Sharp upper bound for the rainbow connection numbers of 2-connected graphs

Xueliang Li, Sujuan Liu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; sjliu0529@126.com

Abstract

An edge-colored graph G, where adjacent edges may be colored the same, is rainbow connected if any two vertices of G are connected by a path whose edges have distinct colors. The rainbow connection number $rc(G)$ of a connected graph G is the smallest number of colors that are needed in order to make G rainbow connected. In this paper, we give a sharp upper bound that $rc(G) \leq \lceil \frac{n}{2} \rceil$ for any 2-connected graph G of order n, which improves the results of Caro et al. to best possible.

Keywords: rainbow connection, noncomplete rainbow path, 2-connected graph

AMS subject classification 2011: 05C15, 05C40

1 Introduction

All graphs considered in this paper are simple, finite and undirected. An edge-coloring of a graph G is a function from the edge set of G to the set of natural numbers. A path in an edge-colored graph G is a rainbow path if no two edges of this path are colored the same. An edge-colored graph is rainbow connected if every pair of vertices is connected by at least one rainbow path. The rainbow connection number of a connected graph G, denoted by $rc(G)$, is the smallest number of colors that are needed to rainbow color the graph G. We call a rainbow coloring of G with k colors a k-rainbow coloring.

*Supported by NSFC No.11071130.
The concept of a rainbow coloring was introduced by Chartrand et al. in [5]. The rainbow connection numbers of several graph classes have been obtained. It is well known that a cycle with \(n \) vertices has a rainbow connection number \(\lceil \frac{n}{2} \rceil \), \(rc(G) = n - 1 \) if and only if \(G \) is a tree of order \(n \) \((\geq 2)\), and \(rc(G) = 1 \) if and only if \(G \) is a complete graph of order \(n \) \((\geq 2)\). In [4], Chakraborty et al. gave the following result about the rainbow connection number.

Theorem 1.1. [4] Given a graph \(G \), deciding if \(rc(G) = 2 \) is NP-Complete. In particular, computing \(rc(G) \) is NP-Hard.

However, many upper bounds of the rainbow connection number have been given. For a 2-connected graph, Caro et al. proved the following two results.

Proposition 1.1. [3] If \(G \) is a 2-connected graph with \(n \) vertices, then \(rc(G) \leq \frac{2n}{3} \).

Theorem 1.2. [3] If \(G \) is a 2-connected graph on \(n \) vertices, then \(rc(G) \leq \frac{n}{2} + O(n^{\frac{1}{2}}) \).

One can see that both the above bounds are much greater than \(\lceil \frac{n}{2} \rceil \). However, experience tells us that the best bound should be \(\lceil \frac{n}{2} \rceil \). This paper is to give it a proof. Before proceeding, we need the following notation and terminology.

A *separation* of a connected graph is a decomposition of the graph into two nonempty connected subgraphs which have just one vertex in common. This common vertex is called a *separating vertex* of the graph. A graph is *nonseparable* if it is connected and has no separating vertices; otherwise, it is separable. If a graph \(G \) has at least 3 vertices but no loops, then \(G \) is nonseparable if and only if \(G \) is 2-connected.

Let \(F \) be a subgraph of a graph \(G \). An *ear* of \(F \) in \(G \) is a nontrivial path in \(G \) whose ends are in \(F \) but whose internal vertices are not. A nested sequence of graphs is a sequence \((G_0, G_1, \cdots, G_k)\) of graphs such that \(G_i \subset G_{i+1}, 0 \leq i < k \). An *ear decomposition* of a nonseparable graph \(G \) is a nested sequence \((G_0, G_1, \cdots, G_k)\) of nonseparable subgraphs of \(G \) such that: (1) \(G_0 \) is a cycle; (2) \(G_i = G_{i-1} \cup P_i \), where \(P_i \) is an ear of \(G_{i-1} \) in \(G \), \(1 \leq i \leq k \); (3) \(G_k = G \). It is clear that every 2-connected graph has an ear decomposition.

At the IWOCA workshop [7], Hajo Broersma posed a question: what happens with the value \(rc(G) \) for graphs with higher connectivity? Motivated by this question, we study the rainbow connection number of a 2-connected graph and give a sharp upper bound that \(rc(G) \leq \lceil \frac{n}{2} \rceil \) for any 2-connected graph of order \(n \), which improves the results in [3] to best possible.

