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Abstract. This paper argues that the active turbulence and coherent motions near the top of a
vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the
characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around
the inflectional mean velocity profile which develops between two coflowing streams of different
velocities, differs in several ways from turbulence in a surface layer. Through these differences, the
mixing-layer analogy provides an explanation for many of the observed distinctive features of canopy
turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio
K57/ K of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and
sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent
transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the
dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these
length scales are controlled by the shear length scale L. = U(h)/U'(h) (where k is canopy height,
U(z) is mean velocity as a function of height z, and U’ = dU/dz). In particular, the streamwise
spacing of the dominant canopy eddies is A = m L., with m = 8.1. These predictions are tested
against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which
eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence,
which is quasi-horizontal on the scale of the canopy.

1. Introduction

Vegetation-atmosphere transfer of momentum and scalar entities (heat, water
vapour, CO, and so on) influences numerous environmental variables and pro-
cesses. Familiar examples include canopy microclimates; the energy and water
balances of vegetated surfaces; vegetation and soil surface temperatures; the depo-
sition and re-entrainment of dust and other particles; and wind damage to forests and
crops. Spurred by such applications, knowledge of canopy turbulence has advanced
steadily over the last three decades. Perhaps the main development over this time
has been the recognition (as in turbulence research in general) that canopy turbu-
lence is far from random, with major contributions to the turbulent motions arising
from coherent eddies of canopy scale. This can lead to phenomena such as locally
counter-gradient fluxes, thereby precluding the use of simple gradient-diffusion
theory (/\'-theory) to describe vertical turbulent transfer in canopies. Furthermore,
the coherent eddy structure within and just above the canopy is somewhat differ-
ent from the eddy structure in the surface layer well above the canopy. This is
shown by a number of simple indicators: for example, ratios among components
of the Reynolds stress tensor; velocity skewnesses; the behaviour of the turbulent
energy balance; and the behaviour of turbulence length scales. The experimental
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justifications for these statements arise from many sources which have been previ-
ously reviewed in detail (Raupach and Thom, 1981; Finnigan and Raupach, 1987;
Raupach, 1988; Raupach er al., 1991; Kaimal and Finnigan, 1994).

In an effort to unify many of these experimental findings, this paper argues that
the active turbulence near the top of the canopy (the eddies primarily responsible
for vertical transfer) resembles the flow in a plane mixing layer rather than a
boundary layer. The plane mixing layer is the turbulent shear flow formed in the
region between two coflowing streams of different velocities. It is characterised
by a strong inflection in the mean velocity profile, in contrast with boundary-
layer flow. A key property of a velocity inflection is that it induces characteristic
hydrodynamic instability processes which set the pattern for the coherent eddies in
the resulting fully-developed turbulent flow, and determine the turbulence length
scales.

Our suggested analogy between mixing-layer and canopy turbulence flies in
the face of a long-held view that canopy turbulence is a perturbed version of the
turbulence in the overlying boundary layer. This is a natural view because a canopy
is immersed in the lowest part of a deep turbulent boundary layer. However, it
ignores the basic nature of the canopy velocity profile: typically, the mean velocity
profile has a strong inflection point near the top of the canopy, which becomes
even stronger during gust events (Finnigan, 1979a,b). We argue that the instability
processes arising from this inflection are essentially similar to those in a mixing
layer, and determine much of the coherent eddy structure near the top of a vegetation
canopy.

In this paper we restrict attention to near-neutral flow over a horizontally
extensive, uniform vegetation canopy, and do not consider buoyancy effects. The
assumption of horizontal uniformity excludes “sparse” canopies, in which the plant
spacing is of the order of the canopy height or larger. The neglect of buoyancy may
not be as drastic a simplification as it appears at first sight. Within and just above
low canopies such as crops, buoyancy effects during daytime are often insignif-
icant, even when conditions well above the canopy are strongly unstable. The
reason is that the ratio of shear to buoyant production of turbulent energy varies
inversely with height above the aerodynamic ground level or zero-plane displace-
ment (Wyngaard, 1988). In tall forest canopies, conditions during the day are often
strongly stable in the lower canopy because the solar heating is concentrated in the
crown, while during the night the lower canopy is typically unstable and the upper
canopy stable, as documented for Amazon rainforest by Fitzjarrald er al. (1990)
and Fitzjarrald and Moore (1990). This has a significant quantitative influence
on turbulence statistics (Shaw ef al., 1988). However, Brown and Roshko (1974)
showed that even the extreme buoyancy difference between helium and nitrogen
has little qualitative effect on the nature of the coherent eddies in a mixing layer.
One consequence of the mixing-layer analogy, therefore, is that the turbulent eddy
structure near the top of the canopy has a similar qualitative behaviour (though not
identical quantitative properties) across a wide range of buoyancy conditions.
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The paper has six sections. Following this introduction, the next two sections
review the experimental information required for later developments, by summaris-
ing the basic properties of canopy turbulence (Section 2) and the experimental
evidence for the existence and form of coherent eddies in canopy flow (Section 3).
Section 4 describes the flow and instability processes in a mixing layer. Section 5
then tests inferences from the mixing-layer analogy about the behaviour of many
turbulence properties in canopies. Finally, Section 6 presents a physical picture for
the dominant eddy structure in a canopy, and indicates some further applications
for the mixing-length analogy.

The paper is a major extension of ideas first advanced briefly in Raupach er
al. (1989). New work includes the treatment of linear stability theories, a more
conclusive treatment of length scale data, the use of wavelet transform data, and
discussion of eddy diffusivity ratios.

2. Basic Properties of Canopy Turbulence
2.1. VELOCITY MOMENTS

Figure 1 is a “family portrait” of canopy turbulence, redrawn and substantially
updated from Raupach (1988). It shows profiles of single-point turbulence statistics
measured in 12 separate experiments on near-neutral flow through horizontally
uniform, extensive canopies, including crops, forests and model canopies in wind
tunnels. Details for each experiment are given in Table I. The data span a very
large range of canopy height (2) and roughness density (), defined as the total
frontal area of roughness elements, projected in the wind direction, per unit ground
area; if the canopy elements are-isotropically oriented flat leaves and stem area
is neglected, then A is half the single-sided leaf area index). The statistics in
Figure 1 are the mean velocity U(z), the Reynolds shear stress uw, the velocity
standard deviations o, (z) = (42)"/2 and o,(2) = (w?)'/?, the uw correlation
coefficient 7, = ww/(o,0,), the v and w skewnesses Sk, and Sk,,, and the
length scales L, and L,, (discussed later). Here, u, v and w are the instantaneous
fluctuating velocity components in the streamwise (z), lateral (y) and vertical
(z) directions, respectively. The (z,y, z) coordinate frame is oriented with the
mean wind direction, so that the mean velocity vector is (U/(z),0,0). Overbars
denote time averages. Heights (z) are measured from the ground as origin and
are normalised with the canopy height h. Normalising velocity scales are the
mean velocity U, at the canopy top and the friction velocity w., defined so that
Uy = (ww)l/2 in the constant-stress region above the canopy.

The observations in Figure 1 have many common features, but also exhibit
variations due to differences in canopy morphology. Profiles of leaf area density
o(z) (Figure 1j) show that the main morphological difference between the canopies
is the extent to which the canopy elements are clustered in a crown near the top
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Figure la—e. A “family portrait” of canopy turbulence for canoples A to L in Table I, showing
profiles with normalized height z /h of (a) U/Up; (b) —u Tw/ul; (C) ou/us; (d) Ow/us; (€) —Tuw =
—uw/(0uow); (f) Sku; (g) Skw; (h) Lu; (i) Lw; and (j) ha(z), where a(z) is the leaf area density.
Length scales L. and L., are defined by Equation (1).

of the canopy (canopies J, K and L). As we show later, the mixing-length analogy
provides a means of reconciling these differences.

More important than the differences are the common features. First, and most
obvious, is vertical inhomogeneity: U/, uw, o,, and o,, decay rapidly with decreasing
height within the canopy (Figure la,b,c,d).

