Xuexin Duan

Xuexin Duan
Tianjin University | tju · Department of Precision Instrument Engineering

PhD

About

289
Publications
38,461
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,535
Citations
Citations since 2016
165 Research Items
2690 Citations
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
Introduction
http://www.tjumbios.com/ Develop Sensor for a Better Life. Our research focus on Micro/Nano Fabricated Devices and their Applications for Biosensors and Chemical Sensors
Additional affiliations
October 2013 - present
Tianjin University
Position
  • Professor (Full)
September 2010 - September 2013
Yale University
Position
  • PostDoc Position
December 2005 - May 2010
University of Twente
Position
  • PhD Student

Publications

Publications (289)
Article
Full-text available
At the single-cell level, cellular parameters, gene expression and cellular function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individuals. Here, we demonstrate a versatile microsystem, a stereo a...
Article
Carbon nanotube (CNT)-based chemiresistors are promising gas detectors for gas chromatography (GC) due to their intrinsic nanoscale porosity and excellent electrical conductivity. However, fabrication reproducibility, long desorption time, limited sensitivity, and low dynamic range limit their usage in real applications. This paper reports a novel...
Article
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targete...
Article
Self-contained microfluidic platforms with on-chip integration of flow control units, microreactors, (bio)sensors, etc. are ideal systems for point-of-care (POC) testing. However, current approaches such as micropumps and microvalves, increase the cost and the control system, and it is rather difficult to integrate into a single chip. Herein, we de...
Article
Full-text available
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased as...
Article
The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the...
Article
With the rapid spread and multigeneration variation of coronavirus, rapid drug development has become imperative. A major obstacle to addressing this issue is adequately constructing the cell membrane at the molecular level, which enables in vitro observation of the cell response to virus and drug molecules quantitatively, shortening the drug exper...
Article
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets, making it universally applicable to almost all biological systems. Thin-film bulk acoustic wave (BAW) resonators operating at gigahertz (GHz) frequencies have been...
Article
Cell mechanical motion is a key physiological process that relies on the dynamics of actin filaments. Herein, a localized shear-force system based on gigahertz acoustic streaming (AS) is proposed, which can simultaneously realize intracellular delivery and cellular mechanical regulation. The results demonstrate that gold nanorods (AuNRs) can be del...
Article
Currently, researches on nanomaterials have been restricted by slow and multistep synthesis procedures. Herein, we demonstrate an ultrafast, one step method of purification and delivery of quantum dots into living cells, actuated by the acoustic streaming (AS) produced through a gigahertz resonator. Results demonstrate that the impurities in the ca...
Article
The presence of chemical warfare agents (CWAs) in the environment is a serious threat to human safety, but there are many problems with the currently available detection methods for CWAs. For example, gas chromatography–mass spectrometry cannot be used for in-field detection owing to the rather large size of the equipment required, while commercial...
Preprint
Full-text available
At the single-cell level, cellular parameters, gene expression and function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individual. Here, we demonstrate a versatile microsystem, a stereo acoustic st...
Preprint
Full-text available
At the single-cell level, cellular parameters, gene expression and function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individual. Here, we demonstrate a versatile microsystem, a stereo acoustic st...
Article
HIGHLIGHTS • The morphology of PEDOT:PSS, including in the forms of aqueous dispersions, solid films, and hydrogels, is outlined, and the application potential of PEDOT:PSS hydrogels is described. • Fabrication techniques for PEDOT:PSS-based devices are introduced, including coating, printing, conventional lithography, and soft lithography. • The l...
Article
Microfluidic contact lenses (MCLs) for continuous intraocular pressure (IOP) monitoring are promising devices for the diagnosis and management of glaucoma. Here, we present an ultra-sensitive and cost-effective MCL for IOP monitoring. A folding method that allows 2D-to-3D transformation of a planar microchannel is introduced. An ultra-sensitive ser...