2 Main results

For convenience, we first introduce some new definitions.
Definition 2.1. Let c be a k-rainbow coloring of a connected graph G. If a rainbow path P in G has length k, we call P a complete rainbow path; otherwise, it is a noncomplete rainbow path. A rainbow coloring c of G is noncomplete if for any vertex $u \in V(G)$, G has at most one vertex v such that all the rainbow paths between u and v are complete; otherwise, it is complete.

For a connected graph G, if a spanning subgraph has a (noncomplete) k-rainbow coloring, then G has a (noncomplete) k-rainbow coloring. This simple fact will be used in the following proofs.

Lemma 2.1. Let G be a Hamiltonian graph of order n ($n \geq 3$). Then G has a noncomplete \(\lceil \frac{n}{2} \rceil \)-rainbow coloring, i.e., $rc(G) \leq \lceil \frac{n}{2} \rceil$.

Proof. Since G is a Hamiltonian graph, there is a Hamiltonian cycle $C_n = v_1, v_2, \ldots, v_n, v_{n+1}$ ($= v_1$) in G. Define the edge-coloring c of C_n by $c(v_i, v_{i+1}) = i$ for $1 \leq i \leq \lceil \frac{n}{2} \rceil$ and $c(v_i, v_{i+1}) = i - \lceil \frac{n}{2} \rceil$ if $\lceil \frac{n}{2} \rceil + 1 \leq i \leq n$. It is clear that c is a $\lceil \frac{n}{2} \rceil$-rainbow coloring of C_n, and the shortest path connecting any two vertices in $V(G)$ on C_n is a rainbow path. For any vertex v_i ($1 \leq i \leq n$), only the antipodal vertex of v_i has no noncomplete rainbow path to v_i if n is even. Every pair of vertices in G has a noncomplete rainbow path if n is odd. Hence the rainbow coloring c of C_n is noncomplete. Since C_n is a spanning subgraph of G, G has a noncomplete $\lceil \frac{n}{2} \rceil$-rainbow coloring. \(\blacksquare \)

Let G be a 2-connected non-Hamiltonian graph of order n ($n \geq 4$). Then G must have an even cycle. In fact, since G is 2-connected, G must have a cycle C. If C is an even cycle, we are done. Otherwise, C is a odd cycle, we then choose an ear P of C such that $V(C) \cap V(P) = \{a, b\}$. Since the lengths of the two segments between a, b on C have different parities, P joining with one of the two segments forms an even cycle. Then, starting from an even cycle G_0, there exists a nonincreasing ear decomposition $(G_0, G_1, \ldots, G_t, G_{t+1}, \ldots, G_k)$ of G, such that $G_i = G_{i-1} \cup P_i$ ($1 \leq i \leq k$) and P_i is a longest ear of G_{i-1}, i.e., $\ell(P_1) \geq \ell(P_2) \geq \cdots \geq \ell(P_k)$. Suppose that $V(P_i) \cap V(G_{i-1}) = \{a_i, b_i\}$ ($1 \leq i \leq k$). We call the distinct vertices a_i, b_i ($1 \leq i \leq k$) the foot vertices of the ear P_i. Without loss of generality, suppose that $\ell(P_1) \geq 2$ and $\ell(P_{t+1}) = \cdots = \ell(P_k) = 1$. So G_t is a 2-connected spanning subgraph of G. Since G is a non-Hamiltonian graph, we have $t \geq 1$. Denote the order of G_i ($0 \leq i \leq k$) by n_i. All these notations will be used in the sequel.

Lemma 2.2. Let G be a 2-connected non-Hamiltonian graph of order n ($n \geq 4$). If G has at most one ear with length 2 in the nonincreasing ear decomposition, then G has a noncomplete $\lceil \frac{n}{2} \rceil$-rainbow coloring, i.e., $rc(G) \leq \lceil \frac{n}{2} \rceil$.

3
Proof. Since G_t ($t \geq 1$) in the nonincreasing ear decomposition is a 2-connected spanning subgraph of G, it only needs to show that G_t has a noncomplete $\left\lceil \frac{n}{2} \right\rceil$-rainbow coloring. We will apply induction on t.