Second, there is a strong inflection in U(z) near the canopy top, where the
shear U’ = dU/dz is maximal (Figure la). The strength of the shear at this point
is described by the length scale U(h)/U'(h) = Ls, which decreases as shear
increases. Table I shows that L is typically around 0.5/ but depends significantly
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on A (decreasing as A increases) and on the leaf area density profile (decreasing as
leaf area is concentrated near the top of the canopy).

Third, well above the canopy (z > 2h), the flow assumes the “inertial sublayer”
properties of the conventional atmospheric surface layer. In thermally near-neutral
conditions, the mean velocity profile is logarithmic with aerodynamic height z — d,
where d is the zero-plane displacement. The ratios o, /u. and o,/ u. (expressions
of ratios among Reynolds stress tensor components in a constant-stress layer) are
typically about 2.5 and 1.25 (Garratt, 1992), implying that r,,, = W /(0,0.) is
about —0.32. These values are approached at heights greater than those shown in
Figure 1. :

Fourth, values of o, / ., 0, /1. and 7, just above the canopy are rathqr differ-
ent: here o, /u, falls from 1.5 to 2, ,, / u. to around 1.1 and r,, increases to about
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Table I

Physical and aerodynamic properties of canopies in Figure 1. WT = wind tunnel. The roughness
density or frontal area index, A, is assumed to be half the single-sided leaf area index for field
canopies

Canopy Ident A(m) A Un/us L¢/h Reference

WT strips A 0.06 023 3.3 0.85 Raupach et al. (1986)

WE wheat B 0.047 047 3.6 0.57 Brunet et al. (1994)

WT rods C 0.19 1 5.0 0.49 Seginer et al. (1976)

Shaw corn D 2.6 1.5 3.6 0.39 Shaw ef al. (1974)

Wilson corn E 2.25 1.45 3.2 0.46 Wilson et al. (1982)

Moga eucalypt  F 12 0.5 2.9 0.58 Unpublished

Uriarra pine G 20 2.05 25 0.29 Denmead and Bradley (1987)

Amiro aspen H 10 195 26 0.58 Amiro (1990a)

Amiro pine I 15 l 2.2 0.50 Amiro (1990a)

Amiro spruce J 12 5 2.4 0.44 Amiro (1990a)

Gardiner spruce K 12 Sil 4.0 0.30 Gardiner (1994)

Baldocchi L 24 25 2.8 0.12 Baldocchi and Meyers
deciduous (1988a,b)

—0.5, relative to inertial sublayer values. The larger magnitude of r,,,, suggests that
the turbulence near the top of the canopy is in some sense more organised, or more
efficient at momentum transfer, than inertial-sublayer turbulence. This is one of
many properties of the roughness sublayer, alayer extending upward from z = h to
(typically) about 2/, in which the turbulence is modified from its inertial-sublayer
form by the proximity of the canopy.

Fifth, the v and w skewnesses Sk, and Sk,, are small well above the canopy, but
large within the canopy where Sk, is typically 0.5 to 1 and Sk,, typically —0.5 to
—1 (Figure 1f,g). The association of positive u and negative w skewness suggests
that the strongest turbulent events within the canopy are gust or sweep motions,
consisting of brief but intense incursions of downward-moving, high-speed air
(w < 0,u > 0) into the canopy, as confirmed by quadrant analysis (see later).

2.2. LENGTH SCALES AND SPECTRA

The usual method for obtaining information on length scales and spectra in the
atmospheric surface layer is to apply the Taylor frozen-turbulence hypothesis to
single-point turbulence measurements. Unfortunately this approach is fraught with
difficulty within canopies because of high turbulence intensities (typically o, /U >
1). Nevertheless, by far the largest base of experimental information comes from
single-point measurements. Some of these are shown in Figure 1h and 11, in the
form of profiles of the single-point length scales

Ay wsyuls +t)dl; bg= v

By = 2. gfo‘ w(s)w(s+ 1) dt. (1)



M. R. RAUPACH ET AL. 357

Typically, L, is around % and L,, around /3 in the upper part of the canopy,
indicating that the dominant eddies in the upper canopy are of order £ in length
scale. Later (Section 3.2) we discuss the problems with single-point length scale
estimates by comparing them with two-point length scales; the length scales in
Figures 1h and 11 turn out to be smaller than the two-point scales by factors of 2 or
more within the canopy.

Single-point turbulence spectra have been measured in many canopies, for
instance in corn by Shaw et al. (1974) and Wilson et al. (1982), and in forests
by Baldocchi and Meyers (1988b), Bergstréom and Hogstrom (1989) and Amiro
(1990b). In general, the locations of the spectral peaks do not vary strongly with
height in the upper canopy and just above the canopy. An appropriate measure
is the peak frequency f, on a plot of fS([) against In( f), where f is frequency
and 5 power spectral density. Measurements of f, cluster around fp(u)h,/Uh =~
0.15 4 0.05 for the u spectrum and [,y /Uy, =~ 0.45 £ 0.05 for the w spectrum
(Kaimal and Finnigan, 1994). This behaviour is in strong contrast to the inertial
sublayer well above the canopy, where f,, is observed to be proportional to (z—d) /U
in near-neutral conditions in accordance with surface-layer similarity theory and
Taylor’s hypothesis (Kaimal ef al., 1972).

2.3. TKE BUDGET

For canopy flow, the turbulent kinetic energy (TKE) budget is

He?
€
e By o Py o+ P o B Tp S - (2)
ot shear wake buoyant turbulent pressure dissipation
production production production transport transport

where €2 = (u?+v?+w?)/2 is the TKE (including all scales). This must be derived
using both temporal and spatial averaging operations, to account for dynamical
processes induced by heterogeneity at small (element) scales (Wilson and Shaw,
1977). The forms of the terms are given by Brunet ef al. (1994), for example. The
shear production (F;), buoyant production (F;), turbulent transport (7%), pressure
transport (1),) and dissipation (¢) terms have conventional forms (e.g. Kaimal and
Finnigan, 1994). The wake production term F,, accounts for the generation of
element-scale TKE in the wakes of canopy elements.

TKE budgets have now been measured in several canopies, including Moga
Forest, WT strips and WT wheat (Table I), and by Leclerc er al. (1990) and
Meyers and Baldocchi (1991). Figure 2, from the WT wheat canopy, illustrates
several generic aspects of the canopy TKE budget in near-neutral conditions. First,
above the roughness sublayer (z > 24), the budget reduces to s = ¢, a “local
equilibrium” between shear production and dissipation (Townsend, 1976). Second,
in the roughness sublayer (A < z < 2h) and within the canopy (z < h), turbulent
transport becomes increasingly important: it is a loss term near z = h, and a
gain (often the largest positive term) lower down. This implies that most of the
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Figure 2. TKE balance in the WT wheat canopy (Table I). After Brunet et al. (1994). Terms as in
Equation (2).

turbulence deep within the canopy is not locally generated, and that the entire
canopy flow (including the roughness sublayer) is far from the local-equilibrium
condition P, = ¢. Third, the pressure transport term 7, is difficult to measure
and information about its behaviour is contradictory. Maitani and Seo (1985)
used surface measurements of the kinematic pressure fluctuation p to estimate the
pressure-induced TKE flux (wp), finding this to be about half the turbulent TKE
flux (we2); this suggests that |7, + 73| > |T;|. Contrasting results were obtained
by Brunet et al. (1994), who calculated T, in the WT wheat canopy (Table I) by
difference from other measured terms and also from closure assumptions; both
suggested that 7}, opposed 7%, so that |1}, + Ti| < |T%| (see Figure 2). Fourth,
the wake production terrn P,, (estimated as —(U)d{ww)/d2) is a large term in
the canopy, substantially exceeding P;. However, the resulting fine-scale “wake
turbulence” is quickly dissipated, causing complementary large values of ¢ without
contributing significantly to the overall TKE in the canopy (Brunet e7 al., 1994).

