Xuexin Duan

Xuexin Duan
Tianjin University | tju · Department of Precision Instrument Engineering

PhD

About

338
Publications
54,416
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,158
Citations
Introduction
http://www.tjumbios.com/ Develop Sensor for a Better Life. Our research focus on Micro/Nano Fabricated Devices and their Applications for Biosensors and Chemical Sensors
Additional affiliations
September 2010 - September 2013
Yale University
Position
  • PostDoc Position
October 2013 - present
Tianjin University
Position
  • Professor (Full)
December 2005 - May 2010
University of Twente
Position
  • PhD Student

Publications

Publications (338)
Article
Full-text available
The exploration of microgravity has garnered substantial scholarly attention due to its potential to offer unique insights into the behavior of biological systems. This study presents a preliminary investigation into the effects of simulated microgravity on esophageal cancer cells, examining various aspects such as morphology, growth behavior, adhe...
Article
Bubble-based microfluidics has been applied in many fields. However, there remains a need for a facile and flexible method for stable bubble generation and control in a microchannel. This paper...
Article
Compared to animal cells, phenotypic characterization of single plant cells on microfluidic platforms is still rare. In this work, we performed population statistics on the morphological, biochemical, physical and electrical...
Article
Full-text available
Supramolecules are considered as promising materials for volatile organic compounds (VOCs) sensing applications. The proper understanding of the sorption process taking place in host-guest interactions is critical in improving the pattern recognition of supramolecules-based sensing arrays. Here, we report a novel approach to investigate the dynamic...
Article
Full-text available
Hydrodynamic force loading platforms based on acoustofluidics have been developed to study the mechanical deformation of cancer cells and to control cell behavior. However, so far there have been no experimental measurements on living plant cells using such an acoustic approach. Unique structures, including cell walls, allow plant cells to exhibit...
Article
Full-text available
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accura...
Article
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non‐biological types. Submicron‐to‐nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non‐biological particles cover various inorganic, metallic, and carbon‐based particles. The effective manipulation of these submicr...
Article
Liposomes have garnered significant attention owing to their favorable characteristics as promising carriers. Microfluidic based hydrodynamic flow focusing, or micro-mixing approaches enable precise control of liposome size during their synthesis...
Article
Full-text available
The examination of the impact of microgravity on biological systems has gained considerable attention owing to its potential implications for health and disease. Simulated microgravity serves as a valuable methodology for elucidating the intricate cellular responses to altered gravitational conditions. This study investigates the effects of simulat...
Article
Full-text available
Transmembrane transport analysis is essential for understanding cell physiological processes. Based on an artificial simulation of internal and external cellular environment, this paper introduces an innovative approach to investigate the microscopic behavior of small molecules through porin protein under mechanical curvature of lipid membrane. A f...
Article
Acoustic streaming enabled by a Lamb wave resonator (LWR) is efficient for particle trapping and enrichment in microfluidic channels. However, because Lamb waves combine the features of bulk acoustic waves and surface acoustic waves, the resulting acoustic streaming in the LWR occurs in multiple planes, and the particle flow behavior in this acoust...
Article
Full-text available
Miniaturization of health care, biomedical, and chemical systems is highly desirable for developing point-of-care testing (POCT) technologies. In system miniaturization, micropumps represent one of the major bottlenecks due to their undesirable pumping performance at such small sizes. Here, we developed a microelectromechanical system fabricated ac...
Article
Full-text available
On‐demand controlled drug delivery is essential for the treatment of a wide range of chronic diseases. As the drug is released at the time when required, its efficacy is boosted and the side effects are minimized. However, so far, drug delivery devices often rely on the passive diffusion process for a sustained release, which is slow and uncontroll...
Article
Development of a micromodel that recapitulates multiple mechanical properties to mimic the complex mechanical microenvironment is crucial for cell‐based research. Herein, a microsystem combining structure of hydrogel matrix and acoustic streaming (AS) to mimic the cellular microenvironment is proposed, which can realize multiplex cellular mechanica...
Article
DNA methylation has been extensively investigated in recent years, not least because of its known relationship with various diseases. Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research. Microfluidic chips are excellent carriers for molecular analysis, and th...
Article
Full-text available
Point‐of‐care testing (POCT) has played important role in clinical diagnostics, environmental assessment, chemical and biological analyses, and food and chemical processing due to its faster turnaround compared to laboratory testing. Dedicated manipulations of solutions or particles are generally required to develop POCT technologies that achieve a...
Article