First, consider the case that $t = 1$. Let G be a 2-connected non-Hamiltonian graph with $t = 1$ in the nonincreasing ear decomposition. The spanning subgraph $G_1 = G_0 \cup P_1$ of G consists of an even cycle G_0 and an ear P_1 of G_0. Without loss of generality, suppose that $G_0 = v_1, v_2, \ldots, v_{2k}, v_{2k+1} (= v_1)$ where $k \geq 2$. We color the edges of G_0 with k colors. Define the edge-coloring c_0 of G_0 by $c_0(v_i, v_{i+1}) = i$ for $1 \leq i \leq k$ and $c_0(v_1, v_{i+1}) = i - k$ if $k + 1 \leq i \leq 2k$. From the proof of Lemma 2.1, the coloring c_0 is a noncomplete k-rainbow coloring of G_0. Now consider G_1 according to the parity of $\ell(P_1)$. If $\ell(P_1)$ is even, then n_1 is odd and color the edges of P_1 with $\ell(P_1)$ new colors. In the first $\ell(P_1)$ edges of P_1 the colors are all distinct, and the same ordering of colors is repeated in the last $\ell(P_1)$ edges of P_1. It is easy to verify that the obtained coloring c_1 of G_1 is a noncomplete $\left\lceil \frac{n}{2} \right\rceil$-rainbow coloring and that for any pair of vertices in G, there exists a noncomplete rainbow path connecting them. If $\ell(P_1)$ is odd, then n_1 is even and color the edges of P_1 with $\ell(P_1) - 1$ new colors. The middle edge of P_1 receives any color that already appeared in G_0. The first $\ell(P_1) - 1$ edges of P_1 all receive distinct new colors and in the last $\ell(P_1) - 1$ edges of P_1 this coloring is repeated in the same order. It is easy to verify that the obtained coloring c_1 of G_1 is a noncomplete $\left\lceil \frac{n}{2} \right\rceil$-rainbow coloring.

Let G be a 2-connected non-Hamiltonian graph with $t \geq 2$ in the nonincreasing ear decomposition. Assume that the subgraph G_i ($1 \leq i \leq t - 1$) has a noncomplete $\left\lceil \frac{n}{2} \right\rceil$-rainbow coloring c_i and when n_i is odd, any pair of vertices have a noncomplete rainbow path. We distinguish the following three cases.

Case 1. $\ell(P_i) \geq 3$ is odd.

Suppose that $P_i = v_0(= a_i), v_1, \ldots, v_r, v_{r+1}, \ldots, v_{2r}, v_{2r+1}(= b_i)$ where $r \geq 1$. We color the edges of P_i with r new colors to obtain a noncomplete coloring c_i of G_t. Define the edge-coloring of P_i by $c(v_{i-1}, v_i) = x_i$ ($1 \leq i \leq r$), $c(v_r, v_{r+1}) = x$ and $c(v_{i-1}, v_i) = x_{i-r-1}$ ($r + 2 \leq i \leq 2r + 1$), where x_1, x_2, \ldots, x_r are new colors and x is a color appeared in G_{t-1}. It is easy to check that the obtained coloring c_i of G_t is a $\left\lceil \frac{n}{2} \right\rceil$-rainbow coloring.

Now we show that c_i is noncomplete. For any pair of vertices $u, v \in V(G_{t-1}) \times V(G_{t-1})$, the rainbow path P from u to v in G_{t-1} is noncomplete in G_t, because the new colors $x_{1}, x_{2}, \ldots, x_r$ ($r \geq 1$) do not appear in P. For any pair of vertices $u, v \in V(P_i) \times V(P_i)$, if there exists a rainbow path P from u to v on P_i, then P is noncomplete in G_t, since some color in G_{t-1} does not appear in P; if not, there exists a noncomplete rainbow path P from u to v through some vertices of G_{t-1} such that at least one new color does not appear in P. For any pair of vertices $umv \in V(G_{t-1}) \times (V(P_i) \setminus \{v_r, v_{r+1}\})$, there exists a noncomplete rainbow path from u to v in which at least one new color does not appear.
If there exists a vertex all of whose rainbow paths to a_t (resp. b_t) in G_{t-1} are complete, we denote the vertex by a'_t (resp. b'_t). For vertex v_r (resp. v_{r+1}), only the vertex a'_t (resp. b'_t) possibly has no noncomplete rainbow path to v_r (resp. v_{r+1}) in G_t. So there possibly exist two pairs of vertices a'_t, v_r and $b'_t, v_r + 1$ which have no noncomplete rainbow path. Since a'_t, b'_t are distinct in G_{t-1}, the rainbow coloring c_t is noncomplete. If n_t is odd, then n_{t-1} is odd. By induction, a'_t, b'_t do not exist when n_{t-1} is odd. Hence every pair of vertices have a noncomplete rainbow path.