2.4. EDDY DIFFUSIVITIES

The eddy diffusivities for momentum and heat are Ky = —ww/(0U/0z) and
Ky = —wf/(00/9z) (where O and 6 respectively denote mean and fluctuating
potential temperatures). These are treated here as measured properties of the flow
rather than predictive parameters in a theory. Measurements show that /'y and
;7 behave differently in each of three regions. First, in the inertial sublayer,
K and Kpy are equal to the values /'3, and '}, predicted by Monin—Obukhov
similarity theory (K3, = Kj; = ku.(z — d) in neutral conditions, with x ~ 0.4
the von Karman constant). Next, in the roughness sublayer just above the canopy
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(h < z < 2h), Ky and Ky increase above K3, and K7j; as the surface is
approached. With some inter-canopy variation, Kys is enhanced over A}, (just
above z = h and in near-neutral conditions) by a factor of 1.1 to 1.5, whereas A’y
is enhanced over '}; by a factor of 2 to 3 (Garratt, 1978; Raupach, 1979; Raupach
and Thom, 1981; Cellier, 1986; Chen and Schwerdtfeger, 1989; Shuttleworth,
1989; Cellier and Brunet, 1992). Thus, with decreasing height, the inverse turbulent
Prandtl number (Pr; L= K17/ K ar) increases from around 1.1 in the near-neutral
inertial sublayer (Garratt, 1992) to around 2 just above z = h. Finally, in the
canopy layer below z = h, observations of Kps and /K'f; become very erratic,
often exhibiting singularities and regions of negative values. This behaviour is
associated with observations of countergradient fluxes within canopies (Denmead
and Bradley, 1985; 1987), indicating that the turbulent transfer process is essentially
nonlocal and cannot be described by a local gradient-diffusion relationship. Reasons
for this behaviour can be advanced in both an Eulerian framework (Finnigan and
Raupach, 1987) and a Lagrangian framework (Raupach, 1989), the latter offering
a fairly straightforward replacement for a gradient-diffusion theory of turbulent
transfer within canopies.

3. Observed Properties of Coherent Eddies in Canopies

Turning to coherent motions, some basic properties of canopy-scale coherent eddies
can be inferred from single-point statistics. For instance, turbulence length scale
measurements show that the eddies dominating turbulent transfer are of canopy
scale (h), and are therefore “coherent” (well-correlated) on this scale. This section
outlines three types of observations which yield further information about coherent
eddies in canopies: studies of honami (wind waves); two-point turbulence statistics;
and conditional analyses.

3.1. HONAMI

Honami waves, the coherent waving motions of patches of stalks in cereal crops
on windy days, provide striking visual evidence that coherent eddies exist in
canopy flows. These waves, first documented and named by Inoue (1955), have
been studied in detail by Finnigan (1979a,b). The waves are produced as a gust
microfront travels through the canopy, bending over the stalks as it passes. In
the lee of the gust, the stalks oscillate at their natural frequency through several
damped cycles, giving the impression of a wave moving through the canopy with
a phase velocity equal to the gust velocity, typically about 2Up. The strongest
honami activity occurs when the gust arrival frequency coincides with the natural
frequency of the stalks. Finnigan (1979a,b) observed that the gusts have typical
streamwise periodicities of order 5h to 8 and lateral widths of several /2, and often
arrive in packets of two or three.
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3.2. TWO-POINT TURBULENCE STATISTICS

In contrast with single-point measurements, simultaneous measurements at mul-
tiple locations provide direct information on the spatial structure of turbulence.
A fundamental statistic is the two-point space-time correlation function between
velocities measured by a “reference” sensor located at (0,0, zp) and a “roving”
sensor at (z,y, z):

u;(z,y,2,t+ 7)u;(0,0, 2R, 1)
(’u%(z))1/2('1.5?(3;3))1/2

3)

Pl Uy 275 ¥pl =

where u; = (u,v,w). This is a very useful quantity for assessing some aspects
of turbulence structure, particularly length scales, but interpretations in terms of
coherent motions must be made carefully because the correlation is diluted by
chaotic, incoherent motions and may also be smeared by random phase shifts
between coherent motions. Horizontal homogeneity and stationarity are assumed
in Equation (3), but even so, 7;; is a function of five independent variables. Three
special cases of r;; (or its integral properties) are therefore commonly used.

(1) The vertically separated space-time correlation, r:;(0,0, z, T; zr), has been
measured in various field and model canopies by Gao et al. (1989), Shaw et al.
(1989) and Raupach e al. (1989); see Raupach ef al. (1991) for review.

(2) The spatial correlation at zero time delay, ri;(z,y, z, 0; zRr), is mainly avail-
able from wind-tunnel measurements because of limitations on sensor deployment
in the field. Shaw et al. (1995) analysed two-point velocity correlations from the
WT wheat canopy (Table I). From this work, Figures 3 and 4 show slices (respec-
tively in the 2z and yz planes) of the zero-time-delay spatial correlation functions,
ri;(2,y,2,0; zg), for v and w (that is, 71y and r33). In the zz plane (Figure 3), 713
exhibits tilted, nearly elliptical, longitudinally stretched isocorrelation contours,
with a tilt angle (defined from the major axes of the ellipses) of about 18° above
the canopy and less within; in contrast, 733 exhibits almost circular contours and
decays much more rapidly with spatial separation. In the yz plane (Figure 4), the
isocorrelation lines are nearly circular, with a strong negative peak in 1) at a lateral
displacement of about 34 from the reference probe, and a weaker negative peak
in 733 at a slightly smaller lateral displacement. These suggest the presence of a
streamwise vortical motion with a lateral periodicity of several canopy heights.
Figures 3 and 4 together confirm that, in a time-averaged sense, fluid motions near
the top of the canopy are well correlated over length scales of order Fos S 2 = s
there is significant correlation for u (r1; > 0.2) within a sloping elliptical region
defined roughly by |z| < 4h, |y| < k, and |z — zg| < 2Ah; for w, the corresponding
region (733 > 0.2) is roughly spherical with radius 0.8/,

(3) Direct information on turbulence length scales and convection velocities
is also available from r;;. The use of two-point data eliminates the uncertainties
arising from the application of Taylor’s hypothesis to single-point data, as In
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Figure 3. Spatial correlations at zero time delay, ri;(z, y, z,0; zr), for WT wheat (Table I) in the
rz plane (y = 0). (a) u correlation (r11) with zg/h = 0.5; (b) r1; with zr/h = 1; (c) r1; with
zr/h = 2; (d) w correlation (r33) with zgr/h = 1. After Shaw et al. (1995).

Equation (1). Much better estimates of Eulerian length scales can be obtained by
integration of the zero-time-delay r;; along a streamwise transect:

Li(z) :/0 Bl 80,5 Oez)ida (4)

where the double dot superscript denotes the use of the two-point correlation. Shaw
et al. (1995) used this equation to calculate Ly = L and Ly = L; in the WT
wheat canopy. Figure 5a compares these results with the single-point scales L,
and L., from Equation (1) and Figure 1h,i. The single-point and two-point scales
agree reasonably at heights well above the canopy, but progressively diverge with
decreasing height. Within the canopy, the single-point L, and L,, are each less
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Figure 4. As for Figure 3, in the yz plane (z = 0). After Shaw et al. (1995).

than half their two-point counterparts. The reason is that, within and just above
the canopy, the mean Eulerian velocity U(z) is a poor estimate of the convection
velocity U.(z) at height z. Shaw et al. (1995) estimated U. in two ways: as
T/ Tmax (Where T,y is the time delay at which the correlation riilm: Qe mis) 18
maximum), and as U L/ L;, using the ratio of the two-point to single-point length
scales. These estimates of U, (Figure 5b) are significantly greater than / within
and just above the canopy: at z = h, U. is nearly 2U. This agrees with visual
observations of honami (Section 3.1), and with measurements of the translation
speed of temperature microfronts in an almond orchard by Zhang et al. (1992).
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Figure 5. Two-point length scales L;” = L, and L; = L,, defined by Equation (4), and single-point
length scales L, and L., for WT wheat (Table I). (b) Convection velocities U, estimates as r / Tiax
and as U L; /L, compared with mean velocity U(z). After Shaw et al. (1995).

