaining the ‘truth value’ of the biomass in the study area based on aerial Light 
Detection and Ranging (LiDAR) data can fully reflect the changes in the vegetation structure 
and growth status of the study area. Using 10 years of high-resolution optical images within 
the study area, parameterized and non-parameterized models are used to compare the 
performance of the selected biomass attribute prediction model method, construct the 
urban vegetation biomass inversion model and verify the accuracy of the results, so as to 
realize the inversion and monitoring of urban vegetation biomass. Main realizations: (1) 
examining the effectiveness of using LiDAR data to augment sample data, (2) establishing 
urban vegetation biomass estimation models by coupling measured data with WorldView 
data, (3) making a spatiotemporal map of urban vegetation attributes with a resolution of 
2 m, and (4) exploration and dynamic analysis of urban vegetation spatial pattern in 
Hengqin research area, Zhuhai from 2009 to 2018. The model results are conducive to 
promoting the application of biomass estimates based on aerial LiDAR images to replace 
the measured data in the field, especially for areas where it is difficult to obtain sufficient 
and representative field survey data. Through the analysis of different vegetation conditions 
in the study area in time and space, it can provide a reference for urban development 
planning and construction of the ecological city.

2. Materials and methods

2.1. Study area

The study area is located at 113°31ʹ42.78” E and 22°6ʹ39.57” N (Figure 1). It is mainly 
composed of large and small Hengqin islands. Dahengqin mountain range is undulating, 
the mountain range is basically east-to-west direction, the highest altitude is 457.7 m. 
Xiaohengqin mountain slope is gentle, the highest altitude is about 130 m. The central 
ditch located in the central area is 7 km east to west and 2 km wide from north to south. 
The study area is located south of the tropic of cancer and belongs to the South 
Subtropical Monsoon Region. It has plenty of sunshine and abundant rainfall. The average 
annual temperature is 22°C to 23°C; the average seawater temperature is 22.4°C, the 
average annual precipitation is 2015.9 nm, and the annual water storage is 36.54 million 
m3. It has three well-protected natural ecosystems of ocean, forest, and wetland. It is 
surrounded by waterbodies, with beautiful coastlines and lush vegetation. The coastline 
around the island is 50 km long. The environmental quality of study area New District is 
excellent, with an annual average PM2.5 concentration of 28 g m−3.
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2.2. Data and pre-processing

This paper uses two types of remote-sensing high-resolution multispectral image data 
and LiDAR point cloud data, as well as ground-based sample data. Data sources, pre
processing, and factor extraction are described in detail in the following three sections of 
the summary.

2.2.1. Multispectral data
In the experiment, a total of 10 years of optical data from Worldview-2 (WV-2), 
Worldview-3 (WV-3), and GaoFen-2 (GF-2) are used for experimental analysis. The 
optical data used for the model inversion in this study is the 2018 WV-3 product. The 
spatial resolution of the multispectral band is 1.43 m, and the cloud cover is 0. The 
images are clear and can cover the entire research area to meet the experimental 
requirements. The spatial projection type of remote-sensing image data is UTM-WGS84. 
Radiation calibration and atmospheric correction were performed on the image in ENVI 
5.4 software.

All images used in this study are summarized in Table 1. Details of each dataset are 
introduced in the following subsection.

2.2.2. LiDAR data
The drone is equipped with the SKYEYE SE-J500B airborne LiDAR system, and a study area 
of 20 km2 is selected as the flight area. The data were collected from 28 July to 31 July. 
LiDAR strip point cloud data with an accuracy of 1: 1000 were obtained by drone. LiDAR 
point cloud data preprocessing is carried out in Terrasolid, which mainly includes singular 

Figure 1. Sketch map of study area.
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value removal, ground and non-ground point classification, normalized height calcula
tion, and orthorectification. After the optical image is used as a reference, the normalized 
height image is geometrically corrected. The terrain point normalized vegetation point is 
obtained by subtracting the ground point elevation from the vegetation point elevation, 
and is used to extract single tree or stand parameters, or generate Canopy Height Model 
(CHM) to extract related parameters (Shao, Zhang, and Wang 2017). LiDAR variables at the 
sample level were further extracted, which included canopy height variables such as 
maximum height, average height, and quantiles, as well as point clouds derived from 
airborne LiDAR point clouds such as canopy coverage and canopy undulation. 
Characteristic variables can quantitatively describe the canopy distribution of forest 
vegetation.