Conference Paper
In this study, an acoustofluidic based wireless micropump for drug delivery was proposed and fabricated. The key actuator of this micropump is a small gigahertz piezoelectric resonator, which could induce strong fluidic streaming at low applied power. This acoustofluidic micropump has stable and accurate dosage resolution (7.0 μL), and sufficient f...
Conference Paper
Full-text available
According to the urgent need for rapid detection and identification of foodborne bacteria to prevent public health event, a microfluidic electrical impedance flow cytometry assisted with convolutional neural network (ConvNet) based deep learning algorithm was proposed in this study to analyze the impedance signals of bacteria. With the assistance o...
Conference Paper
In this study, an acoustofluidic printing system for generation of single-cell droplets based on a gigahertz acoustic resonator was proposed and verified. The working area of the resonator has a typical dimension of 10×10 micrometer which is very suitable for single cell printing. Single cells were encapsulated in picoliter droplets and printed dir...
Article
Full-text available
A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only...
Article
Full-text available
The disorganized polarization of tumor-associated macrophages (TAMs) exerts a critical effect on tumor progression. MicroRNAs (miRNAs) in extracellular vesicles (EVs) secreted from cancer cells may contribute to this process. However, the relationship between TAMs and EVs-miRNAs-mediated regulation in esophageal squamous cell carcinoma (ESCC) remai...
Article
This paper investigates the mechanism of a new acoustic micro-ejector using a Lamb wave transducer array, which can stably generate picoliter (pL) droplet jetting without nozzles. With eight transducers arranged as an octagon array, droplets are ejected based on the mechanism of combined acoustic pressure waves and acoustic streaming. The acoustic...
Article
The development of rapid and efficient tools to modulate neurons is vital for the treatment of nervous system diseases. Here, a novel non-invasive neurite outgrowth modulation method based on a controllable acoustic streaming effect induced by an electromechanical gigahertz resonator microchip is reported. The results demonstrate that the gigahertz...
Article
The current ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has globally affected the lives of more than one hundred million people. RT-PCR based molecular test is recommended as the gold standard method for diagnosing current infections. However, transportation and processing of the clinical sample for detecting virus require an expert ope...
Article
This paper reports an IC-compatible method for fabricating a PDMS-based resistive pulse sensing (RPS) device with embedded nanochannel (nanochannel-RPS) for label-free analysis of biomolecules and bionanoparticles, such as plasmid DNAs and exosomes. Here, a multilayer lithography process was proposed to fabricate the PDMS mold for the microfluidic...
Article
HIGHLIGHTS • A proposed microsystem system potentially provides accurate and calibration-free measurements based on a combination of front-end particulate matter (PM) separation and back-end PM detection. • Silicon dioxide particles are used to verify the performance of the system’s virtual impactor, and an accurate cutoff diameter of 2 μm in low a...
Article
Hydrodynamic approaches are important for biomedical diagnostics, chemical analysis, and a broad range of industrial applications. Size-based separation and sorting is an important tool for these applications. We report the integration of hypersound technology with patterned protein films to provide efficient sorting of microparticles based on part...
Article
Full-text available
Hydrodynamic force loading platforms for controllable cell mechanical deformation play an essential role in modern cell technologies. Current systems require assistance from specific microstructures thus limiting the controllability and flexibility in cell shape modulation, and studies on real‐time 3D cell morphology analysis are still absent. This...
Article
Full-text available
Acoustic manipulation of submicron particles in a controlled manner has been challenging to date because of the increased contribution of acoustic streaming which leads to fluid mixing and homogenization. This article describes the patterning of submicron particles and the migration of their patterned locations from pressure nodes to antinodes in n...
Article
Full-text available
The technological development of piezoelectric materials is crucial for developing wearable and flexible electromechanical devices. There are many inorganic materials with piezoelectric effects, such as piezoelectric ceramics, aluminum nitride and zinc oxide. They all have very high piezoelectric coefficients and large piezoelectric response ranges...