Case 2. $\ell(P_t) \geq 2$ is even and n_{t-1} is even.

In this case, n_t is odd. Suppose that $P_t = v_0(= a_t), v_1, \ldots, v_r, v_{r+1}, \ldots, v_{2r-1}, v_{2r}(= b_t)$ where $r \geq 1$. Define the edge-coloring of P_t by $c(v_i v_i) = x_i$ for $1 \leq i \leq r$ and $c(v_i v_i) = x_i$ for $r + 1 \leq i \leq 2r$. It is clear that the obtained coloring c_t of G_t is a $\lceil \frac{n_t}{2} \rceil$-rainbow coloring.

Now we prove that c_t is noncomplete. For any pair of vertices in $V(G_{t-1}) \times V(G_{t-1})$ or $V(P_t) \times V(P_t)$, there is a noncomplete rainbow path connecting them in G_t, similar to the Case 1. For any pair of vertices $u \in V(G_{t-1}), v \in V(P_t)$ ($v \neq v_r$), there is a noncomplete rainbow path P from u to v such that at least one new color does not appear in P. For any vertex $u \in V(G_{t-1})$, since the coloring c_{t-1} is noncomplete, u has a noncomplete rainbow path P' in G_{t-1} to one of a_t, b_t (say a_t). Then P' joining with $a_t P_t v_r$ is a noncomplete rainbow path from u to v_r in G_t. Therefore, the rainbow coloring c_t of G_t is noncomplete such that any pair of vertices has a noncomplete rainbow path.

Case 3. $\ell(P_t) \geq 2$ is even and n_{t-1} is odd.

In this case, n_t is even. We consider the following three subcases.

Subcase 3.1 $[V(P_t) \cap V(P_{t-1})] \setminus V(G_{t-2}) = \emptyset$.

If $\ell(P_{t-1})$ is odd, let $G'_{t-1} = G_{t-2} \cup P_t$ and $G_t = G'_{t-1} \cup P_{t-1}$. By induction, G'_{t-1} has a noncomplete $\lceil \frac{n_{t-1}}{2} \rceil$-rainbow coloring ($n_{t-1}$ is the order of G'_{t-1}). Similar to Case 1, we can obtain a noncomplete $\lceil \frac{n_t}{2} \rceil$-rainbow coloring of G_t from G'_{t-1}.

Suppose that $\ell(P_{t-1})$ is even. By induction, G_{t-2} has a noncomplete $\lceil \frac{n_{t-2}}{2} \rceil$-rainbow coloring c_{t-2}. Suppose that $P_{t-1} = v_0(= a_{t-1}), v_1, \ldots, v_r, v_{r+1}, \ldots, v_{2r-1}, v_{2r}(= b_{t-1})$ and $P_t = v'_0(= a_t), v'_1, \ldots, v'_{s}, v'_{s+1}, \ldots, v'_{2s-1}, v'_{2s}(= b_t)$, where $r \geq 2, s \geq 1$. Since c_{t-2} is noncomplete and a_t, b_t ($1 \leq i \leq k$) are two distinct vertices, then a_{t-1} has a noncomplete rainbow path P' to one of a_t, b_t (say a_t) and b_{t-1} has a noncomplete rainbow path P'' to the other vertex. Suppose that x is the color in G_{t-2} that does not appear in P'. Now color the edges of P_{t-1}, P_t with $r + s - 1$ new colors and the color x. Define an edge-coloring of P_{t-1} by $c(v_i v_i) = x_i$ ($1 \leq i \leq r$) and $c(v_i v_i) = x_{i-r}$ ($r + 1 \leq i \leq 2r$), where x_1, x_2, \ldots, x_r are new colors. And define an edge-coloring of P_t by $c(v'_i v'_i) = y_i$ ($1 \leq i \leq s - 1$), $c(v'_{s-1} v'_s) = x, c(v'_{s-1} v'_{s+1}) = x_1$ and $c(v'_{s-1} v'_i) = y_{i-s-1}$ ($1 \leq i \leq 2s$), where
$y_1, y_2, \ldots, y_{s-1}$ are new colors.