In this study, three types of LiDAR variables were extracted at the plot level in Table 2: 
(1) Canopy height variables, including height maximum (Hmax), height average (Hmean), 
and height quantile (Hp: p20, p50, p70, p90), height standard deviation (HSD), height variation 
coefficient (Hcv), variance (Hvar), slope (Hske), and peak value (Hkur); (2) Canopy coverage 
(COV); (3) A variable that measures the relative shape of the Canopy Relief Ratio (CRR), 
which is used to describe the percentage of all echoes larger than the average height.

2.2.3. Field data
In order to improve the accuracy of the model, it is usually necessary to conduct field 
surveys in the research area, and use the ground-based measured data obtained from the 
survey to verify the model and correction accuracy. Field surveys and experiments were 

Table 1. Characteristic of multispectral data used in this study.
Spectral band (nm)

Year Sensor Blue Green Red NIR
2018 Wordview-3 450 to 510 510 to 580 630 to 690 770 to 895
2017 Wordview-3 450 to 510 510 to 580 630 to 690 770 to 895
2016 GaoFen-2 450 to 520 520 to 590 630 to 690 770 to 890
2015 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2014 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2013 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2012 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2011 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2010 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895
2009 Wordview-2 450 to 510 510 to 580 630 to 690 770 to 895

Table 2. Description of characteristic variable.
Type Feature Describe

Hmax Maximum point cloud height
Hmean Average height of the point cloud

Hp The percentile height of the point cloud
Canopy height variables HSD Point cloud height standard deviation

Hcv Change coefficient of point cloud height
Hvar Point cloud height variance
Hske Point cloud height gradient
Hkur Peak point cloud height

Canopy coverage COV The ratio of the canopy echo area to the total wave area
Shape of the canopy CRR Canopy Relief Ratio
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conducted in the Hengqin New District to collect information about vegetation-related 
parameters required for vegetation biomass estimation. The specific process is to use 
subjective estimation to determine the location of sample cells within the scope of the 
study area, so that they are distributed throughout the study area. For each tree sample 
point such as the forest, measure the diameter at breast height (DBH), plant height and 
other structural parameters of the single tree. An allometric equation is a non-destructive 
method and will be used to calculate the vegetation AGB by using the forest stand 
parameters: DBH and Height (H) (Equation (1)). The allometric equation which will be 
used in this research was formulated by Chave et al. (2014). It was found to be the best fit 
pan-tropic model for biomass estimation. 

AGBforest¼ 0:0673� ρD2H
� �

�0:976 (1) 

Among them, the value of ρ is 0.375, D represents the DBH, and H represents the tree 
height.

For grassland and low bush sample points, use the SUNSCAN canopy analysis to 
measure the LAI value of the sample points (Equation (2)). At the same time, basic 
information including vegetation types, land cover types, and sample point locations 
was also recorded. Samples were collected from the study area from 27 July to 
7 August 2018. 

AGBgrass¼ 44:396� ðLAIÞ � 25:946 (2) 

During the on-site sampling process, a total of 200 sample points were collected. Because 
the accuracy of the model estimation depends on the quality of ground sampling data 
(Powell et al. 2010), and during the sampling process, there are problems such as human 
error, insufficient Global Positioning System (GPS) point accuracy, position offset, and 
position deviation when point data overlaps with area data. Before modelling, the 
collected data should be checked and standardized according to the actual character
istics, and abnormal data in orthogonal data should be eliminated (B. Xu et al. 2008) to 
ensure the reliability and accuracy of data. Finally, 164 sample data were obtained.

As mentioned before, we use the pre-processed image and sampling points for 
vegetation analysis to obtain the spectral characteristics of vegetation growth under 
different grassland management treatments, combined with the biomass parameters 
such as plant height and DBH collected on the field and the use of the parameters 
extracted from LiDAR are used for subsequent estimation and inversion.

2.3. Urban vegetation extraction

The accuracy of the interpretation is related to the uniformity of the vegetation surface 
under investigation (Szantoi et al. 2017). According to the high-resolution remote-sensing 
images of the study area and the field land cover, the location information of the GPS 
measurement points is used to mark the geographic location of the uncertain category. 
The land cover types of Hengqin are classified, and their potential surface features are 
constructed according to the types. Combined with the ground verification and manual 
correction of the landform feature distribution of the whole island, the 10 years land cover 
classification results of the study area were extracted through automatic processing. The 
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vegetation area in the study area was extracted, and the vegetation area was obtained for 
biomass estimation based on the pixel size.

