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1 IntroductionRecurrent networks (crossreference Chapter 12) can, in principle, use theirfeedback connections to store representations of recent input events in theform of activations. The most widely used algorithms for learning what toput in short-term memory, however, take too much time to be feasible ordo not work well at all, especially when minimal time lags between inputsand corresponding teacher signals are long. Although theoretically fascinat-ing, they do not provide clear practical advantages over, say, backprop infeedforward networks with limited time windows (see crossreference Chap-ters 11 and 12). With conventional \algorithms based on the computation ofthe complete gradient", such as \Back-Propagation Through Time" (BPTT,e.g., [22, 27, 26]) or \Real-Time Recurrent Learning" (RTRL, e.g., [21]) errorsignals \
owing backwards in time" tend to either (1) blow up or (2) vanish:the temporal evolution of the backpropagated error exponentially dependson the size of the weights [11, 6]. Case (1) may lead to oscillating weights,while in case (2) learning to bridge long time lags takes a prohibitive amountof time, or does not work at all.In what follows, we give a theoretical analysis of this problem by study-ing the asymptotic behavior of error gradients as a function of time lags. InSection 2, we consider the case of standard RNNs and derive the main resultusing the approach �rst proposed in [11]. In Section 3, we consider the moregeneral case of adaptive dynamical systems, which include, besides standardRNNs, other recurrent architectures based on di�erent connectivities andchoices of the activation function (e.g., RBF or second order connections).Using the analysis reported in [6] we show that one of the following two un-desirable situations necessarily arise: either the system is unable to robustlystore past information about its inputs, or gradients vanish exponentially.Finally, in Section 4 we shortly review alternative optimization methods andarchitectures that have been suggested to improve learning in the presenceof long-term dependencies.2 Exponential error decayGradients of the error functionThe results we are going to prove hold regardless of the particular kind ofcost function used (as long as its continuous in the output) and regardless of2



the particular algorithm which is employed to compute the gradient. Here weshortly explain how gradients are computed by the standard BPTT algorithm(e.g., [27], see also crossreference Chapter 14 for more details) because itsanalytical form is better suited to the forthcoming analyses.The error at time t is denoted by E(t). Considering only the error attime t, output unit k's error signal is�k(t) = @E(t)@netk(t)and some non-output unit j's backpropagated error signal at time � < t is�j(�) = f 0j(netj(�))  Xi wij �i(� + 1)! ;where neti(�) =Xj wij aj(� � 1)is unit i's current net input, ai(�) = fi(neti(�))is the activation of a non-input unit i with di�erentiable transfer function fi,and wij is the weight on the connection from unit j to i. The correspondingcontribution to wjl's total weight update is � �j(�) al(� � 1), where � is thelearning rate, and l stands for an arbitrary unit connected to unit j.Error path integralSuppose we have a fully connected net whose non-input unit indices rangefrom 1 to n. Let us focus on local error 
ow from output unit k to arbitraryunit v (later we will see that the analysis immediately extends to global error
ow). The error occurring at k at time step t is propagated \back in time"for t � s time steps, to an arbitrary unit v at time s < t. This scales theerror by the following factor:@�v(s)@�k(t) = ( f 0v(netv(t� 1)) wkv t� s = 1f 0v(netv(s)) �Pnl=1 @�l(s+1)@�k(t) wlv� t� s > 1 : (1)In order to solve the above equation, we will expand it by unrolling overtime (as done for example in deriving BPTT). In particular, for s < � < t let3



l� denote the index of a generic non input unit in the replica of the networkat time � . Moreover, let ls = v and lt = k. We obtain:@�v(s)@�k(t) = nXlt�1=1 : : : nXls+1=10@wltlt�1 0@ s+1Y�=t�1 f 0l� (netl� (�)) wl� l��11A f 0ls(netls(s))1A(2)(proof by induction).It can be immediately shown that if the local error vanishes, then theglobal error vanishes too. To see this computeXk2O @�v(s)@�k(t)where O denotes the set of output units.Intuitive explanation of equation (2)If ���f 0l� (netl� (�)) wl� l��1 ��� > 1:0for all � then the largest product increases exponentially with t � s � 1.That is, the error blows up, and con
icting error signals arriving at unit vcan lead to oscillating weights and unstable learning (for error blow-ups orbifurcations see also [19, 2, 8]). On the other hand, if���f 0l� (netl� (�)) wl� l��1 ��� < 1:0for all � , then the largest product decreases exponentially with t � s � 1.That is, the error vanishes, and nothing can be learned in acceptable time.If fl� is the logistic sigmoid function, then the maximal value of f 0l� is0.25. If al��1 is constant and not equal to zero, then the size of the gradient���f 0l� (netl� )wl� l��1 ��� takes on maximal values wherewl� l��1 = 1al��1 coth�12netl�� ;the size of the derivative goes to zero for ���wl� l��1���!1, and it is less than 1:0for ���wl� l��1 ��� < 4:0 (e.g., if the absolute maximal weight value wmax is smallerthan 4.0). Hence with conventional logistic sigmoid transfer functions, the4