Virus infections remain one of the principal causes of morbidity and mortality worldwide. The current gold standard approach for diagnosing pathogens requires access to reverse transcription-polymerase chain reaction (RT-PCR) technology. However, separation and enrichment of the targets from complex and diluted samples remains a major challenge. In...
Chapter
Small-sized, high-sensitivity, and low-cost sensors are required for gas-sensing applications because of their critical role in environmental monitoring, clinic diagnosis, process control, and anti-terrorism. Given the rapid developments in micro-fabrication and microelectromechanical system (MEMS) technologies, film bulk acoustic resonator (FBAR)...
Article
The generation and dispensing of microdroplets is a vital process in various fields such as biomedicine, medical diagnosis and chemistry. However, most methods still require the structures of nozzles or microchannels to assist droplet generation, which leads to limitations on system flexibility and restrictions on the size range of the generated dr...
Article
Full-text available
Extracellular vesicles (EVs) have recently attracted significant research attention owing to their important biological functions, including cell-to-cell communication. EVs are a type of membrane vesicles that are secreted into the extracellular space by most types of cells. Several biological biomolecules found in EVs, such as proteins, microRNA,...
Article
Full-text available
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible an...
Article
Diffusion limitations and nonspecific surface absorption are great challenges for developing micro-/nanoscale affinity biosensors. There are very limited approaches that can solve these issues at the same time. Here, an acoustic streaming approach enabled by a gigahertz (GHz) resonator is presented to promote mass transfer of analytes through the j...
Article
Full-text available
Microfluidic phenotyping methods have been of vital importance for cellular characterization, especially for evaluating single cells. In order to study the deformability of a single cell, we devised and tested a tunable microfluidic chip-based method. A pneumatic polymer polydimethylsiloxane (PDMS) membrane was designed and fabricated abutting a si...
Article
Micro gas chromatography (μGC) using microfabricated silicon columns has been developed in response to the requirement for portable on-site gas analysis. Although different stationary phases have been developed, repeatable and reliable surface coatings in these rather small microcolumns remains a challenge. Herein, a new stationary phase coating st...
Article
Viral particles bind to receptors through multivalent protein interactions. Such high avidity interactions on sensor surfaces are less studied. In this work, three polyelectrolytes that can form biosensing surfaces with different interfacial characteristics in probe density and spatial arrangement were designed. Quartz crystal microbalance, interfe...
Article
Gravity is omnipresent force on the Earth and all living things have evolved under the constant influence of gravity. Some organisms learned to take advantage of this force by using it as a reference in their motion. On the other hand, many studies in living organisms shown that microgravity has a significant effect not only on the systemic level b...
Article
Full-text available
Ultrasensitive flexible pressure sensors with excellent linearity are essential for achieving tactile perception. Although microstructured dielectrics have endowed capacitive sensors with ultrahigh sensitivity, the compromise of sensitivity with increasing pressure is an issue yet to be resolved. Herein, a spontaneously wrinkled MWCNT/PDMS dielectr...
Article
Nanochannel-based resistive pulse sensing (nano-RPS) system is widely used for the high-sensitive measurement and characterization of nanoscale biological particles and biomolecules due to its high surface to volume ratio. However, the geometric dimensions and surface properties of nanochannel are usually fixed, which limit the detections within pa...
Article
Over the past few decades, acoustofluidics, one of the branches of microfluidics, has rapidly developed as a multidisciplinary cutting edge research topic, covering many biomedical and bioanalytical applications. Acoustofluidics usually utilizes acoustic pressure and acoustic streaming effects to manipulate liquids and bioparticles. Acoustic manipu...
Article
Aggregation-dependent brightness (ADB) indirectly limits the in vitro performance of a pure aggregation-induced emission (AIE) probe in many ways; thus, controlling the aggregation state of the AIE probe is helpful for detecting an object of interest. Many studies are focused on the molecule design of the AIE probes, while less efforts have been ma...
Article
Full-text available
At the single-cell level, cellular parameters, gene expression and cellular function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individuals. Here, we demonstrate a versatile microsystem, a stereo a...
Article
Carbon nanotube (CNT)-based chemiresistors are promising gas detectors for gas chromatography (GC) due to their intrinsic nanoscale porosity and excellent electrical conductivity. However, fabrication reproducibility, long desorption time, limited sensitivity, and low dynamic range limit their usage in real applications. This paper reports a novel...
Article
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targete...
Article
Self-contained microfluidic platforms with on-chip integration of flow control units, microreactors, (bio)sensors, etc. are ideal systems for point-of-care (POC) testing. However, current approaches such as micropumps and microvalves, increase the cost and the control system, and it is rather difficult to integrate into a single chip. Herein, we de...
Article
Full-text available
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased as...
Article