In this paper, based on the object-oriented classification method, the multi-scale 
segmentation algorithm in Ecognition 9.0 is used for object-level segmentation of ground 
objects in the study area. The multi-scale segmentation algorithm is a bottom-up seg
mentation algorithm based on pair region fusion technology, which is mainly used to 
minimize the average difference and maximize the uniformity represented by the image 
object with a given resolution (Schneider 2012). The main thing is to determine the size of 
the appropriate segmentation scale to make the segmentation accuracy as high as 
possible. In the process of object-oriented segmentation, different segmentation scales 
should be used for different features, so that the extracted features are more complete. 
Use Worldview series data to divide the entire urban landscape into land cover types, 
including water, vegetation (forest and grass), bare land, road, building, and hard paving. 
The details are shown in Figure 2.

There are many kinds of vegetation in Hengqin. Vegetation classification is an impor
tant part of vegetation research and one of the most complicated problems. The classi
fication of traditional vegetation is usually based on the appearance and structure 
characteristics, vegetation dynamic characteristics and habitat characteristics (Wan et al. 
2019). High-resolution data from 2009 to 2018 were used to extract the vegetation areas 
within the study area, and the vegetation areas were divided into grassland and forest as 
two different vegetation areas for subsequent inversion. Combined with pixel size, the 
vegetation area in the study area was obtained for the inversion of urban vegetation 
biomass.

2.4. AGB model

2.4.1. Calculation of biomass relevant characteristic
Extracting geological factors related to biomass to participate in biomass estimation is an 
effective method to improve the accuracy of estimation (Corona et al. 2014). The model 
variables selected in the study mainly include wave band, vegetation index, and texture 
feature. The remote-sensing related factors mainly select the original bands that have 
a high correlation with the feature of the ground features. Through image pre-processing 
and reference to existing vegetation index studies, 10 vegetation indices were selected, 

Figure 2. (a) Map for land cover derived from the worldview-3 image. (b) Map of the grass district. (c) 
Map of the forest district.
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including Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), 
Enhanced Vegetation Index (EVI), the variant of the NDVI that uses the green band 
(GNDVI), Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index 
(MSAVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Atmospherically Resistant 
Vegetation Index (ARVI), Temperature Vegetation Index (TVI), and Green Vegetation Index 
(VIgreen), and select the corresponding Blue band (B2), the Green band (B3), the Red band 
(B4) and the Near-infrared band (B5). Texture feature variables include eight textures 
including ME (Mean), VAR (Variance), HO (Homogeneity), CO (Contrast), DI 
(Dissimilarity), EN (Entropy), SM (Second Moment) and COR (Correlation) (Table 3). 
Among them, the grey level co-occurrence matrix parameter is set to 3 × 3 and the 
grey level quantization level is 64.

Based on the location information of the sampling points, the band values, various 
vegetation index values and texture feature values of each sampling point are extracted 
from the selected feature layer, and the extracted variable values are normalized to 
improve the estimation accuracy (Zhang et al. 2019). In these analyses, the metrics were 
used as an independent variable while urban vegetation biomass was used as dependent 
variables. In this study, the Pearson correlation coefficient (r) for regression analyses 
between the metrics and urban vegetation biomass was calculated to assess the relation
ships. All statistical analyses were carried out with the standard statistical software 
SPSS19.0.

2.4.2. Estimation method
In order to explore relationship between the metrics and urban vegetation biomass for 
estimating urban vegetation, correlation analyses between the measurements of the set 
of urban vegetation biomass and corresponding. Then, the corresponding regression 
models between the metrics and urban vegetation were also established to uncover 
quantitative relationships between them. In the experiment, five types of prediction 
models were selected for inversion: stepwise linear regression (SLR), K-nearest neighbor 
(KNN), backpropagation neural network (BPNN), support vector regression (SVR), and 
random forest (RF) (Belgiu and Drăguţ 2016). The verification accuracy of each model 
determined the best biomass inversion model. In actual treatment, we divided the 
vegetation part of the study area into forest area and grassland area. At the same time, 
the two different vegetation geomorphologies were analysed and sampled. Established 
their own biomass inversion models, and obtained the final biomass. The specific process 
is shown in Figure 3.