Article
Full-text available
6′/3′-Sialylated N-acetyllactosamine (6′/3′-SLN) is important for discrimination of the source (human or avian) of influenza virus strains. Biotinylated oligosaccharides have been widely used for analysis and quick detection. The development of efficient strategies to synthesize biotin-tagged 6′/3′-SLN have become necessary. Effective mixing is ess...
Preprint
The technological development of piezoelectric materials is crucial for developing wearable and flexible electromechanical devices. There are many inorganic materials with piezoelectric effects, such as piezoelectric ceramics, aluminum nitride, and zinc oxide. They all have very high piezoelectric coefficients and large piezoelectric response range...
Conference Paper
Full-text available
Rapid separation of sub-micron particles based on surface acoustic waves (SAWs) have been remained as challenges as there are lots of demands for such technologies in fundamental biomedical research and frontier developments of diagnosis devices. In this paper, a frequency of 409 MHz SAW actuated digital micro-centrifugal chip is demonstrated for r...
Article
Despite that single-cell-type-level analyses have been extensively conducted on animal models to gain new insight into complex biological processes, the unique biological and physiological properties of plant cells have not been widely studied at single-cell resolution. In this work, an electrical impedance flow cytometry was fabricated based on mi...
Article
We have developed a new three-dimensional (3D) surface for use in biosensors that is based on modified novel thorns-like polyelectrolytes (3D-PETx), which comprises of poly-l-lysine (PLL) appended with multitude oligo (ethylene glycol) (OEG) and biotin moieties. It tethered to the sensor surface by PLL, while the OEG-biotin chains are forced to str...
Conference Paper
This work reports a novel acoustic resonator system integrated dual functions of biological samples capture and amount monitoring on a single chip. The system could capture samples from nano-sized proteins to micro-sized cells on micro-sized chip precisely with controllable concentration, meanwhile the high sensitivity mass sensing was achieved dur...
Conference Paper
Enrichment and separation of Micro/Nano-scale specimens are fundamental requirements in biomedical researches. In this paper, we demonstrated a simple and efficient microfluidic chip for the continuous enrichment and separation of nanoscale polystyrene particles using the acoustic streaming induced by gigahertz(GHz) bulk acoustic waves(BAW). The bu...
Conference Paper
In this study, a portable and compatible system for extraction of DNA based on gigahertz acoustic was proposed and verified. The system is based on tunable multiple acoustic tweezers which can switch between the mixing and separation mode to enable the efficient DNA extraction with a relatively small and portable setup. Using this system, we extrac...
Conference Paper
Quantitation of protein biomarker featured with portability, rapidity, high sensitivity is critical for the point-of-care testing (POCT) application. Herein, a novel smartphone-enabled microfluidic chemiluminescence platform for the quantitation of prostate specific antigen (PSA) was proposed based on acoustic tweezers approach. The primary antibod...
Article
Primary cell wall (PCW) is a rigid yet flexible cell wall surrounding plant cells and it plays key roles in plant growth, cell differentiation, intercellular communication, water movement and defence. As a technique widely used to study the characteristics of mammalian cells, electrical impedance spectroscopy (EIS) is rarely used in plant science....
Article
Full-text available
In article number 2001363, Weiwei Wu, Hossam Haick, and co‐workers develop a highly sensitive strain sensor based on nanowires. The nanowires prepared by a capillarity‐inspired imprinting method have an aligned pattern, ensuring the reproducibility of strain sensor fabrication. The nanowire‐based strain sensor exhibits versatile and superior sensin...
Article
Full-text available
Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface‐to‐volume ratio as well as the mechanical robustness of nanostructures for obtaining highly‐sensitive detection of motion. To do so, highly‐aligned nanowires coverin...
Article
Microwave sensors based on microstrip antennas are promising as wearable devices because of their flexibility and wireless communication compatibility. However, their sensitivity is limited due to the reduced sensor size and the potential of biochemical monitoring need to be explored. In this work, we present a new concept to enhance the microwave...