Gas separation and detection technology is closely related to people’s daily production and life. With the emergence of various detection equipment, it has made remarkable progress in recent decades. Gas sensing materials play an important role in the process of gas separation and detection. Compared with traditional gas sensing materials, metal-or...
Article
Full-text available
The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the...
Article
With the rapid spread and multigeneration variation of coronavirus, rapid drug development has become imperative. A major obstacle to addressing this issue is adequately constructing the cell membrane at the molecular level, which enables in vitro observation of the cell response to virus and drug molecules quantitatively, shortening the drug exper...
Article
Full-text available
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets, making it universally applicable to almost all biological systems. Thin-film bulk acoustic wave (BAW) resonators operating at gigahertz (GHz) frequencies have been...
Article
Cell mechanical motion is a key physiological process that relies on the dynamics of actin filaments. Herein, a localized shear-force system based on gigahertz acoustic streaming (AS) is proposed, which can simultaneously realize intracellular delivery and cellular mechanical regulation. The results demonstrate that gold nanorods (AuNRs) can be del...
Article
Currently, researches on nanomaterials have been restricted by slow and multistep synthesis procedures. Herein, we demonstrate an ultrafast, one step method of purification and delivery of quantum dots into living cells, actuated by the acoustic streaming (AS) produced through a gigahertz resonator. Results demonstrate that the impurities in the ca...
Article
Full-text available
The presence of chemical warfare agents (CWAs) in the environment is a serious threat to human safety, but there are many problems with the currently available detection methods for CWAs. For example, gas chromatography–mass spectrometry cannot be used for in-field detection owing to the rather large size of the equipment required, while commercial...
Preprint
Full-text available
At the single-cell level, cellular parameters, gene expression and function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individual. Here, we demonstrate a versatile microsystem, a stereo acoustic st...
Preprint
Full-text available
At the single-cell level, cellular parameters, gene expression and function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individual. Here, we demonstrate a versatile microsystem, a stereo acoustic st...
Article
Full-text available
HIGHLIGHTS • The morphology of PEDOT:PSS, including in the forms of aqueous dispersions, solid films, and hydrogels, is outlined, and the application potential of PEDOT:PSS hydrogels is described. • Fabrication techniques for PEDOT:PSS-based devices are introduced, including coating, printing, conventional lithography, and soft lithography. • The l...
Article
Microfluidic contact lenses (MCLs) for continuous intraocular pressure (IOP) monitoring are promising devices for the diagnosis and management of glaucoma. Here, we present an ultra-sensitive and cost-effective MCL for IOP monitoring. A folding method that allows 2D-to-3D transformation of a planar microchannel is introduced. An ultra-sensitive ser...
Conference Paper
In this study, an acoustofluidic based wireless micropump for drug delivery was proposed and fabricated. The key actuator of this micropump is a small gigahertz piezoelectric resonator, which could induce strong fluidic streaming at low applied power. This acoustofluidic micropump has stable and accurate dosage resolution (7.0 μL), and sufficient f...
Conference Paper
Full-text available
According to the urgent need for rapid detection and identification of foodborne bacteria to prevent public health event, a microfluidic electrical impedance flow cytometry assisted with convolutional neural network (ConvNet) based deep learning algorithm was proposed in this study to analyze the impedance signals of bacteria. With the assistance o...
Conference Paper
In this study, an acoustofluidic printing system for generation of single-cell droplets based on a gigahertz acoustic resonator was proposed and verified. The working area of the resonator has a typical dimension of 10×10 micrometer which is very suitable for single cell printing. Single cells were encapsulated in picoliter droplets and printed dir...
Article
Full-text available
A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only...
Article
Full-text available
The disorganized polarization of tumor-associated macrophages (TAMs) exerts a critical effect on tumor progression. MicroRNAs (miRNAs) in extracellular vesicles (EVs) secreted from cancer cells may contribute to this process. However, the relationship between TAMs and EVs-miRNAs-mediated regulation in esophageal squamous cell carcinoma (ESCC) remai...
Article
This paper investigates the mechanism of a new acoustic micro-ejector using a Lamb wave transducer array, which can stably generate picoliter (pL) droplet jetting without nozzles. With eight transducers arranged as an octagon array, droplets are ejected based on the mechanism of combined acoustic pressure waves and acoustic streaming. The acoustic...
Article
The development of rapid and efficient tools to modulate neurons is vital for the treatment of nervous system diseases. Here, a novel non-invasive neurite outgrowth modulation method based on a controllable acoustic streaming effect induced by an electromechanical gigahertz resonator microchip is reported. The results demonstrate that the gigahertz...
Article
The current ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has globally affected the lives of more than one hundred million people. RT-PCR based molecular test is recommended as the gold standard method for diagnosing current infections. However, transportation and processing of the clinical sample for detecting virus require an expert ope...