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Abstract—The emerging Internet of Things (IoT) paradigm
makes our telecommunications networks increasingly congested.
Unmanned aerial vehicles (UAVs) have been regarded as a promis-
ing solution to offload the overwhelming traffic. Considering the
limited spectrums, cognitive radio can be embedded into UAVs to
build backhaul links through harvesting idle spectrums. For the
cognitive UAV (CUAV) assisted network, how much traffic can
be actually offloaded depends on not only the traffic demand but
also the spectrum environment. It is necessary to jointly consider
both issues and co-design the trajectory and communications
for the CUAV to make data collection and data transmission
balanced to achieve high offloading efficiency, which, however, is
non-trivial because of the heterogeneous and uncertain network
environment. In this paper, aiming at maximizing the energy
efficiency of the CUAV-assisted traffic offloading, we jointly design
the Trajectory, Time allocation for data collection and data trans-
mission, Band selection, and Transmission power control (T3B)
considering the heterogeneous environment on traffic demand,
energy replenishment, and spectrum availability. Considering the
uncertain environmental information, we develop a model-free
deep reinforcement learning (DRL) based solution to make the
CUAV achieve the best decision autonomously. Simulation results
have shown the effectiveness of the proposed DRL-T3B strategy.

Index Terms—UAV-assisted network, cognitive radio, traffic
offloading, deep reinforcement learning, energy efficiency.

I. INTRODUCTION

Recently, with the development of the emerging Internet of
Things (IoT) paradigm, wireless data traffic has witnessed a
significant explosion, making our telecommunications network
more and more congested. Due to the high flexibility and
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agility, unmanned aerial vehicle (UAV) assisted traffic offload-
ing has been regarded as a promising solution to mitigate
the network congestion. By swiftly deploying UAV-mounted
relays at hot spots, these flying taxis can collect data from IoT
devices with a short distance, and forward to the base station
(BS) through line-of-sight (LoS) connections with reliable
transmission performance. In this way, the network congestion
can be alleviated effectively [2] [3]. Several recent works have
been devoted to the UAV-assisted traffic offloading from dif-
ferent perspectives [4]–[6]. However, most of them ignored an
important problem, that is, how to build the wireless backhaul
link between the UAV and BS to support the relay of massive
data. It is generally simply assumed that there exists abundant
spectrum resource to support it. Unfortunately, considering the
already overwhelming data traffic in the network, there might
not exist sufficient spectrums left for the UAV to relay the large
amount of offloaded data traffic [7] [8].

Cognitive radio (CR) technique can enable devices to dy-
namically access idle spectrums when incumbent users are
inactive [9] [10]. Hence, integrating CR capability into UAVs
would be a promising solution. Actually, some works have
investigated the integration of CR technology with UAVs from a
practical implementation aspect [11] [12]. In [11], to mitigate
the Doppler frequency shifting due to the high speed of the
UAV, H. Reyes et al. designed an intelligent modular system
to enhance the reliability for the CR enabled UAV. In [12],
considering the capability limitation of UAVs, C. W. Bostian
et al. developed a low-cost cognitive radio to make the imple-
mentation feasible. With the rapid development on electronics
and UAVs, integrating CR capability into UAVs would become
possible, which has been considered as a new paradigm for
UAV-assisted networks and attracted many research attentions
[13]–[15]. As a result, in this work, we embrace the CR
technology to enable the UAV to capture the idle spectrums
based on spectrum sensing to construct the wireless backhaul
link for data transmission. In such a cognitive UAV (CUAV)
assisted network, how to make the CUAV offload as much
traffic as possible is the key problem, which, however, is non-
trivial, because the traffic that can be actually offloaded depends
on not only the uncertain traffic demands, but also the uncertain
spectrum environment. Intuitively, for certain hot spots with
plenty of traffic to offload, if there does not exist enough band-
width for harvesting (spectrums are occupied by incumbent
users), although the data of grounded IoT devices might be
collected by the CUAV through any short-range communication
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technologies, it can be hardly transmitted to the BS if there
does not exist enough bandwidth for UAV-BS transmission. As
a result, most existing studies on UAV-assisted traffic offloading
where the collected data is assumed to be always successfully
delivered to the BS cannot be directly applied to CUAV-assisted
networks [14] [15]. Considering the spectrum harvesting for
data transmission, a sophisticated design on both trajectory and
communications is critical to make the data collection (related
to traffic demand) and data transmission (related to spectrum
availability) balanced to achieve high offloading efficiency.