3.3. CONDITIONAL ANALYSES

The term “conditional analysis™ describes a broad class of methods (Antonia, 1981)
for analysing one or more turbulence signals to extract information about postulated
events or patterns of coherent motion. A “detector” or “condition” is used to identify
realisations of the postulated event, and to assign each realisation a time origin such
as the edge of a ramp structure. The realisations can then be averaged with aligned
time origins to produce an ensemble-averaged pattern for the detected events. This
can also lead to a determination of the contributions of these events to overall
turbulent fluxes like ww and wé. Several kinds of conditional analysis have been
applied to canopy flows; these can be grouped into four categories according to the
means of event detection.

(1) Quadrant analysis (Wallace et al., 1972; Lu and Willmarth, 1973; Nakagawa
and Nezu, 1977) was one of the earliest methods. Each instant of a (u(?),w(?))
record 1s classified as one of four kinds of “event” according to its quadrant in the uw
plane, yielding the contribution of each quadrant to the overall momentum flux ww.
Of greatest importance are the ejection (v < 0, w > 0) and sweep (v > 0, w < 0)
quadrants. Extensive applications to canopy data have shown that the ejection
and sweep quadrants contribute about equally to ww in the inertial sublayer, but
that sweeps dominate ww within the canopy (Finnigan, 1979a; Raupach, 1981;
Shaw et al., 1983; Coppin et al., 1986; Baldocchi and Meyers, 1988a; Bergstrom
and Hogstrom, 1989). Through a cumulant expansion of the joint uw probability
distribution (Nakagawa and Nezu, 1977), this result accords with the observed
behaviours of Sk, and Sk, (Figure le,f) and the 7} term in the TKE budget (Figure
2). The contribution of quadrant analysis is therefore significant; however, the
method says nothing about the spatial properties or characteristic flow patterns of
the turbulence.
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(2) Visual event detection is based on recognition of the ramp structures present
in many turbulence signals (especially ¢ and u). Ramps are observed in the
atmospheric boundary layer (Taylor, 1958; Priestley, 1959; Antonia et al., 1979;
Wilczak, 1984): in laboratory boundary layers (Chen and Blackwelder, 1978);
and in vegetation canopies, especially forests (Gao et al., 1989; Bergstrom and
Hogstrom, 1989; Paw U er al., 1992). In canopies, the ramps often occur coherent-
ly through much of the canopy depth. Visual detection of these structures, followed
by ensemble-averaging, has been used to construct pictures of the flow field around
ramps (Wilczak, 1984; Bergstrom and Hogstrom, 1989; Gao et al., 1989).

(3) Automated algorithms for detecting sharp changes in turbulence signals
have been developed with the aim of streamlining and removing subjectivity from
visual ramp detection. These algorithms include Variable-Interval Time Averag-
ing (VITA) (Blackwelder and Kaplan, 1976), Window-Averaged Gradient (WAG)
(Bisset et al., 1991), methods based on multilevel detection of sharp temperature
drops (Shaw et al., 1989; Paw U er al., 1992), and a running-correlation method
used by Qiu et al. (1995). All these methods require parameters, such as detec-
tion thresholds and window lengths, which are usually set by calibration against
visually identified ramps. Hence, the methods remain subjective to some extent.

(4) Event detection based on wavelet transforms is an approach which offers
more objectivity. For a signal u(t), the wavelet transform is (Collineau and Brunet,
1993a):

, . P t—0b
Wi(a,b)=a? /ﬂ u(t)g™ ( ) dt (5)

s 7

where * denotes the complex conjugate, « is a “scaling” or “dilation™ parameter,
b a “time-translation” parameter, ¢ is a “wavelet function” (vanishing at +oc and
having a finite square integral), and the exponent p is usually chosen as 1. For given
a, the wavelet transform produces a time-like record (in b) showing the extent to
which the signal u(f) “matches” the wavelet pattern g. The “wavelet spectrum”
is the variance of this record as a function of a. This spectrum is typically fairly
smooth, with a well-defined peak (at @ = a,) which objectively determines the
mean duration of the events selected by the wavelet pattern.

Collineau and Brunet (1993a,b) and Brunet and Collineau (1994) outlined the
application of wavelet transforms to canopy turbulence studies, offering four choic-
es for the wavelet shape g: MHAT (a twice-differentiated Gaussian), WAVE (a
once-differentiated Gaussian), HAAR (a single square wave cycle) and RAMP (a
single sawtooth wave cycle). These can be classified according to whether detec-
tion of an event occurs when the transform W (a, b) crosses zero on the time axis b,
or exceeds some threshold. Wavelet shapes which are symmetric in time (MHAT)
lead to zero-crossing event detection, whereas those antisymmetric in time (WAVE,
HAAR, RAMP) lead to threshold detection. The particular transform W (a,, b) (in
which « is set to the wavelet spectral peak «,) is therefore an event detector requir-
ing no calibration parameters for the MHAT wavelet, and one (threshold) parameter
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for WAVE, HAAR and RAMP. Collineau and Brunet (1993b) compared these four
wavelets, together with the VITA and WAG detection schemes, using four hours
of summer, daytime data from Les Landes forest, Bordeaux. They found, first,
that the MHAT event detector, W (a,, b), gave excellent agreement with visual
ramp detection in determining the number (N') of ramp structures in a temperature
record of duration 7', thus providing an objective measure of the mean interval
N /T between structures (1.82/u, for their data). Second, the location of particu-
lar structures was determined best by RAMP, with the threshold parameter set by
requiring that RAMP detect N structures. Brunet and Collineau (1994) obtained
similar results in a maize canopy. Lu and Fitzjarrald (1994) carried out a wavelet
analysis of a much larger data set from Harvard Forest, Massachusetts, using the
HAAR wavelet applied to the ¢ signal. They obtained nearly identical conclusions
to Collineau and Brunet (1993b), and also noted changes in N between day and
night, and between summer and winter (leafless) conditions. We return to these
results in Section 5.2.

4. The Mixing Layer

In the next two sections we turn to the proposal that turbulence and coherent
motions near the top of the canopy are patterned on the flow in a plane mixing
layer rather than a boundary layer. This section reviews some fluid-mechanical
properties of the mixing layer.

4.1. DEFINITION AND BASIC PROPERTIES

The ideal (plane, coflowing) mixing layer forms when two coflowing streams with
different velocities, initially kept separate by a splitter plate, are allowed to mix
(Figure 6). We let the splitter plate be in the horizontal half-plane z = 0, @ < 0,
with the flows in the +a direction. The mixing layer becomes turbulent and then
self-preserving as @ increases, with a depth proportional to @ — xo, where xq is
a virtual origin (Townsend, 1976, Section 6.10). The depth of the mixing layer
can be quantified by the vorticity thickness ¢, = AU/(dU/dz)max, where AU
is the difference between the two free-stream velocities; an alternative measure,
the momentum thickness 6,,, is typically about 6., /4.5, depending slightly on the
shape of U(z) (Rogers and Moser, 1994).