Simple linear regression is a linear regression model with a single explanatory variable. 
That is, it concerns two-dimensional sample points with one independent variable and 
one dependent variable and finds a linear function that, as accurately as possible, predicts 
the dependent variable values as a function of the independent variables. Ullah et al. 
(2012) used this method to estimate grassland biomass and proved the linear relationship 
between various related factors and grassland biomass. KNN is the estimated value of the 
pixel to be measured is obtained by the weighted average of the corresponding attribute 
values of K reference points. Many experiments have proved that KNN can be well applied 
to an inversion of vegetation conditions.

BPNN is a feedforward neural computing model trained based on the error forward 
propagation algorithm. The backpropagation of the error signal is used to adjust the 
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weights and offsets of the network structure so that the output value of the network 
approaches the expected value. It has excellent non-linear mapping ability, generalization 
ability, and fault tolerance ability, showing superiority in terms of classification and 
prediction, and has become the most widely used artificial neural network. In recent 
years, BPNN model has made preliminary research advances in the application of chlor
ophyll content estimation models. This method can perform a non-linear mapping 
between any three-dimensional data input and output vectors, which is similar to any 
non-linear continuous system. At the same time, it also provides technical means for 
forest tree species classification research.

SVR works similarly to the support vector machine (SVM) classification. It can be said 
that SVR is an adaptive form of SVM when the dependent variable is not a classification 
but a number (Mountrakis, Im, and Ogole 2011). The main benefit of using SVR is that it is 
non-parametric. The nonlinear kernel function is used to transform the input sample data 
into another high-dimensional feature space, and the regression function is constructed 
in that high-dimensional feature space. Compared with Artificial Neural Network (ANN) 
and KNN algorithms, SVR is good at solving small sample, nonlinear and high-dimensional 
problems, which can overcome the problem of excessive learning and insufficient data in 
traditional estimation algorithms.

RF is based on self-service resampling technology (TTemesgen and Ver Hoef 2015). For 
the regression problem, average the estimated value of each tree to get the final 
estimated value. As a kind of nonparametric model, a random forest can effectively 
avoid the complex relationship between dependent variables and many independent 
variables. The classification and prediction speed of the model is fast, without adjusting 
most parameters, it can effectively process a large number of sample data, without 

Figure 3. Two-stage inversion method for estimation of urban aboveground biomass.
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overfitting phenomenon, strong anti-noise ability and the importance of classification or 
prediction variables. It is very suitable for processing table data with fewer than hundreds 
of categories of digital features or classification features. It has been widely used in the 
fields of ecology and biology.

2.4.3. Training and validation data
The collection of ground data is often difficult, and the sample size of general measured 
data is very small. Before inverting the vegetation biomass in the entire study area, we first 
used the measured sample data and the extracted LiDAR variables to perform the first 
biomass inversion in the aerial image area. Later, a stratified random sampling method 
was used to expand the true value of the biomass, and then the optical data variables 
were used to estimate and invert the biomass in the study area.

The hierarchical random sampling method is used to select the training and verifica
tion sample set required for biomass estimation in the simulated LiDAR coverage area. 
The sample selection does not take into account the research area outside the simulated 
data. Because the tree height can directly characterize the forest structure and growth 
status, the LiDAR height variables Hmean and HSD are selected as prior knowledge to 
implement layering on all candidate sample data (that is, all simulated coverage area 
data). First, prepare the data of the simulated band coverage area, including the AGB 
value in the biomass baseline map and its corresponding predictor value (including all 
optical variables, Hmean and HSD). Secondly, the above data set is arranged in ascending 
order according to Hmean, and then equally divided into 10 data layers of the same size; 
then, each data layer is arranged in ascending order according to HSD, and then equally 
divided into 4 equal parts, thereby generating 40 in total data layers of the same size. 
Finally, 20 samples are randomly selected from each data layer, and a total of 800 sample 
data can be obtained, which are randomly divided into training and verification sample 
sets according to a 3:1 ratio.

Based on the RF algorithm, the biomass estimation model was constructed by using 
AGB training sample data and LiDAR variables to obtain the biomass distribution result 
map of the study area. The finally selected LiDAR variables were used to construct the 
biomass estimation model and a biomass distribution result map that obtained as 
a reference map for subsequent inversion models.