1) Trajectory Design. In general, due to the limited on-
board energy supply, energy consumption has been widely
considered as a critical issue for UAV-assisted systems [16]–
[18]. Hence, as for the strategy design in this paper, we take the
energy-efficiency as the objective to maximize the offload data
volume per unit energy consumption (bits/J) of the CUAV. In
particular, with the rapid development of solar-powered UAVs,
we consider a promising scenario that the CUAV can harvest
energy from the environment, e.g., charging its battery from the
solar energy [19]–[22]. To achieve an energy-efficient traffic
offloading, the trajectory design should comprehensively take
the heterogeneous environment on traffic demand, spectrum
availability, and energy replenishment into account. First, in
general, both traffic demand and spectrum availability are
subject to spatial and temporal variations. The former one
determines how much data the CUAV can collect, while the
latter one determines how much data it can transmit to the
BS. Hence, the actual offloaded data volume are limited by
the two factors. To offload more data traffic, it is necessary to
jointly consider the heterogenous environment on both issues,
and well design the trajectory to make the CUAV dynamically
serve the areas with not only huge traffic demand but also suf-
ficient available spectrums. Second, from the energy-efficiency
perspective, it might not be a good decision to make the CUAV
serve the areas that are far away from the current location
considering the huge energy consumption for flight, unless
massive data traffic could be offloaded there. Furthermore, the
heterogeneous environment on energy replenishment should be
also taken into account. Serving the areas with more energy
to harvest can pro-long the work-time of the CUAV and
improve the energy-efficiency. Therefore, a sophisticated design
on trajectory with a comprehensive consideration on all the
traffic demand, spectrum availability, and energy replenishment
is crucial for the CUAV-assisted network. Nevertheless, such a
trajectory design is not an easy task, especially considering the
fact that the heterogenous environment information is usually
uncertain and hardly known precisely in practice.

2) Communications Design. In general, when serving cer-
tain area, the CUAV will first collect data from grounded
IoT devices, and then forward to the BS through harvested
spectrums. As aforementioned, for offloading efficiency, it is
essential to balance the two processes of data collection and
data transmission. Such a balance relies on not only an effective
trajectory considering the heterogenous environment as dis-
cussed above, but also a judicious design on communications,
such as how to allocate time for two processes, which bands
are selected for transmission, how much power is used on each

band, etc. a) Time Allocation. When the CUAV flies to certain
area, it is necessary to effectively determine the time spent
on data collection and data transmission. Intuitively, spending
too much time for collection will lead to an overwhelming
aggregated data volume, making it challenging for the wireless
backhaul link to support, and vice versa. Thus, the decision
on time allocation for data collection and transmission is very
important for the offloading, which, however, is non-trivial due
to the uncertainty of the environment on both traffic demand
and spectrum availability. b) Band Selection. During the data
transmission process, the CUAV should determine which bands
to use. In general, different bands have different availability
depending on the incumbent user’s activities [23]–[25]. Hence,
they will lead to different data rate for the wireless backhaul
link, which will directly affect the offloading efficiency. As a
result, it is necessary to well predict the uncertain spectrum
environment and select the bands with more idle time in the
future to support more data transmission. c) Power Control.
The transmission power on the selected bands will determine
the data rate, as well as the energy efficiency. Which power
level should be adopted depends on how much data needs
to be transmitted and how much time that can be used for
transmission, which are closely related to the decisions on
time allocation and band selection. From the perspective of
energy-efficiency, it is expected to utilize the minimal power to
accomplish the transmission for all the collected data, which,
however, is difficult to achieve. An effective joint design is
required on all the three issues under the uncertain demand
and spectrum environment.

