Voice activity detection in MTF-based power envelope restoration

Masashi Unoki1, Xugang Lu2, Rico Petrick3, Shota Morita1, Masato Akagi1, Rüdiger Hoffmann4

1School of Information Science, JAIST, Japan
2National Institute of Information and Communications Technology, Japan
3Laboratory of Acoustics and Speech Communication, Dresden University of Technology, Germany
4Rico.Petrick, Ruediger.Hoffmann@ias.et.tu-dresden.de

Index Terms: voice activity detection, reverberation, modulation transfer function, power envelope restoration

Abstract

This paper reports comparative evaluations of conventional voice activity detection (VAD) methods in reverberant environments. Both conventional and standard (G.729) methods are discussed. In general, these methods work well under clean conditions, but their performance is drastically affected by reverberation. Preliminary comparative evaluations showed that the false acceptance rate (FAR) is significantly increased due to the false rejection rate (FRR) being moderately increased by reverberation. We therefore developed a method using MTF-based power envelope restoration to improve the robustness of VAD in reverberant environments. This restoration method can blindly restore the power envelope of reverberant speech based on the MTF concept. The proposed method consists of an MTF-based restoration method as the front end and a conventional VAD method as the final decision. Experimental results demonstrated that the proposed method is superior to conventional methods with regard to robustness and providing accurate VAD (reducing both FAR and FRR) in reverberant environments.

1. Introduction

Voice activity detection (VAD) is used to detect periods of speech and non-speech in observed signals. This is a key technology for various speech signal processes such as robust speech recognition systems, speech enhancement, and effective speech coding [1, 2]. The main challenge at present is ensuring whatever VAD technique we use is robust enough.

There have been many previous studies on robust VAD, and many methods/algorithms have been proposed over the last few decades [1, 2]. Although conventional features such as signal energy and zero-crossing rate are indeed effective under clean (noiseless) conditions, they are drastically smeared due to noise. Features based on periodicity/aperiodicity and higher order statistics are robustly effective under both clean and noisy environments [2]. However, another cause of disturbance is reverberation. Reverberation is independent of noise, there have not been any studies on robustness in reverberant conditions.

We can speculate that features based on signal energy and zero-crossing rate are also smeared due to reverberation, making them ineffective in terms of a robust VAD. Moreover, since none of the conventional methods for estimating fundamental frequency work well in reverberant environments [3], the useful feature of periodicity is not effective in reverberant conditions. Higher order statistics of speech signals are affected by reverberation, so speech enhancement techniques based on independent component analysis fail in these conditions. This is another important issue in terms of robust VAD.

In previous work, we developed a blind speech dereverberation method [4]. Our approach is based on the concept of the modulation transfer function (MTF) and does not require any measurements of room impulse responses (RIRs). MTF-based dereverberation can be used to restore the power envelope of reverberant speech. We are currently expanding this approach to include denoising and dereverberation techniques, i.e., speech enhancement in noisy reverberant environments. Reverberation has a consistent diffusion effect on the temporal power envelopes and we can remove this effect from the temporal power envelope with the MTF-based dereverberation. We therefore feel that MTF-based dereverberation can be applied in a front end manner for robust VAD to solve the issue.

In this paper, we investigate how well conventional VAD methods work in reverberant environments and determine how the errors due to reverberation occur. We then propose a robust VAD method based on MTF-based power envelope restoration to eliminate the error we found out.

2. VAD in reverberant environments

Let us consider an example of a typical VAD method in a reverberant environment. We used one clean utterance stimulus $x(t)$ (FAK speaker, 8-kHz sampling frequency, 16-bit quantization, spoken numbers from 1 to 9, 0 (maru and zero), and silence) from CENSREC-1-C (a Japanese continuous data corpus designed for testing VAD algorithms in noisy environments) [6] for the VAD test. A reverberant speech $y(t)$ was obtained by convolving the original speech $x(t)$ with the RIR $h(t)$ from SMILE2004 datasets [7]. The RIR used in this example is that of a concourse with a reverberation time of about 2 s.

We investigated the VAD of reverberant speech by using a conventional method (feature of signal energy, decision at the threshold of -30 dB from the normalized level). Figures 1(a) and (b) show the first 14 s of original speech $x(t)$ and reverberant speech $y(t)$. Red dashed and blue dashdot lines indicate the speech periods of original and reverberant speech, respectively, detected by this method. The red-dashed line indicates the same speech periods as those obtained from CENSREC-1-C.

We then investigated the effect on VAD in the power envelope due to reverberation in the same condition. The power envelope $E^2(t)$ can be obtained as

$$E^2(t) = \text{LPF} \left[|x(t) + j \cdot \text{Hilbert}(x(t))|^2 \right] ,$$

where $\text{Hilbert}(\cdot)$ is the Hilbert transform and $\text{LPF}[\cdot]$ is a low-pass filtering with a cut-off frequency of 20 Hz [4]. The power envelope of reverberant speech $E^2(t)$ can be also obtained by the same method from $y(t)$. Figures 1(c) and (d) show the power
are modeled based on the MTF concept: h and the stochastic-idealized RIR a constant amplitude term and the reverberation time, respectively. Based on this result, $c_{z}^{2}(t)$ can be recovered by deconvoluting $c_{z}^{2}(t)$ with $c_{z}^{2}(t)$. The transfer functions of power envelopes $E_{x}(z)$, $E_{h}(z)$, and $E_{a}(z)$ are then assumed to be the z-transforms of $c_{z}^{2}(t)$, $c_{z}^{2}(t)$, and $c_{z}^{2}(t)$, respectively. Here, $E_{x}(z)$, can be determined from