2.4.4. Accuracy assessment
Biomass inversion model accuracy evaluation, that is, the accuracy of the inversion results 
requires the use of relevant verification indicators. Three verification indicators are used, 
namely the coefficient of determination (R2), root-mean-square error (RMSE) (Equation 
(3)), and relative root mean square error (RMSEr) (Equation (4)). The most accurate 
prediction model is used as the final selected inversion model. Calculated as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðyi;meas� yi;estÞ
2

N

s

(3) 

RMSEr ¼

Pn
i¼1
jyi;meas � yi;estj

yi;meas

N
(4) 
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In the formula, yi;meas and yi;est respectively represent the measured and estimated 
values of the samples, n is the number of samples, and N is the number of reserved 
samples. The smaller the RMSE, the better the fit R2 represents the degree of fit between 
the predicted value of the regression analysis trend line and the corresponding measured 
data. When the R2 of the trend line approaches 1, the credibility is the highest.

3. Results

3.1. AGB statistics analysis in major vegetation type

In order to evaluate the closeness between vegetation biomass and characteristic vari
ables that can be used to construct a remote-sensing estimation model are selected, and 
correlation analysis is performed between characteristic factors and biomass. Correlation 
analysis is a process of determining the closeness of the dependency relationship 
between variables by means of several analysis indicators such as correlation coefficients 
and correlation indexes. In this study, R2 for regression analyses between factors and 
urban vegetation biomass was calculated to assess the relationships. All statistical ana
lyses were carried out with the standard statistical software, SPSS.

The correlation between biomass and characteristic factors is shown in Table 4 and 
Table 5. There is a positive correlation between biomass and multiple vegetation indices, 
and there is a negative correlation with the band factor part, and some factors are not 
significant. According to the correlation analysis between biomass and each characteristic 
factor, it can be seen that the correlation between vegetation index and biomass is 
significant.

3.2. Comparative analysis of urban vegetation estimation model

A total of 164 sample data were obtained and randomly divided into test samples 
(T = 124) and verification samples (V = 40) in a ratio of 3:1. Table 6 summarizes the 
model accuracy results obtained using different regression methods. In all models, RF is 
superior to other methods. In terms of cross-validation, the RF-AGB model usually results 

Table 4. The relationship between independent variable 
and grass biomass.

Feature r Feature r

B2 −0.533** EVI 0.489**
B3 −0.525** VIgreen 0.340**
B4 −0.553** SAVI 0.649**
B5 −0.600** MSAVI 0.637**
NDVI 0.649** ARVI 0.651**
RVI 0.579** OSAVI 0.649**
TVI 0.388** GNDVI 0.550**
ME −0.113* DI 0.294**
VAR 0.310 EN 0.041
HO −0.198* SM −0.031
CO 0.295** COR −0.265**

a**: Significantly correlated at the 0.01 level. 
b*: Significantly correlated at the 0.05 level.
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in higher R2 and smaller RMSE (R2 = 0.6913, RMSE = 26.98 Mg ha−1, RMSEr = 0.4418). In 
terms of model accuracy and cross-validation, the SLR-AGB model has the worst perfor
mance in terms of R2 and RMSE. Therefore, in the experiment, WV-2 image data are used 
as the input data, and RF is the prediction method to estimate the vegetation AGB on the 
regional scale.

To further validate the selected model, the remaining 40 plots were used for indepen
dent validation (Table 6). The predicted forest AGB value is the median of 124 bootstrap 
estimates. The results showed that R2 was 0.5489 and RMSE was 32.61 Mg ha−1, which was 
within the acceptable range. To further validate the selected model, the remaining 40 
plots were used for independent validation (Figure 4). The predicted forest AGB value is 
the median of 124 bootstrap estimates. The results showed that R2 was 0.5252 and RMSE 
was 38.58 Mg ha−1, which was within the acceptable range.

The relationship between AGB and the predicted biomass in an RF model shown in 
Figure 4. The distribution of the scattered points is concentrated near the 1: 1 line, but 
this model underestimates the forest AGB with a higher AGB (0 to 180 Mg ha−1) and 
the grass AGB with a higher AGB (0 to 140 Mg ha−1). The model accuracy results of RF 
AGB models created with different sample sizes (Figure 4(a) and (b)) show that 
increasing the sample size results in an increase in R2, a decrease in RMSE, and 
a decrease in the range of variation, which means that the established model is 
more stable.