Note that the trajectory design and communications design
are closely correlated. Different trajectories will lead to en-
vironments with different traffic demand, spectrum availability,
and energy replenishment, which will influence the decision on
time allocation, band selection, and power control. Therefore,
it is imperative to jointly study both trajectory and commu-
nications for the CUAV to make it offload as much traffic
as possible on the harvested spectrums with high energy-
efficiency. Recently, some works have devoted to the CUAV-
assisted traffic offloading schematic development [26]–[30].
Some of them employed the underlay mode for the CUAV
to access the incumbent users’ spectrums [26] [27], where
they mainly focused on the power control strategy design to
avoid interference to the incumbent users without considering
the uncertain and heterogenous spectrum environment. [28]–
[30] took the uncertain spectrum environment into account,
where the CUAVs capture the spectrum holes to construct
the wireless backhaul link via periodic spectrum sensing. In
these works, considering the uncertain spectrum availability,
the CUAV needs to predict the activities of the incumbent users
and decide the transmission duration accordingly, or design the
sensing duration to improve the sensing accuracy. Hence, due
to the reliable prediction and sensing of spectrum availabili-
ty, the wireless backhaul link built on the reliable spectrum
supply can support more traffic transmission. However, these
works endeavored to maximize the throughput of the wireless
backhaul link without considering whether there is sufficient
traffic to be transmitted. Furthermore, these works employed
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the model-based optimization approach to achieve the solution.
Unfortunately, the perfect knowledge of the uncertain envi-
ronment on traffic demand, spectrum availability, and energy
replenishment is usually hardly obtainable, which even might
not follow certain closed-form models, making the traditional
optimization method inapplicable.

In this paper, we propose a joint design of both trajectory
and communications for the CUAV-assisted network to achieve
an energy-efficient traffic offloading. In our preliminary work
[1], we have studied the joint strategy under heterogeneous
traffic demand and spectrum availability, but did not consider
the energy issue during the traffic offloading. In this work,
taking the energy efficiency as the objective, we further consid-
er the environment with heterogeneous energy replenishment,
and jointly design the CUAV Trajectory, Time allocation for
data collection and data transmission, Band selection, and
Transmission power control, named T3B joint strategy. Due
to the environmental uncertainty, we develop a model-free
solution based on deep reinforcement learning for the T3B
joint strategy (a.k.a. DRL-T3B), to make the CUAV adaptive
to the uncertain environment and achieve the best strategy
autonomously. The main contributions of this paper are sum-
marized as follows.

• Unlike most existing work on UAV-assisted traffic of-
floading design, where the spectrum for wireless backhaul
link construction is assumed to be always sufficient, we
consider the practical spectrum limitation problem and
employ the CR capability to build the wireless backhaul
link through harvesting idle spectrums from the envi-
ronment. We propose an energy-efficient CUAV-assisted
traffic offloading scheme considering the environment with
heterogeneous traffic demand, spectrum availability, and
energy replenishment to offload as much traffic as possible
over the harvested spectrums with high energy-efficiency.

• To achieve an energy-efficient traffic offloading, we jointly
design the strategy of the CUAV trajectory, time allocation
for data collection and transmission, band selection, and
transmission power control. To our best knowledge, this
is the first work to comprehensively consider the environ-
ment with heterogeneous traffic, spectrum, and energy for
the UAV trajectory development, and also the first one to
jointly study the trajectory and communications strategy
with all of the above issues being considered.

• Since the environment information is usually uncertain
and hardly known precisely in practice, the traditional
optimization approaches might be inefficient or even in-
feasible. Hence, we develop a deep reinforcement learning
based solution to make the CUAV autonomously learn
the best decision under the uncertain environment in a
trial-and-error way and adapt to the dynamics. Simulation
results have demonstrated the effectiveness of the joint
design and the DRL based solution.

The rest of this paper is organized as follows. Related works
are reviewed in Section II. Then, we introduce the system model
and problem formulation about the T3B joint strategy in Section
III. Next, in Section IV, we propose a deep reinforcement
learning solution for the T3B joint strategy. Simulation results

and analysis are elaborated in Section V. Finally, we conclude
our work in Section VI.