error 
ow tends to vanish as long as the weights have absolute values below4.0, especially in the beginning of the training phase. In general the use oflarger initial weights does not help though | as seen above, for ���wl� l��1���!1the relevant derivative goes to zero \faster" than the absolute weight cangrow (also, some weights may have to change their signs by crossing zero).Likewise, increasing the learning rate does not help either | it does notchange the ratio of long-range error 
ow and short-range error 
ow. BPTTis too sensitive to recent distractions. Note that since the summation termsin equation (2) may have di�erent signs, increasing the number of units ndoes not necessarily increase error 
ow.Weak upper bound for scaling factorThe following, slightly extended vanishing error analysis also takes n, thenumber of units, into account. For t� s > 1, formula (2) can be rewritten as�W Tk �T F 0(t� 1) 0@ s+1Y�=t�2 W F 0(�)1A Wv f 0v (netv(s)) ;where the weight matrix W is de�ned by [W ]ij := wij, v's outgoing weightvector Wv is de�ned by [Wv]i := [W ]iv = wiv, k's incoming weight vector W Tkis de�ned by [W Tk ]i := [W ]ki = wki, and F 0(t) is the diagonal matrix of �rstorder derivatives de�ned as: [F 0(t)]ij := 0 if i 6= j, and [F 0(t)]ij := f 0i(neti(t))otherwise. Here T is the transposition operator, [A]ij is the element in thei-th column and j-th row of matrix A, and [x]i is the i-th component ofvector x.Using a matrix norm k:kA compatible with vector norm k:kx, we de�nef 0max := max�=t�1;:::;sfkF 0(�)kAg:For maxi=1;:::;nfjxijg � kxkx we get ���xTy��� � n kxkx kykx: Sincejf 0v(netv(s))j � kF 0(s)kA � f 0max;we obtain the following inequality:�����@�v(s)@�k(t) ����� � n (f 0max)t�s kWvkx kW Tk kx kWkt�s�2A � n (f 0max kWkA)t�s :5



This inequality results fromkWvkx = kWevkx � kWkA kevkx � kWkAand kW Tk kx = kekWkx � kWkA kekkx � kWkA;where ek is the unit vector whose components are 0 except for the k-thcomponent, which is 1. Note that this is a weak, extreme case upper bound| it will be reached only if all kF 0(�)kA take on maximal values, and if thecontributions of all paths across which error 
ows back from unit k to unitv have the same sign. Large kWkA, however, typically result in small valuesof kF 0(�)kA, as con�rmed by experiments (see, e.g., [11]).For example, with normskWkA := maxrXs jwrsjand kxkx := maxr jxrj ;we have f 0max = 0:25 for the logistic sigmoid. We observe that ifjwijj � wmax < 4:0n 8i; j;then kWkA � n wmax < 4:0 will result in exponential decay; by setting� := �nwmax4:0 � < 1:0, we obtain�����@�v(s)@�k(t) ����� � n �t�s:We refer to Hochreiter's thesis [11] for more details.3 Dilemma: Avoiding gradient decay preventslong-term latchingIn Bengio et al.'s paper [6], the analysis of the problem of gradient decaysis generalized to parameterized dynamical systems (hence including secondorder and other recurrent architectures). The main theorem shows that a6



su�cient condition to obtain gradient decay is also a necessary condition forthe system to robustly store discrete state information for the long-term. Inother words, when the weights and the state trajectory are such that thenetwork can \latch" on information in its hidden units (i.e., represent long-term dependencies), the problem of gradient decay is obtained. When thelong-term gradients decay exponentially, it is very di�cult to learn such long-term dependencies because the total gradient is the sum of long-term andshort-term in
uences and the short-term in
uences then completely dominatethe gradient.This result is based on a decomposition of the state-space of hidden unitsin two types of regions: one where gradients decay and one where it is notpossible to robustly latch information. Let y(t) denote the n-dimensionalstate vector at time t (for example, the vector [net1(t); : : : ; netn(t)] whenconsidering a standard �rst-order recurrent network) and let y(t) =M(y(t�1)) be the map from the state at time t�1 to t for the autonomous (withoutinputs) dynamical system. The above decomposition is expressed in termsof the condition jM 0j > 1 (no robust latching possible) or jM 0j < 1 (gradientdecay), where jM 0j is the norm of the Jacobian (matrix of partial derivatives)of the mapM . The analysis focuses on the basins of attraction of attractors ofM in the domain of y(t) (or manifolds within that domain). In particular, theanalysis is concerned with so-called hyperbolic attractors, which are locallystable (but need not be �xed points) and where the eigenvalues of M 0 areless than 1 in absolute value. If the state (or a function of it) remains withina certain region of space (versus another region) even in the presence ofperturbations (such as noise in the inputs) then it is possible to store at leastone bit of information for arbitrary durations.In regions where jM 0j > 1 it can be shown that arbitrarily small pertur-bations (for example due to the inputs) can eventually kick the state out ofa basin of attraction [18] (see the sample trajectory on the right of Figure1). In regions where jM 0j < � < 1 there is a level of perturbation (depend-ing on �) below which the state will remain in the basin of attraction (andwill gradually get closer to a certain volume around the attractor | see leftof Figure 1). For this reason we call this condition \information latching,"since it allows to store discrete information for arbitrary duration in the statevariable y(t).Unfortunately, in the regions where jM 0j < 1 (where one can latch in-formation) one can also show that gradients decay. The argument is similarto the one developed in the previous section. The partial derivative of y(t)7