Figure 7 shows several observed properties of the fully-developed, self-
preserving mixing layer. Velocity moments show a strong inflection in {/(z) at
the centreline (Figure 7a), and single peaks in ww, o,, and o, (Figure 7b). Near the
centreline, o, /u, ~ 1.7, 0, /u. = 1.5, 0, /u. =~ 1.3 and ry,, = —0.44 (defining
u, for the mixing layer as max(—uw)’ /2). There are antisymmetric double peaks in
Sk, and Sk,, (Figure 7d) which indicate that momentum transfer is dominated by
sweeps on the low-velocity side of the flow and by ejections on the high-velocity
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Figure 7. Flow statistics in the self-preserving region of a plane mixing layer, normalised with AU
and momentum thickness 8m: (a) U: (b) 0w, 0. and ww; (c) TKE balance (terms as in Equation
(2) except for time derivative term, A); (d) Sku and Sk (e) inverse turbulent Prandtl number
Pr;! = K/ K a. Sources of data: (a), (b) and (d) compiled from Wygnanskiand Fiedler (1970) and
Bell and Mehta (1990); (c) from DNS results for a temporally-growing mixing layer by Rogers and
Moser (1994); (e) calculated by present authors from data of Fiedler (1974) on U(z) and O(z) in a
mixing layer with one slightly heated stream, using conservation and self-preservation assumptions.

side, in the terminology of quadrant analysis. The turbulent energy budget (Figure
7¢) is characterised by strong turbulent transport away from the zones of highest
shear production into the low-production regions, and is far from local equilibri-
um condition Py =~ . The inverse turbulent Prandtl number Prt‘1 = Ny /Ky is
around 2 in a mixing layer (Figure 7¢), a value typical of free shear flows including
wakes and jets as well as mixing layers (Townsend, 1976). Table II summarises
these statistical flow properties, comparing a mixing layer with a surface layer (the
inertial sublayer of a neutral boundary layer).

Mixing-layer turbulence has a distinctive pattern of coherent motion, identified
in the classic experiments of Brown and Roshko (1974) and by many subsequent
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Table IT

Comparison of statistical flow properties for a surface layer (inertial sublayer of
a turbulent boundary layer); a mixing layer; and canopy flow near z = h. P,
T and e are respectively the production, transport and dissipation terms in the
TKE budget, Equation (2).

Property Surface layer  Mixing layer Canopy (z = h)
U(z) inflection No Yes Yes

O fUx 2.5 1.7 1.8

T [ s 1.25 1.3 il

Yo = T (Outw) =032 —0.44 -0.5

Pri' = K /Ku 1.1 2 2

|Ske|, |Skuw| Small O(1) O(1)

w, W x z —d o b o h —d

TKE budget Small T+ Large T Large T

O~ P —c¢ 0=P+T—¢ 0=P4+T-—c¢

workers. Flow visualisations and other techniques reveal a strong, large-scale
coherent motion consisting of a series of primarily transverse vortices. The stream-
wise periodicity or separation between vortices, A,, increases with mixing-layer
depth 6. Both are proportional to  — 2 in the self-preserving region. Experimen-
tal and numerical determinations of A, /4, in this region are in the range 3.5 to 5
(Dimotakis and Brown, 1976; Rogers and Moser, 1994).

4.2. HYDRODYNAMIC STABILITY THEORY

A starting point for the analysis of mixing-layer development is offered by clas-
sical, linear, Hydrodynamic Stability Theory (HST). The approach is to consider
weak oscillatory perturbations, or modes, embedded in an otherwise laminar shear
flow with background velocity profile U(z). A given mode may decay, ampli-
fy or remain steady in time. The analysis uses linearised dynamical equations
to identify the possible modes, determine their development, and in particular
to find the wavenumbers, phase speeds and initial growth rates of the amplified
modes, since ultimately these dominate. Reviews are given by Monin and Yaglom
(1971) and Drazin and Reid (1981). We are concerned here with the stability
properties of a plane shear flow with an inflection in U(z). The basic instabili-
ty in this flow is caused by inviscid effects, with viscosity playing only a minor
damping role (Betchov and Criminale, 1967); it is therefore sufficient to consid-
er the inviscid problem. It is also sufficient to study the two-dimensional (z, 2)
problem, because for any three-dimensional mode, there exists a corresponding,
faster-growing two-dimensional mode (Squires’ theorem in the inviscid case). The
classical approach is to consider the perturbation stream function ¥(x, z,t), let-
ting (u,w) = (0 /dz, -0 /dx) be a small perturbation in the two-dimensional
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velocity vector about the background velocity (U(z), 0). Solutions are sought in
the form

Wz, z,t) = ¢(2) exp(ilkz — wt)) = ¢(z) exp(ik(z — ct)) (6)

which represents a single mode as a wave propagating in the direction with
wavenumber k, angular frequency w, phase velocity ¢ = w/k and amplitude #(z).
The problem is governed by the Rayleigh equation, an equation for ¢ derived from
the linearised, inviscid momentum equation:

(U = e)(¢" — k*¢) - U"¢p =0 (7)

with ¢ = 0 on the boundaries. The double primes denote double z derivatives.
This is an eigenvalue problem with nontrivial solutions ¢(z) (eigenmodes) only
for certain values of ¢ (eigenvalues) which depend on k. A given mode is possible
if ¢ = w/k is an eigenvalue of Equation (7); it is then stable, neutral or unstable
if Im(c) is negative, zero or positive, respectively. Theorems due to Rayleigh
and Fjortoft (see Drazin and Reid, 1981) show that a necessary condition f01
the existence of unstable modes is that I/(z) has an inflection point where U’
maximum, like the mixing-layer {/(z) in Figure 7a. The unstable modes generate
two-dimensional waves known as transverse Kelvin-Helmholtz (KH) waves; these
constitute an entire family of motions which emerge in a laminar mixing layer but
not in a laminar boundary layer, because the mixing layer has an inflectional U/( =)
(with maximal U) but the boundary layer does not.

Michalke (1964, 1965) calculated the unstable modes in a parallel-flow mixing
layer with the unperturbed velocity profile

U(2)/Us = 1 + tanh(z/Ly) (8)

where Ly = 6,,/2 and Uy = AU//2. For this velocity profile, 6, = 46,,. The
analysis shows that the unstable modes are those with 0 < kL, < 1. In the
temporal case (homogeneous in = but evolving in time) the fastest-growing mode 1s
kL, =0.44460r A, /Ls = 14.13, where A, = 2 [k is the streamwise wavelength
of the KH waves; in the spatial case (steady in time and evolving in x) it is
kL, = 0.4031 or A;/Ls; = 15.59. The precise shape of the U(z) profile does not
have a strong influence, as shown by similar calculations with a piecewise-linear
U(z) (Drazin and Reid, 1981, p. 146). The results for the spatial case are in good
agreement with observations of both the spacings and growth rates of the transverse
vortices in the early stages of the growth of a mixing layer (Ho and Huerre, 1984).

4.3. DEVELOPMENT TOWARDS THE FULLY TURBULENT STATE

Because of its linearity, HST ceases to apply as soon as the instabilities grow to
a finite size, which happens very quickly. The subsequent nonlinear development
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of the mixing layer towards a fully turbulent state includes several additional
instability processes, reviewed by Ho and Huerre (1984), for example. These have
been studied experimentally, analytically and numerically, including recent Direct
Numerical Simulation (DNS) studies by Comte et al. (1992) and Rogers and
Moser (1994); the latter achieves high enough Reynolds numbers to reach the fully
turbulent, self-preserving state.

The development sequence includes the following processes. First, the trans-
verse vorticity in the KH waves quickly “rolls up” under a nonlinear self-interaction
into a string of concentrated “rollers”, separated by “braid regions” in which the
transverse vorticity is lower but the strain rate is higher. The roller regions are
dominated by rotation and the braid regions by strain (Rogers and Moser, 1994).
Next, three-dimensional instabilities lead rapidly to the development of longi-
tudinal vorticity, in the form of “braid” or “rib” vortices in the highly-strained
braid regions (Pierrehumbert and Widnall, 1982). Third, and at the same time,
neighbouring transverse vortex rollers begin to amalgamate under a stochastic
“pairing" process (Winant and Browand, 1974), introducing irregularities into the
spacing between rollers. Fourth, after (typically) two or three vortex pairings, a
distinct “mixing transition” occurs, corresponding to the initiation of fully devel-
oped, three-dimensional turbulence (Dimotakis and Brown, 1976). Finally, a short
time later, the turbulence assumes a self-preserving form. By this stage, vortex
amalgamation appears to be dominated not by pairing but rather by “tearing™, the
destruction of a transverse vortex and engulfment of its vorticity by the strain field
of its neighbours (Moore and Saffman, 1975; Rogers and Moser, 1994). The long
transverse rollers which are evident prior to the mixing transition are less organised
after transition, with amalgamations apparently occurring stochastically in the @y
plane, leading to “branchings” of the transverse rollers (Browand and Troutt, 1980;
Comte et al., 1992). The region of strong two-point velocity correlation at zero
time delay (ry; > 0.2) extends about £26,, = £¢,,/2 in the streamwise direction,
and +66,, ~ +1.56,, in the transverse direction (Browand and Troutt, 1980).