Experimental results show that the RF model performs optimally in all scenarios, which 
has the same conclusion as the previous studies. Maack et al. (2015) used the spectrum, 
texture and photogrammetric information of Pleiades and WV-2, combined with four non- 

Table 5. The relationship between independent variable 
and forest biomass.

Feature r Feature r

B2 −0.434** EVI 0.655**
B3 −0.453** VIgreen 0.598**
B4 −0.540** SAVI 0.751**
B5 0.167** MSAVI 0.713**
NDVI 0.751** ARVI 0.746**
RVI 0.717** OSAVI 0.751**
TVI 0.572** GNDVI 0.639**
ME 0.070 DI 0.373**
VAR 0.203** EN 0.264**
HO −0.404** SM −0.240**
CO 0.250** COR −0.102*

a**: Significantly correlated at the 0.01 level. 
b*: Significantly correlated at the 0.05 level.

Table 6. Comparison of precision result of five model.
Model R2 RMSE (Mg ha−1) RMSEr

SLR 0.5489 32.61 0.5341
KNN 0.6802 27.46 0.4497
BPNN 0.6077 30.41 0.4981
SVR 0.5788 31.52 0.5161
RF 0.6913 26.98 0.4418
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parametric models such as RF to estimate forest AGB, and found that RF algorithm 
achieved the highest estimation accuracy.

3.3. Spatial and temporal distribution of AGB

The advantage of remote-sensing data is that it can provide ground spectral character
istics and image information for a long time, and realize dynamic change monitoring 
(Powell et al. 2010). Due to the periodicity and continuity of remote-sensing data, dynamic 
monitoring is one of the most important application of satellite remote sensing. The study 
of interannual change can reflect the growth of vegetation over a period of time, and use 
the obtained remote-sensing image data to estimate the biomass of the study area on the 
spatial and temporal scales. The use of multi-temporal high-resolution remote-sensing 
images can perform change analysis, thereby reflecting the development of regional 
urban construction and the simultaneous and coordinated development of green 
space. According to the map of all vegetation inversion results of the study area from 
2009 to 2018 (Figure 5), the total annual biomass of the study area can be calculated.

4. Discussion

4.1. AGB in different area

The relevant index factors are extracted from the image data and modelled with the 
biomass to obtain the vegetation biomass distribution map of the study area. Secondly, 
the relationship between the index and AGB in the entire study area and different 
vegetation classifications is analysed. Finally, it is shown that results in a range of 
environmental influences on urban vegetation. The range of ground data sampling has 
a great influence on the inversion of the following models. For example, if the sampled 
data are generally small, the final result may be an underestimate. On the other hand, if 
the sampled data are generally large, the final estimation results may be based on 
overestimation. When the model is retrieved in a large area, the variation range of AGB 
is large due to the different coverage of vegetation, which will lead to the 

Figure 4. (a) Forest and (b) Grass AGB verification result.

978 Y. ZHANG AND Z. SHAO



underestimation or overestimation at a later stage due to the uneven sampling. Both the 
underestimation of pixel-level AGB and forest cover area caused the underestimation of 
total AGB estimates.

As far as natural conditions are concerned, mountain forests have more tree species 
with a long age and high density. The trees have long planting time, large growth space, 
and good development status, and the proportion of large-diameter trees is high. In the 
central city area, although the forest is planted for a long time, the growth rate is fast, and 
the leaf biomass density is high, with the comprehensive and rapid development of the 

Figure 5. (a) 2009 (b) 2010 (c) 2011 (d) 2012 (e) 2013 (f) 2014 (g) 2015 (h) 2016 (i) 2017 (j) 2018. 
Biomass distribution map of urban vegetation in the study area from 2009 to 2018.
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city, the development and use of land, the building land takes up a large area of land and 
the limited area of the central city area (Shao et al. 2020c). The forest area in the area is 
significantly smaller than the forest area in mountainous areas. With the development and 
construction of cities, urban vegetation biomass has experienced a process of the first 
reduction and then increase. Due to the popularity and scale of the eco-city concept, the 
area of urban green space has also increased year after year.

4.2. Analysis of difference of feature types

It can be seen from the statistical results that from 2009 to 2014 (Figure 6), the total 
vegetation biomass in the study area decreased year by year. Because urban construction 
and urban expansion are carried out by policy implementation (Shao Z et al. 2020a). The 
expansion of building area has led to the destruction of some vegetation areas, the area of 
grassland in the urban area has been greatly reduced, and the storage of grassland has 
been greatly reduced. This is also the destruction of the natural ecology in the early stage 
of urban construction. In 2014 to 2018, the vegetation showed an overall growth trend, 
which is also closely related to the development of ecological island construction.