Similar to Case 2, the obtained coloring c_{t-1} of G_{t-1} is a noncomplete $\lceil \frac{n_t - 1}{2} \rceil$-rainbow coloring such that every pair of vertices have a noncomplete rainbow path. It is obvious that G_t is rainbow connected. The path $(v'_t P(a_t) P'(a_{t-1} P_{t-1} v_r))$ is a rainbow path from v'_t to v_r which is possibly complete. For any other pair of vertices in G_t, there is a noncomplete rainbow path connecting them. Hence the rainbow coloring c_t of G_t is noncomplete.

Subcase 3.2 $[V(P_t) \cap V(P_{t-1})] \setminus V(G_{t-2}) = \{ b_t \}$.

If $\ell(P_{t-1})$ is odd, suppose that $P_{t-1} = v_0(= a_{t-1}), v_1, \ldots, v_r, v_{r+1}, \ldots, v_{2r}, v_{2r+1}(= b_{t-1})$. Since P_{t-1} is a longest ear of G_{t-2} and $b_t \in V(P_{t-1}) \setminus V(G_{t-2})$, we have $r \geq 2$. Define an edge-coloring of P_{t-1} by $c(v_{i-1} v_i) = x_i$ ($1 \leq i \leq r$), $c(v_r v_{r+1}) = x$ and $c(v_{i-1} v_i) = x_{i-r} (r+2 \leq i \leq 2r+1)$, where x_1, x_2, \ldots, x_r are new colors and x is a color appeared in G_{t-2}. Similar to Case 1, the obtained coloring c_{t-1} of G_{t-1} is a noncomplete $\lceil \frac{n_t - 1}{2} \rceil$-rainbow coloring such that every pair of vertices have a noncomplete rainbow path. If $\ell(P_{t-1})$ is even, suppose that $P_{t-1} = v_0(= a_{t-1}), v_1, \ldots, v_r, v_{r+1}, \ldots, v_{2r-1}, v_{2r}(= b_{t-1})$, where $r \geq 2$. Define an edge-coloring of P_{t-1} by $c(v_{i-1} v_i) = x_i$ ($1 \leq i \leq r$), and $c(v_{i-1} v_i) = x_{i-r} (r+1 \leq i \leq 2r)$, where x_1, x_2, \ldots, x_r are new colors. Similar to Case 2, the obtained coloring c_{t-1} of G_{t-1} is a noncomplete $\lceil \frac{n_t - 1}{2} \rceil$-rainbow coloring such that every pair of vertices have a noncomplete rainbow path.

Without loss of generality, assume that b_t belongs to the first half of P_{t-1} and that $P_t = v'_0(= a_t), v'_1, \ldots, v'_s, v'_{s+1}, \ldots, v'_{2s-1}, v'_{2s}(= b_t)$, where $s \geq 1$. We color the edges of P_t with $s-1$ new colors. Define an edge-coloring of P_t by $c(v'_{i-1} v'_i) = y_i$ ($1 \leq i \leq s-1$), $c(v'_{s-1} v'_s) = x_1, c(v'_s v'_{s+1}) = y$ and $c(v'_{i-1} v'_i) = y_{i-s} (s+2 \leq i \leq 2s)$, where $y_1, y_2, \ldots, y_{s-1}$ are new colors and the color y is different from color x in G_{t-2}. It is easy to verify that the obtained coloring c_t of G_t is a $\lceil \frac{n_t}{2} \rceil$-rainbow coloring.

For any pair of vertices $v' \in V(P_t)$ and $v \in V(G_{t-1})$, there exists a noncomplete rainbow path P connecting them since the path from v' to one foot vertex of P_t colored by new colors joining with the noncomplete rainbow path from the foot vertex to v in $V(G_{t-1})$ is a noncomplete rainbow path from v' to v in G_t. For v'_s, there is a noncomplete rainbow path from v'_s to any vertex in $V(G_{t-2}) \cup V(b_t P_{t-1} v_{r+2})$ through edge $e = v'_{s-1} v'_s$; and a noncomplete rainbow path from v'_s to any vertex in $V(a_{t-1} P_{t-1} v_{r+1})$ through $e = v'_{s+1} v'_{s+2}$. For any pair of vertices in $V(P_t) \times V(P_t)$, there is a noncomplete rainbow path connecting them obviously. Hence the rainbow coloring c_t is noncomplete.

Subcase 3.3 $[V(P_t) \cap V(P_{t-1})] \setminus V(G_{t-2}) = \{ a_t, b_t \}$.