Observed values of A,. /6, in a fully turbulent mixing layer are between 3.5 and
5. These are consistent with the theoretical criterion A, /é, < 3.5 for the amal-
gamation by tearing of a linear array of transverse vortices (Moore and Saffman,
1975), but are less than the fastest-growing KH wavelength predicted from linear
HST in the spatial case (Michalke, 1965), for which A,./é., = Nl (2Lg) = 1.8
Nevertheless, HST may retain some conceptual applicability even for the fully
developed shear layer, if the large coherent motions are regarded as “instabilities
propagating on a flow defined by the time-averaged velocity field” with the smaller-
scale turbulence providing an (eddy) viscosity (Ho and Huerre, 1984, p. 387). There
are several possible reasons for the difference between observations and HST pre-
dictions of \,./é,: (1) the mixing layer is growing linearly (6, x & — x¢) In the
observations, but é_, is constant with 2 in the analysis; (2) there is additional entrain-
ment in a high Reynolds number mixing layer caused by the fine-scale turbulence,
which causes an increase in dé,, /da at mixing transition; and (3) most importantly,
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nonlinearities cause the emergence of modes other than the fastest-growing KH
mode, as suggested by the DNS study of Comte et al. (1992).

Both experimental and numerical studies have shown that the exact development
and properties of a mixing layer are sensitive to initial conditions: for example,
whether the splitter plate boundary layers are laminar or turbulent, or periodic forc-
ing of the mixing layer in its initial stages (Ho and Huerre, 1984; Rogers and Moser,
1994). This indicates that mixing layers “forget” their initial conditions extremely
slowly (Dimotakis and Brown, 1976). Nevertheless, the above description applies
generically to mixing layers without initial forcing.

5. The Mixing-Layer Analogy for Canopies

An analogy between turbulent flow in a mixing layer and near the top of a canopy
is suggested initially by the inflectional mean velocity profile U/(z) in both flows.
Several consequences follow if the analogy is accurate: the values of statistical flow
properties such as T/ ey Ty and K/ K pr in canopy turbulence should be
closer to typical values in a mixing layer than a surface layer (the inertial sublayer
of a thermally neutral turbulent boundary layer); the turbulent energy budget in a
canopy should approximate that in a mixing layer; and the dominant length scales
of canopy turbulence should also be predictable from those observed in mixing
layers. The extent to which these expectations are satisfied constitutes a series of
tests of the hypothesis.

5.1. TESTS BASED ON STATISTICAL FLOW PROPERTIES

The material presented so far has shown that many properties of canopy flow are
indeed closer to mixing-layer than surface-layer values. Table I compares several
flow properties between a surface layer, a mixing layer and typical canopy flow
near z = h. In particular, o, /. is around 30% lower, and |7 | 18 30% higher, in
both the canopy and the mixing layer compared with the surface layer. The v and
w skewnesses are both significant (around 1 in peak absolute value) in the mixing
layer and the canopy, but are small in the surface layer. The signs of Sk, and
Sk,, imply that momentum transfer is dominated by sweeps (u > 0, w < 0) on the
low-velocity side of the mixing layer, as in the canopy. The turbulent energy budget
is far from local equilibrium in both the mixing layer and the canopy (turbulent
transport being comparable with production in both flows) but is close to local
equilibrium in the surface layer. The eddy diffusivity ratio A’/ Ay 1s around 2 in
the core of the mixing layer and in canopy flow just above = = h, but is about 1.1
in the surface layer.

Rapid Distortion Theory (RDT), reviewed by Townsend (1976), Savill (1987)
and Hunt and Carruthers (1990), offers some explanation for the differences in
statistical flow properties between mixing layers and boundary layers, and thence
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for the behaviour of these properties in canopy flow near z = h. RDT uses the
linearised equations of motion to calculate what happens to an initially specified
turbulent velocity field under various kinds of mean-flow distortion, specified in
our case by U(z). In this respect RDT differs from HST (another linearised the-
ory), which seeks the fastest-growing eigenmodes or resonant modes of the flow.
Mathematically, the flow equations (for instance the Rayleigh equation (7)) can
support both a discrete spectrum of exponentially growing (Im(c) > 0) or decay-
ing (Im(c) < 0) eigenmodes, and a continuous spectrum of neutral eigenmodes
(Im(c) = 0) which do not grow or decay exponentially with time (Drazin and Reid,
1981); HST studies the discrete eigenmodes, while RDT deals with the continuous
spectrum of neutral eigenmodes.

A simple and important case is that of uniform shear, U/ (z) = az witha constant
rate of strain & = dU//dz. The RDT solution for initially isotropic turbulence was
obtained by Townsend (1970, 1976), and for initially axisymmetric turbulence
by Maxey (1982). The solution yields predictions of the two-point covariance
R (r,t) = ui(x,t)u;(x + r, 1), ratios among the Reynolds stress components
u;u;, and the inverse turbulent Prandtl number Ky /Ky (all as functions of the
dimensionless total strain 3 = «at, where t is the distortion time). The predictions
strongly resemble observations in real turbulent shear flows; for instance, the
predictions for R;;(r,t) (Townsend, 1970) match observations by Grant (1958)
in eight out of nine tensor components, and also include the main features of our
own R;; measurements (Figures 3, 4). This is remarkable in view of the extreme
simplifications of the theory, which include linearisation, homogeneity, and ad
hoc specification of the initial turbulence. In particular, RDT yields reasonable
predictions of several turbulence properties for both a mixing layer and a surface
layer, provided that different total strains are chosen for each: 5 ~ 2 for a mixing
layer and 3 ~ 5 for a surface layer. In effect, /3 is calibrated against one turbulence
property, other properties then being independent predictions. Table III shows the
RDT predictions for o, /u. and K /Ky at these 8 values. There is a general
(though not exact) correspondence with the mixing-layer values from Table IT at
3 = 2, and the surface-layer values at § = 5. This suggests that, within the limits
of its assumptions, RDT does indeed capture the main statistical properties of shear
flows, and that the statistical differences between the mixing layer and the surface
layer are associated with differing values of the effective total strain in each flow.

5.2. TESTS BASED ON TURBULENT LENGTH SCALES

Of several possible turbulent length scales, we focus on A, the mean streamwise
periodicity or a-distance between successive coherent eddies. A prediction for A,
in canopy flow near z = h can be made by recalling two estimates of A, for
the mixing layer: HST predicts A, /6, = 7.8 for the fastest-growing KH spatial
wave, while experiments and DNS results for fully-developed mixing layers give
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Table III
Predictions of Rapid Dis-
tortion Theory (RDT) for
two values of total strain £,
from Townsend (1976, Fig-
ure 3.15, case NV = 0, and

Figure 8.4)
B 2 5
Oufts 171 223

I\LVH/I(M 1.9 1.4

Ay /b, ~ 3.5t05. Of these, the fully-developed value is more relevant to canopies.
To estimate &, for the canopy mixing layer, we consider

Ly = Up /UL = U(h)/(dU/dz) = 9)

which is a basic shear length scale for canopy flow. This is equal to é,,/2, under
two modest assumptions: (1) the inflection point in U(z) is at z = h (which can be
regarded as a definition of A!); and (2) Uy < Uy, where Uy is the velocity on the
low-speed side of the canopy mixing layer, or the velocity in the low-shear region
deep within the canopy. Taking A, /d,, in the range 3.5 to 5 and 6, = 2L, we
obtain the prediction

Ay = mL, = mU, /U, (10)

where m is in the range 7 to 10. This prediction can be tested in four ways.