Compared with grass ecosystem, forests have a long life cycle, a fairly complex hierarchy, 
the highest biomass, and growth, etc., because of human deforestation, the forest area is 
getting smaller and smaller, and the size of forest biomass affected by various factors such as 
photosynthesis, respiration, and human activities. Therefore, changes in forest biomass indir
ectly reflect the impacts of forest community succession and natural disturbances, human 
activities, climate change, and air pollution. Analysis of forest biomass can reflect the quanti
tative relationship between matter and energy in forest ecosystems, and the relationship 

Figure 6. Biomass statistical map of vegetation area in 10 years.
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between biomass and ecological elements. It is an important indicator for evaluating the 
function and structure of forest ecosystems. Forest biomass and carbon storage can not only 
indicate the forest’s own use-value and management level but also explain the relationship 
between forest and its environment in terms of the material cycle and energy flow, which can 
provide a theoretical basis for sustainable use of forest resources.

By analysing the distribution of vegetation biomass in the study area, it can be found that 
the vegetation changes with environmental conditions. For example, the biomass and density 
of urban forest areas will be significantly higher than the surrounding areas such as sidewalks 
and park areas. The spatial distribution of the average biomass density of vegetation through
out the study area is high in mountains such as forests and low in central urban areas. Because 
urban areas are mostly covered by impervious surfaces (such as roads, buildings, etc.), and 
urban green space patches are mostly broken, the landscape heterogeneity is high, which 
makes the carbon absorption function not only inferior to that of dense alpine forests. At the 
same time, forest biomass is closely related to many biological and non-biological factors, such 
as regional hydrothermal conditions, soil conditions, forest types, ages, dominant species 
composition, living tree density, etc. These factors will affect biomass change and distribution.

4.3. Existing problems and prospective

Urban forest biomass and its spatial distribution pattern of accurate, rapid, efficient 
monitoring and estimation, not only is the basis of the understanding of forest carbon 
cycle and energy flow, or to measure urban forest play a role of ecological regulation, 
environmental protection, and resources to repair, forest cover is also the research status 
and the basis of urban ecological construction.

Optics, radar, and LiDAR data have their own advantages and disadvantages. It is 
important to combine appropriate methods to improve the accuracy of biomass estima
tion. LiDAR data can effectively estimate forest structure parameters, but because most 
LiDAR systems have only a single band three-dimensional (3D) structure Information (He 
et al. 2013), they do not provide sufficient vegetation spectral information. Optical data 
can provide rich spectral information, but the relationship between optical reflectance 
and canopy structure characteristics is prone to saturation problems. Therefore, LiDAR 
and optical data are highly complementary. The next step is how to integrate LiDAR and 
multispectral data to estimate urban vegetation.

We developed, evaluated, and compared the accuracy and performance of five different 
models in this study on forest AGB estimates. Machine learning also has its advantages and 
disadvantages. Machine learning has the advantage of being able to handle complex, poten
tially nonlinear relationships between AGB and other variables. However, the initial samples of 
machine learning are randomly selected, which may lead to differences in the results of each 
operation of the model. In addition, machine learning uses the average value of all regression 
trees in the calculation, which may result in overestimating the lower value and underestimat
ing the higher value.

There are many kinds of urban vegetation. It is one of the most complicated problems to 
classify and classify vegetation from the perspective of traditional optical images. Through the 
combination of spectral characteristics of different vegetation and hyperspectral remote- 
sensing images, the rapid classification of urban vegetation types and the monitoring of 
vegetation type changes are also one of the main directions of future work.
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5. Conclusions

The major contribution of this study is the assessment of urban vegetative above biomass 
by integrating terrestrial AGB observations and integrating multi-source remote-sensing 
data. Urban vegetation is divided into grassland and forestland, and the range of this type 
of vegetation is precisely extracted by the classification method. The parameter estima
tion based on LiDAR data is used as the alternative data of traditional forest inventory 
data. In the experiment, the biomass extracted from LiDAR was sampled randomly in 
layers, and when combined with optical data to obtain the best RF-based vegetation 
inversion model through the inversion of five models. The results show that our predic
tion graph not only captures the quantity and spatial distribution of urban vegetation 
AGB but also shows lower RMSE and deviation.
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