y y(t)
jM 0j > 1 y(t)jM 0j < 1 yjM 0j > 1jM 0j < 1

Figure 1: Robust latching. For simplicity a �xed-point attractor y is shown.The shadow region is the basin of attraction. The dark shadow region is thesubset where jM 0j < 1 and robust latch occurs. See text for details.with respect to y(s) with s < t is simply the product of the map derivativesbetween s and t: @y(t)@y(s) = @y(t)@y(t� 1) @y(t� 1)@y(t� 2) : : : @y(s+ 1)@y(s) :When the norm of each of the factors on the right hand side is less than 1,the left hand side converges exponentially fast to zero as t� s increases. Thee�ect of this decay of gradients can be made explicit as follows:@E(t)@W =X��t @E(t)@y(�) @y(�)@W =X��t @E(t)@y(t) @y(t)@y(�) @y(�)@W :Hence for a term of the sum with � � t, we have�����@E(t)@y(�) @y(�)@W �����! 0:This term tends to become very small in comparison to terms for which � isclose to t. This means that even though there might exist a change inW thatwould allow y(�) to jump to another (better) basin of attraction, the gradientof the cost with respect to W does not clearly re
ect that possibility. Theexplanation is that the e�ect of a small change in W would be felt mostlyon the near past (� close to t). 8



4 RemediesThe above theoretical investigations indicate a basic limitation of gradientdescent as a search procedure for �nding optimal weights in a RNN. Severalproposals have been made to cope with the problem of long-term dependen-cies, some attempting to solve the optimization problem using alternativesearch algorithms, other trying to devise alternative architectures. In thefollowing we give a brief accounts of these proposals.Time constantsTo deal with long time lags, Mozer [17] uses time constants in
uencingchanges of unit activations (deVries and Principe's related approach [7] maybe viewed as a mixture of time-delay neural networks (TDNN) [14] and timeconstants). For long time lags, however, the time constants need external�ne tuning [17]. Sun et al.'s alternative approach [25] updates the activa-tion of a recurrent unit by adding the old activation and the (scaled) currentnet input. The net input, however, tends to perturb the stored information,which makes long-term storage impractical. Lin et al. [16] also propose vari-ants of time-delay networks, called NARX networks (crossreference see alsoChapter 11). Gradient 
ow in this architecture can be improved because em-bedded memories e�ectively introduce \shortcuts" in the error propagationpath through time. The same idea can be applied to other architectures, byinserting multiple delays in the connections among hidden state units ratherthan output units [15]. However, these architectures cannot solve the generalproblem since they can only increase by a constant multiplicative factor theduration of the temporal dependencies that can be learned. Finally, El Hihi& Bengio [9] looked at hierarchically organized recurrent neural networkswith di�erent levels of time-constants or time-delays.Ring's approachRing [20] also proposes a method for bridging long time lags. Whenever aunit in his network receives con
icting error signals, that is, certain errorsignals suggest to increase the unit's activity while others suggest otherwise,he adds a higher order unit in
uencing appropriate connections. Althoughhis approach can sometimes be extremely fast, to bridge a time lag involving100 steps may require the addition of 100 units. Also, Ring's net does not9