(1) The spectral peak frequency f, is related to A, by A, = Ue [ f»» where U
is the convection velocity. It is appropriate to use the w spectrum for this purpose,
since it reflects the active turbulence near 2 = h which induces the primary vertical
motions and mediates the vertical transfer of momentum and scalars. In contrast,
the « and 6 spectra include contributions from inactive turbulence, the larger-
scale quasi-horizontal motions in the surface and canopy layers which modulate
the active turbulence near z = h but do not contribute significantly to vertical
transfer (Bradshaw, 1967; Townsend, 1976; Perry et al., 1986). We expect the
active turbulence, but not the inactive turbulence, to be dominated near z = h by
inflectional instability processes, and therefore to be described by the mixing-layer
analogy. Using the peak frequency [, () of the w spectrum, we obtain the estimate

Ax UC U}L ( UC )
Bl - — ). 11
h fp(w)h (fp(w)h) Un (1

For a “generic” canopy, f,(,)h/Unr = 0.45 below about 2/, nearly independent of
height (Section 2.2). Taking U./Uj, ~ 1.8 near z = h, from evidence in Section
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3.2, Equation (11) gives A, /h =~ 4 as an “observed” value inferred from w spectral
peak frequencies. This is in agreement with the prediction of Equation (10): taking
m=38and Ls/h = 0.5 as a “generic” value from Table I, Equation (10) also gives
Az/h =~ 4.

(2) Turbulence length scales derived from velocity correlations offer a much
more precise test, because canopy-specific, rather than generic, data are available.
As with spectral peak frequencies, it is appropriate to use the length scale for w
because this represents the active turbulence. Avoiding Taylor’s hypothesis, the
best estimate of A, is obtained from the two-point length scale, as A, = 27 L;,.
Here the factor 27 relates the decay or correlation length scale of the spatial signal
w(x) to the length scale for periodicity. Since the single-point scale L,, is much
more widely available than L, we express A, in terms of L,, rather than L,
writing

Ao (Lulh)Y (Us
oo (9) 89

where L, is evaluated at z = h, and the factor U, /U}, converts U}, in Equation (1)
to the convection velocity.
- Figure 8 plots the observed length scale A,. obtained from Equation (12) against
the shear length scale L,/h = U(h)/(hU'(h)), for the canopies in Table I (L,,
data were not available in two cases). We have assumed U, /U, = 1.8 throughout,
following Section 3.2. For all canopies, covering a 10-fold range in L,/h and a
400-fold range in A, the points lie close to a straight line of slope m = 8.1. This
provides strong evidence that the length scales of active turbulence near the top of
a canopy are controlled by the shear length scale Ly = U(h)/U’(h), and also that
the proportionality between the periodicity A, and L, is the same as in a mixing
layer.

Figure 9 shows the normalised single-point turbulence length scales L, (h)/h
and L,,(h)/h (evaluated at z = h), plotted against Ls/h. The values of L,, fall
very close to a straight line (L., = 0.71 L) consistent with Figure 8, while those of
L., are much more scattered. This reinforces the view that vertical velocities near
z = h are dominated by active turbulence which scales with L, while horizontal
velocities include contributions from larger-scale, quasi-horizontal eddies which
do not scale on local canopy length scales such as L, but rather on larger length
scales such as the overall boundary-layer depth.

(3) Wavelet analysis enables A, /I to be estimated as (7'/N )(U./h), where N
is the number of structures detected in time 7'. It is important to note that N, and
therefore the inferred A, /h, depend on the variable used for structure detection
(u, 8 or w). Table IV shows results for all three variables, obtained from Les Landes
forest (Collineau and Brunet, 1993b) and a maize canopy (Brunet and Collineau,
1994). These values were recomputed for the present paper from the original raw
data. They show that values of A,/ i inferred from u, § and w are in the approximate
ratio 3 (u) to 1.7 () to 1 (w), for near-neutral data. Detection frequencies N /T

ur
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Figure 8. Periodicity (mean streamwise separation) A, of active eddies near z = h, plotted against
shear length scale L. = U(h)/U’(h). Both axes are normalised with /. For canopies A to L (Table
1), A is estimated from L. (k) using Equation (12). For canopies M and P (Les Landes forest and
Brunet maize: Table IV), A, is estimated from wavelet event detection on w signal. For canopy Q
(wheat: Finnigan 1979a,b), A, is estimated from short-term two-point u correlations. Straight line is
A, = mL, with m = 8.1. Both axes are normalised with canopy height h.
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Figure 9. Single-point length scales at z = h, L, (k) and L, (h), plotted against shear length scale
Ls = U(h)/U'(R), for canopies A to L (Table I). Both axes are normalised with canopy height 4.

for the three variables are in the inverse ratio, 0.3 to 0.6 to 1. These ratios are, not
coincidentally, quite close to those for spectral peak frequencies (Section 2.2).
Consistent with the tests using spectral peak frequencies and turbulence length
scales, we use the wavelet analysis for w to estimate A, /%. The data in Table IV
then yield two additional pairs of (Ls/h, A;/h) values: (0.62, 4.7) for Les Landes
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Table IV

Wavelet analysis results for streamwise separation between structures in u, # and w records from
three canopies, estimated as Az /h = (T/N)(U./h) where N is number of structures detected in
time 7'. Results for canopies M and N calculated from original raw data by M. R. Irvine and Y.
Brunet, using MHAT and U. /Uy = 1.8. Results for canopy P from Table III in Lu and Fitzjarrald
(1994), assuming U, = U(z = 1.5h).

Canopy Ident TU./N.h TU./Ngh TU./Nwh Ls/h Reference
Les Landes forest M 12.1 8.0 4.7 0.62  Collineau and
(near-neutral) Brunet (1933b)
Maize:
near-neutral: N 10.0 5.1 2.8 0.46° Brunet and
slightly stable: 9.3 2.1 2.0 - Collineau (1994)
Harvard forest
summer: P - 12.7 - - Lu and
winter: - 14.8 - - Fitzjarrald (1994)

* Value for canopy E in Table I, a canopy of similar species and leaf area index.

forest, and (0.46, 2.8) for daytime maize (here the L/h value is “borrowed” from
the structurally very similar canopy E). These data are superimposed on Figure 8
as points M and N, with excellent agreement.

Table IV also shows results by Lu and Fitzjarrald (1994) from Harvard forest,
using @ for detection. They found systematic variations of A, /A with time of day
and with season, such that A, /h is larger in daytime than nocturnal conditions and
in winter than in summer. The variation with time of day is confirmed by the maize
data in Table IV. These variations are consistent with Equation (10), since L /h is
expected to be higher in daytime than nocturnal conditions, and higher in winter
(leafless) than summer (fully leaved) conditions.

Paw U et al. (1992) and Qiu et al. (1995) report somewhat different analyses of
turbulence data from forest (h = 18 m), orchard (h = 6 m) and maize (h = 2.6 m)
canopies. The former study used a method based on multilevel detection of sharp
temperature drops. The latter used a “pseudo-wavelet” method based on a calibrat-
ed running-correlation detection scheme, which does not exploit the full frequency
properties of a wavelet analysis. Both studies found that A,./h was around 10 for
forest, but for lower canopies, the arrival frequency f = U./A, of the detected
structures approached a constant value (0.02 Hz) with increasing U/, / . This appar-
ently contradicts the prediction of Equation (10) that U./A, = U./mLg o< Uy /I
(assuming U. o U} and L; x h). A probable interpretation is that the detected
structures are not the same as the active turbulence discussed above. For the active
turbulence, Figures 8 and 9 show that [,, and A, are both proportional to L;.
A detection frequency f independent of L, implies that the detection algorithm
responds to turbulence structures which scale on lengths other than L, presumably
the outer layer length scales associated with inactive turbulence near z = /. The
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“signal-to-noise” ratio of such a detection scheme might therefore be good over
the forest but lower over shorter canopies, where there is more inactive turbulence
as argued at the end of Section 6. This would cause the detection scheme to miss
events over the lower canopies.