Article
Full-text available
Low dimension poly(3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) has been applied as resistor-type devices for temperature sensing applications. However, their response speed and thermal sensitivity is still not good enough for practical application. In this work, we proposed a new strategy to improve the thermal sensing performa...
Article
Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, non-invasive strategies, and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstr...
Article
Full-text available
Dimensions and surface properties are the predominant factors for the applications of nanofluidic devices. Here we use a thin liquid film as a nanochannel by inserting a gas bubble in a glass capillary, a technique we name bubble-based film nanofluidics. The height of the film nanochannel can be regulated by the Debye length and wettability, while...
Article
The assessment of the petroleum products quality often involves multiple indicators, among which water content and acid value are the two major parameters. The complexity of oil sample and narrow space in pipeline transport makes it difficult to monitor oil quality in real time. Considered the practical requirements, a new type of flexible microstr...
Article
Gravimetric resonators based on Micro/Nanoelectromechanical System (M/NEMS) are potential candidates in developing smaller, less expensive, and higher performance gas sensors. Metal organic frameworks (MOFs), with high surface areas, recently come into focus as advanced nano-porous sensitive materials in micro gravimetric gas sensors. The surface o...
Article
Full-text available
Small-sized, low-cost, and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics, automotive applications, and industrial environments. Thus, micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a p...
Article
Full-text available
Intracellular delivery enables the efficient drug delivery into various types of cells and has been a long-term studied topics in modern biotechnology. Targeted delivery with improved delivery efficacy requires considerable requirements. This process is a critical step in many cellular-level studies, such as cellular drug therapy, gene editing deli...
Article
Development of wearable devices for continuous respiration monitoring is of great importance for evaluating human health. Here, we propose a new strategy to achieve rapid respiration response by confining conductive polymers into 1D nanowires which facilitates the water molecules absorption/desorption and maximizes the sensor response to moisture....
Article
Performance of electroanalytical lab-on-a-chip devices is often limited by the mass transfer of electroactive species towards the electrode surface, due to the difficulty in applying external convection. This article describes the powerful signal enhancement attained with a 2.54 GHz miniature acoustic resonator integrated with an electrochemical de...
Article
Full-text available
Film bulk acoustic wave resonators have demonstrated great potential in the detection of volatile organic compounds owing to their high sensitivity, miniature size, low power consumption, capacity for integration, and other beneficial characteristics. However, it is necessary to functionalize the surfaces of these resonators to enhance the adsorpti...
Article
In article 1900671, Qiannan Xue, Xuexin Duan, and co‐workers demonstrate a nanoscale impedimetric immunosensor based on biotin doped conductive polymer nanowire arrays which are fabricated through simple solution printing approach. This sensor can be a general platform for various bio‐analytical applications with ultrahigh sensitivity.
Article
Full-text available
Background Controllable and multiple DNA release is critical in modern gene-based therapies. Current approaches require complex assistant molecules for combined release. To overcome the restrictions on the materials and environment, a novel and versatile DNA release method using a nano-electromechanical (NEMS) hypersonic resonator of gigahertz (GHz...
Article
The demand for fast and ultratrace biomarkers detection is increasing in bioanalytical chemistry. In this work, highly ordered nanowires array and sensor integration are achieved with nanoscale printing approach. Negatively charged poly(3,4‐ethylenedioxythiophene)–poly(styrenesulfonate) doped with positively charged PEGylated biotin‐derivatized pol...
Article
Full-text available
The health effects of suspended particulate matter (PM) in the air are well documented; however, there is a lack of convenient tools to recognize and quantify PM onsite. Here, we design and fabricate a portable PM analysis system to realize onsite aerosol particle analysis. The system contains a micromachined virtual impactor (VI), a thermophoretic...
Article
Full-text available
We present a nanoscale acoustofluidic trap (AFT) which manipulates nanoparticles in a microfluidic system actuated by a gigahertz acoustic resonator. The AFT generates independent standing closed vortices with high-speed rotation. By carefully designing and optimizing the geometric confinements, the AFT is able to effectively capture and enrich sub...