We can prove this subcase in a way similar to Subcase 3.2. Without loss of generality, we can assume that $a_t = v_p (1 \leq p \leq r-1)$ and $b_t = v_q (q \geq p + 2)$. Color all the edges
of \(P_{t-1} \) and \(P_t \) as in Subcase 3.2 but only the edge \(e = v'_{t-1}v'_t \) which is colored by \(x_{j+1} \) instead. The obtained coloring \(c_t \) of \(G_t \) is a noncomplete \(\lceil \frac{n}{2} \rceil \)-rainbow coloring. ■

Lemma 2.3. Let \(G \) be a 2-connected non-Hamiltonian graph of order \(n \) \((n \geq 4)\). If \(G \) has at least 2 ears of length 2 in the nonincreasing ear decomposition, then \(\text{rc}(G) \leq \lceil \frac{n}{2} \rceil \).

Proof. We only need to prove that there exists a rainbow coloring \(c_t \) of the spanning subgraph \(G_t \) in the nonincreasing ear decomposition that uses at most \(\lceil \frac{n}{2} \rceil \) colors. If \(G \) has 2 or 3 ears of length 2 in the nonincreasing ear decomposition, then \(G_{t-2} \) has at most one ear of length 2 and \(\ell(P_{t-1}) = \ell(P_t) = 2 \). From Lemmas 2.1 and 2.2, \(G_{t-2} \) has a noncomplete \(\lceil \frac{n-2}{2} \rceil \)-rainbow coloring \(c_{t-2} \). Assume that \(P_{t-1} = a_{t-1}, v, b_{t-1} \) and \(P_t = a_t, v', b_t \). Since \(P_{t-1} \) is a longest ear of \(G_{t-2} \), we have \(a_t, b_t \in V(G_{t-2}) \). Since the coloring \(c_{t-2} \) is noncomplete, \(a_{t-1} \) has a noncomplete rainbow path \(P \) to one of \(a_t, b_t \) (say \(a_t \)) such that the color \(x \) in \(G_{t-2} \) does not appear in \(P \). Define an edge-coloring of \(P_{t-1} \) and \(P_t \) by \(c(a_{t-1}v) = c(b_{t-1}v) = c(b_tv') = x_1 \) and \(c(a_tv') = x \), where \(x_1 \) is a new color. It is clear that \(va_{t-1}Pa_tv' \) is a rainbow path from \(v \) to \(v' \), and the obtained coloring of \(G_t \) is a \(\lceil \frac{n}{2} \rceil \)-rainbow coloring.

Now consider the case that \(G \) has at least 4 ears of length 2 in the nonincreasing ear decomposition. Suppose that \(\ell(P_{t-1}) \geq 3 \) and \(\ell(P_t) = \ell(P_{t+1}) = \cdots = \ell(P_t) = 2 \). Since \(P_t(1 \leq i \leq k) \) is a longest ear, we have that \(a_{t'}, b_{t'}, \cdots, a_t, b_t \in V(G_{t-1}) \). From Lemmas 2.1 and 2.2, there exists a \(\lceil \frac{n'-1}{2} \rceil \)-rainbow coloring \(c_{t-1} \) of \(G_{t-1} \). Color one edge of \(P_t(t' \leq i \leq t) \) with \(x_1 \) and the other with \(x_2 \), where \(x_1, x_2 \) are two new colors. It is obvious that \(G_t \) is rainbow connected. Since \(G \) has at least 4 ears of length 2, the rainbow coloring of \(G_t \) uses at most \(\lceil \frac{n}{2} \rceil \) colors. ■

From the above three lemmas and the fact that \(\text{rc}(C_n) = \lceil \frac{n}{2} \rceil \) \((n \geq 4)\), we can derive our following main result.

Theorem 2.1. Let \(G \) be a 2-connected graph of order \(n \) \((n \geq 3)\). Then \(\text{rc}(G) \leq \lceil \frac{n}{2} \rceil \), and the upper bound is sharp for \(n \geq 4 \).

Since for any two distinct vertices in a \(k \)-connected graph \(G \) of order \(n \), there exist at least \(k \) internal disjoint paths connecting them, the diameter of \(G \) is no more than \(\lceil \frac{n}{k} \rceil \). One could think of generalizing Theorem 2.1 to the case of higher connectivity in the obvious way, and pose the following conjecture.

Conjecture 2.1. Let \(G \) be a \(k \)-connected graph \(G \) of order \(n \). Then \(\text{rc}(G) \leq \lceil \frac{n}{k} \rceil \).
References

[6] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-191.