(4) Observations of periodicity in short-term correlations provide a different
test. Periodicity in long-term single-point u correlations is observed ina mixing lay-
er (Dimotakis and Brown, 1976) but not in a surface layer (Townsend, 1976), where
the long-term correlation smears out many quasi-periodic events with a range of
frequencies. Similar smearing is expected in canopy flow (see concluding discus-
sion); therefore, any periodicity associated with coherent eddies of the mixing-layer
type should be much more evident in short-term than long-term correlations from
canopies. Moreover, this periodicity should be evident at similar frequencies in
both the w and w correlations (1, 733), because the active turbulence associated
with mixing-layer coherent eddies involves all velocity components.

The only observations of short-term correlations available to us are by Finnigan
(1979a,b). As part of a study of ionami waves, he measured short-term, two-point
u correlations 711(0, 0, z, T; zr) in a sparse wheat canopy with h = 1.25 m, rough-
ness density A = 0.52, and shear length scale Ly/h = 1.2. From two examples
of strongly periodic short-term correlations (1979b, Figure 14), the dominant fre-
quency f is at Un/fh = 6 + 1. Estimating A, /h as (Un/ fh)( U./Uy ) and taking
U./U;, = 1.8 again, we obtain A,./h = 10.8. This result is plotted in Figure 8 as
point Q. It agrees very well with Equation (10) and with the other data, and also
provides a valuable extrapolation to a very sparse (large Ls /) canopy.

In summary, we have 10 measurements of A, from turbulence length scales, two
from wavelet analysis and one from short-term correlation periodicity, each with an
associated value of L. Over these 13 data points, the average value of m = Wl T
is 8.1 (standard deviation 1.1, standard error 0.3). This is in remarkable agreement
with the a priori expectation from the mixing-layer analogy that m is in the range
7 to 10.

6. A Physical Picture, Discussion and Conclusions

The mixing-layer analogy suggests the following physical picture for the dominant
eddy structure in a plant canopy. First, L, = U, /U; is identified as the vertical
length scale for the active canopy turbulence associated with strong vertical transfer.
This scale is around 0.1/, 0.5k and h for dense, moderate and sparse canopies,
respectively. It is useful to distinguish three ranges of eddy scale: eddies much
larger than £ (inactive turbulence), comparable with L, (active turbulence) and
much smaller than L, (fine-scale turbulence). At the largest scale, the canopy is
immersed in a deep planetary boundary layer, usually a convective boundary layer
by day. This boundary layer is dominated in its outer part by eddies scaling with the
entire boundary-layer depth é, and in its surface layer by eddies scaling with z — d.
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All these eddies are “attached” in the sense that they make significant contributions
to the overall turbulent velocity field near the surface (Townsend, 1976). However,
the velocity fields of eddies which are much larger than / in vertical scale are
practically horizontal at heights of order £, because of the constraints of continuity
and the ground surface. Therefore, eddies with vertical length scales much greater
than A (or Lg, which is of order &) can contribute little to vertical transfer, and
constitute inactive turbulence at heights of order /. Their main effect in the canopy
is to make the active, canopy-scale eddies intermittent.

The active, canopy-scale eddies are of order L in vertical scale and with
streamwise separations A, = mLg, withm = 8.1 4+ 0.3 (Equation (10) and Figure
8). They originate from instabilities of the kind found in mixing-layer turbulence,
associated with the inflection in the canopy velocity profile established by drag
below z = h. The instabilities are patterned after the KH waves which emerge from
linear HST in a flow with inflectional U/( z), but are modified from the KH form by
several high-Reynolds-number processes including three-dimensional instabilities,
nonlinear vortex interactions, and background small-scale turbulence which acts
as an eddy viscosity. Nevertheless, the KH instabilities give a first indication of the
length scale (A ;) of the main coherent motions at canopy scale.

The fine-scale turbulence (< L) is created both by the eddy cascade process
and by wake shedding. It contributes little to vertical transfer, and is important
mainly for its role in dissipating turbulent energy and providing an eddy-viscous
drag on the larger eddies. The limited dynamical role of this turbulence 1s the main
reason why the small-scale, three-dimensional details of canopy morphology have
a negligible effect on turbulent transfer in reasonably dense canopies (as shown
by the similarity of the turbulence in all the canopies in Figure 1). Rather, the role
of the canopy elements is to create a vertically distributed momentum sink which
sets up an inflectional velocity profile with length scale L, leading to dominant
canopy eddies of this scale. However, in sparse canopies (where the plant spacing
is of order & or larger) the velocity field becomes three-dimensional on the scale
of L itself, leading to a more complicated picture.

We return to the effects of the intermittency of the large-scale, inactive turbu-
lence. Because the growth rates of the mixing-layer instabilities are proportional
to the shear U; at z = h, faster growth and larger-amplitude instabilities arise
during large-scale gusts than during large-scale lulls. The effect is accentuated by
the proportionality of the canopy drag to U/? rather than U, which causes U] to
increase faster than linearly with /. Consequently, large-scale gustiness modulates
the canopy-scale coherent motions. Each large-scale gust initiates a “wave packet”
of several canopy-scale coherent motions with streamwise periodicity A, ~ 81;.
These motions are very effective at scalar and momentum transfer, and thus rob
the large-scale gust of its momentum and eventually destroy it. This is the like-
ly reason that honami waves and canopy-scale sweeps (the motions dominating
canopy momentum transfer) tend to occur in groups of three or four (Finnigan,
1979a,b). Also, the streamwise spacing and therefore the short-term periodicity
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of the canopy-scale coherent motions within each large-scale gust varies from
instance to instance; this leads to strong periodicities in short-term velocity cor-
relations (Finnigan, 1979b) which are smeared out in longer-term correlations by
averaging over multiple frequencies, giving aperiodic long-term correlations as
observed.

In the above discussion we have been rather severe in the distinction between
inactive, active and fine-scale turbulence. In practice, these categories merge into a
continuous spectrum, in which different wavenumber ranges obey different scaling
laws (Perry et al., 1986). One potentially important modification to the conventional
distinction between inactive and active turbulence (e.g. Townsend, 1976) is that
a canopy is porous below its mean level of momentum absorption; therefore,
continuity constraints on vertical transfer by large eddies are not as severe as for
an impervious wall. The extent to which large eddies become involved in active
transfer will therefore increase as the ratio 2/é (canopy height to boundary-layer
depth) increases.

Finally, we indicate some applications for the mixing-layer analogy. First, it
identifies L, rather than /1, as the key vertical length scale for canopy turbulence
and thereby rationalises the behaviour of canopies ranging from sparse (such as
canopies A and Q in Figure 8) to dense (such as canopies K and L). Moreover,
the canopy height & (often a hazy geometrical concept) can be given a precise
acrodynamic definition as the height of the U( z) inflection point. The effect of the
leaf area density profile is incorporated through its influence on L, and the ratio
Ls/h.

Second, the mixing-layer analogy can be used to estimate turbulence length and
time scales for applied turbulent transport models. At z = /i, the length scale L.,
is 0.71 L, (Figure 9). For models based on localised near-field theory (Raupach,
1989), a key parameter is the Lagrangian time scale 77,. This has been hitherto
estimated as Ty, ~ 0.4h/o,, ~ 0.3h/u.. An improved estimate can be obtained
from the approximation 77, ~ L, /o, by using Equations (10) and (12) with
U./U;, = 1.8 and m = 8.1, which gives (at z = h)

T A Ly Up mlLs _ 0.71L, (13)
o O - 27TUC Ow - Tw

showing how T, responds to canopy architecture through L. For a “generic”
canopy with L, =~ 0.5h, this is quite consistent with the earlier estimate.

Third, the mixing-layer analogy predicts many aspects of the behaviour of
canopy turbulence in disturbed canopy environments, such as canopy edges and
canopies on hills (Finnigan and Brunet, 1995). The turbulence in the upper canopy
in such cases will respond to changes in the location and strength of the inflection
in the mean velocity profile.
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