$$E_{x}(z) = \frac{1}{\alpha^{2} \left(1 - \exp\left(-\frac{13.8}{T_{R} \cdot f_{s}}\right)\right) \cdot E_{y}(z)} \cdot (2)$$

where f_{s} is the sampling frequency. Finally, $c_{z}^{2}(t)$ can be obtained from the inverse z-transform of $E_{x}(z)[4]$. Here, two parameters (\hat{T}_{R} and \hat{a}) are obtained as

$$\hat{T}_{R} = \arg \min_{0 \leq T_{R} \leq T_{R,max}} \left\{ \frac{dT_{P}(T_{R})}{dT_{R}} \right\}$$

$$T_{P}(T_{R}) = \min_{\theta_{n} \leq \theta \leq \theta_{n+1}} \left| \hat{c}_{x,n,T_{R}}(t)^{2} - \theta \right|$$

$$\hat{a} = \sqrt{1/T_{R}} \int_{0}^{T_{R}} \exp(-13.8t/T_{R}) dt.$$

A block-diagram of the MTF-based method is shown in Fig. 2. Based on this processing, $c_{z}^{2}(t)$ can be reasonably restored as $c_{z}^{2}(t)$ without measuring RIRs. Thus, it is possible to construct robust vad in reverberant environments by combining conventional vad with the MTF-based restoration as a front end. In the case shown in Figs. 1(c) and (d), $c_{z}^{2}(t)$ was obtained as shown in Fig. 3. Then, the same conventional vad (threshold of -30 dB for decision) was applied to detect speech periods indicated by the blue-dashdot line in Fig. 3. The effectiveness of the proposed vad can be clearly observed by comparing Figs. 1(d) and 3. In this case, we found that vad can be drastically reduced while FRR is only a little reduced.

4. Comparative evaluations

We evaluated five vad methods to evaluate how robust the detection of speech/non-speech periods was in artificial reverberant environments. These methods were the vad in G.729 [9], the conventional vad (thresholds of signal energy and power envelope) we previously described, and the proposed method. Another method, conventional vad with cepstrum-mean-normalization (CMN) as a front end, was also used to
compare the effectiveness of MTF-based restoration with CMN as the front end.

The speech signals we used were three Japanese sentences (/ai/kawarazul/, /shinbun/, and /joudan/) uttered by ten speakers (five males: Mau, Mht, Mmm, Mtm, and Mtt, and five females: Faf, Ffs, Fkn, Fsu, and Fyn) from the ATR database [8]. We used 100 types of RIR \(h(t) \) and ten reverberation times (TRs) \(T_R = 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, \) and 3.0). All stimuli \(y(t) \) were composed through 30,000 \((= 3 \times 10 \times 10) \) convolutions of \(x(t) \) with \(h(t) \).

To measure VAD performance, we used FRR and FAR, defined as \(\text{FRR} = N_{FN}/N_s \times 100 \% \) and \(\text{FAR} = N_{FP}/N_s \times 100 \% \), where \(N_s \), \(N_{FN} \), \(N_{FP} \), and \(N_{FA} \) are the total number of speech frames, total number of non-speech frames, number of speech frames detected as non-speech frames, and number of non-speech frames detected as speech frames, respectively. We measured these by varying the threshold and then averaged the results for three categories: clean, short reverberation (0.1 to 0.5 s), and long reverberation (1.0 to 3.0 s). The final performance evaluation was represented as a receiver operating characteristic (ROC) curve.

Figure 4 shows the ROC curves of all methods except VAD in G.729. For comparison, the G.729 result is plotted in all panels as a diamond symbol. In ROC curves, an ideal performance shows an edged shape located on the top-right ROC curve. In each panel, there are three lines that indicate clean condition, short reverberation, and long reverberation. In the clean condition, all methods worked well. However, in reverberant conditions, the conventional methods performed poorly (Figs. 4(a) and (b)). The shape of the ROC curves became especially narrow-edged toward the bottom-left location. In the CMN-method, the ROC curves in reverberation conditions were improved, particularly when the reverberations were short. Three ROC curves in the proposed method were almost identical shapes which is the best result of all the methods.

Next, we evaluated the five VAD methods in actual reverberation environments. We used the same speech stimuli as in the first evaluation with 43-RIRs from the SMILE datasets [7]. The RIR conditions are shown in the left column in Tab. 1, and pairs of FAR/FRR in the five methods are listed in the right. Bold and italic fonts indicate best and worst VAD results, respectively. In most cases, the proposed method had FARs with the best results, and it had FRRs that were better than those of the conventional methods with the exception of G.729. Although G.729 had the best FRRs, it also had the worst FARs. It is suggested that G.729 with the proposed methods may have a potential of the most robust VAD in realistic reverberant environments. The results of two evaluations demonstrate that conventional VAD with the MTF-based restoration can significantly improve robustness in reverberant environments.

5. Conclusion

In this paper, we reported that comparative evaluations of conventional VAD methods in reverberant environments. Results showed that FAR is significantly increased due to FRR being moderately increased by the reverberation. We then proposed a method based on MTF-based power envelope restoration that improves the robustness of VAD in reverberant environments. The proposed method consists of an MTF-based restoration.
method as the front end and a conventional VAD method as the final decision. Comparative evaluations demonstrated that the proposed method was much better than conventional ones in terms of robustness and providing accurate VAD (reducing both FAR and FRR) in reverberant environments. In future work, we plan to further develop our method to ensure even more robust VAD in noisy reverberant environments [5].

6. Acknowledgements
The work was partially supported by the Research Foundation for the Electrotechnology of Chubu (REFEC).

7. References