generalize to unseen lag durations.Searching without gradientsThe di�culty of learning long-term dependencies is strictly related to thecontinuous optimization approach that guides the search for a weight solu-tion. One possibility for avoiding the problem is to resort to other kinds ofsearch in weight space, in which the operators for generating another candi-date weight solution are not based on continuous gradients. Bengio et al. [6]investigate methods such as simulated annealing, multi-grid random search,and discrete error propagation. Angeline et al. [1] (see also crossreferenceChapter 15) propose a genetic approach that also avoids gradient computa-tion.The simplest kind of search without gradient, however, simply randomlyinitializes all network weights until the resulting net happens to classify alltraining sequences correctly. In fact, as discussed in crossreference Chapter9 of this book, simple weight guessing solves several popular benchmarks de-scribed in previous work faster than the recurrent net algorithms proposedtherein (compare [13]). This does not mean that weight guessing is a goodalgorithm. It just means that the problems are very simple. More realis-tic tasks require either many free parameters (e.g., input weights) or highweight precision (e.g., for continuous-valued parameters), such that guessingbecomes completely infeasible. Currently it is unclear to which extent morecomplex gradient-less methods can improve upon guessing in case of morerealistic tasks.Probabilistic target propagationBengio and Frasconi [4] propose a probabilistic approach for propagatingtargets. With n so-called \state networks", at a given time, their system canbe in one of only n di�erent discrete states. Parameters are adjusted usingthe expectation-maximization algorithm. But to solve problems that requirea signi�cant amount of memory to store contextual information, such systemswould require an unacceptable number of states (i.e., state networks).Adaptive sequence chunkersSchmidhuber's hierarchical chunker systems [23, 24] can in principle bridgearbitrary time lags, but only if there is local predictability across the sub-10



sequences causing the time lags (see also [17]). For instance, in his post-doctoral thesis [24], Schmidhuber uses hierarchical recurrent networks withself-organizing time scales to rapidly solve certain grammar learning tasksinvolving minimal time lags in excess of 1000 steps. The performance ofchunker systems, however, deteriorates as the noise level increases and theinput sequences become less compressible.Long Short-Term MemoryThere is a novel, e�cient, gradient-based method called \Long Short-TermMemory" (LSTM) [12]. LSTM is designed to get rid of the vanishing er-ror problem. Truncating the gradient where this does not do harm, LSTMcan learn to bridge minimal time lags in excess of 1000 discrete time stepsby enforcing constant error 
ow through \constant error carrousels" withinspecial units. Multiplicative gate units learn to open and close access to theconstant error 
ow. LSTM is local in space and time; its computational com-plexity per time step and weight is O(1). So far, experiments with arti�cialdata involved local, distributed, real-valued, and noisy pattern representa-tions. In comparisons with RTRL, BPTT, Recurrent Cascade-Correlation,Elman networks, and Neural Sequence Chunking, LSTM led to many moresuccessful runs, and learned much faster. LSTM also solved complex, arti-�cial long time lag tasks that have never been solved by previous recurrentnetwork algorithms. It will be interesting to examine to which extent LSTMis applicable to real world problems such as speech recognition.5 ConclusionsIn principle, RNNs are the most general and powerful current sequence learn-ing method. For instance, unlike Hidden Markov Models (HMMs, the mostsuccessful technique in several sequence processing applications - see [3] fora review) they are not limited to discrete internal states but allow for con-tinuous, distributed sequence representations. Hence they can solve tasks noother current method can solve (e.g., [10]). The problem of vanishing gra-dients, however, makes conventional RNNs hard to train. We suspect thisis why feedforward neural networks outnumber RNNs in terms of successfulreal-world applications. Some of the remedies outlined in this chapter maylead to more e�ective learning systems. However, long lime lag research still11



seems to be in an early stage | no commercial applications of any of thesemethods have been reported so far.Long time lags pose problems to any soft computing method, not justRNNs. For instance, when dealing with long sequences (e.g., speech or bi-ological data), HMMs mostly rely on a localized representation of time bymeans of highly constrained non ergodic transition diagrams (di�erent statesare designed for di�erent portions of a sequence). Belief propagation overlong time lags does not e�ectively occur, a phenomenon called di�usion ofcredit [5], which closely resembles the vanishing gradients problem in RNNs.References[1] P. J. Angeline, G. M. Saunders, and J. P. Pollack. An evolutionaryalgorithm that constructs recurrent neural networks. IEEE Transactionson Neural Networks, 5(1):54{65, 1994.[2] P. Baldi and F. Pineda. Contrastive learning and neural oscillator. Neu-ral Computation, 3:526{545, 1991.[3] Y. Bengio. Markovian models for sequential data. Neural ComputingSurveys, 2:129{162, 1999.[4] Y. Bengio and P. Frasconi. Credit assignment through time: Alterna-tives to backpropagation. In J. D. Cowan, G. Tesauro, and J. Alspector,editors, Advances in Neural Information Processing Systems 6, pages75{82. San Mateo, CA: Morgan Kaufmann, 1994.[5] Y. Bengio and P. Frasconi. Di�usion of context and credit informationin Markovian models. Journal of Arti�cial Intelligence Research, 3:249{270, 1995.[6] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-cies with gradient descent is di�cult. IEEE Transactions on NeuralNetworks, 5(2):157{166, 1994.[7] B. de Vries and J. C. Principe. A theory for neural networks with timedelays. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors,Advances in Neural Information Processing Systems 3, pages 162{168.San Mateo, CA: Morgan Kaufmann, 1991.12
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