II. RELATED WORK

Due to the high mobility and availability of strong LoS
communication links, many recent works have investigated the
UAV-assisted traffic offloading by taking UAVs as relays in
the network [14], [15] [31]–[33]. Several studies on the UAV-
assisted network are dedicated to traffic offloading [14], [15]. In
[14], Chen et al. focused on the trajectory design to maximize
the sum rate of UAV-served edge users. In [15], to maximize
the minimum throughput of all mobile terminals, Lyu et al.
jointly optimized the UAV’s trajectory, bandwidth allocation,
and user partitioning. Considering the limited on-board battery
capacity, energy efficiency is also regarded as a key problem
for the UAV-assisted traffic offloading [31]–[33]. In [31], Hua
et al. dispatched a UAV to offload traffic for cell-edge users
in hot spots, and proposed a joint strategy by optimizing
UAV trajectory, user partitioning, and bandwidth allocation
to maximize UAV’s energy efficiency. In [32], Ahmed et
al. jointly investigated the UAV trajectory and transmission
power to improve the energy efficiency. In [33], Zeng et al.
jointly designed user scheduling, UAV trajectory, transmission
power, and bandwidth allocation to maximize UAV’s energy
efficiency while meeting the quality-of-experience of all ground
users. These excellent research works have promoted the UAV-
relay enabled communication networks. However, most of them
considered that there exists sufficient spectrums in the network
to support the wireless backhaul link for data transmission from
UAVs to base stations, which might be infeasible in practice
due to the limited spectrum resource.

To tackle this issue of building the UAV wireless backhaul
link, CUAV-enabled traffic offloading has received many re-
search interests [26]–[30]. In [26], regarding CUAVs as sec-
ondary users, Huang et al. developed a power control strategy
to maximize CUAVs’ achievable rate while controlling the co-
channel interference at the primary receivers. Similarly, in [27],
Wu et al. jointly optimized the CUAV trajectory and power
control to maximize its throughput and meet the the interference
constraints when the CUAV accesses the primary users’ bands.
These works employed the underlay mode for the CUAV and
mainly focused on the interference avoidance problem. By
harvesting idle spectrums and opportunistically accessing them,
[28]–[30] investigated the interweave mode for the CUAV. In
[28], in order to enable the CUAV to transmit more data
to IoT devices, Almasoud et al. proposed an opportunistic
spectrum access strategy where the CUAV predicts the activities
of the PUs and then determines its transmission duration
accordingly. In [29], considering the spectrum sensing accuracy
issue, Liang et al. designed the spectrum sensing duration to
improve the sensing accuracy and maximize the throughput
of the CUAVs. In [30], considering the trade-off between the
spectrum efficiency and energy efficiency, Hu et al. jointly
designed the CUAV’s trajectory and spectrum sensing duration
to maximize its energy efficiency. By accurately predicting or
sensing the activities of PUs, CUAVs can capture the uncertain
spectrum availability for constructing the wireless backhaul link
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to transmit more data. However, these works mainly focused
on how to improve the throughput of the wireless backhaul
link without jointly considering the uncertain traffic demand
and spectrum availability. In fact, due to the uncertain traffic
and spectrum environment, how to balance the data collection
and data transmission for offloading efficiency improvement
still calls for an innovative scheme, which depends on a joint
design on CUAV trajectory and communications. Furthermore,
these works adopted specific models to describe the uncertain
spectrum environment, such as the log-normal distribution
employed for the OFF period of the spectrum in [28]. However,
since the information of the uncertain environment is hardly
available in advance and difficult to be expressed with specific
closed-form models, the traditional optimization method will
face significant challenges in practical applications. Motivated
by this observation, we design a T3B joint strategy by jointly
optimizing CUAV trajectory, time allocation, band selection,
and transmission power control for CUAV energy efficiency
maximization, and propose a DRL-based solution to obtain the
optimal strategies of the CUAV.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider an UAV-assisted IoT network as shown in Fig.
1, where an UAV is deployed in the network acting as a relay to
offload the overwhelming data traffic. Assume that there are I
candidate visiting points that the UAV can fly to in the network,
corresponding to I serving areas. The UAV follows a flying-
collection-transmission (F-C-T) procedure. To be specific, at
each time t, it will first choose one serving area it ∈ I and
fly to the corresponding location. Then, it will collect data
within the area, and relay the aggregated data to the base
station (BS). Such an F-C-T procedure will be repeated until
the energy of the UAV is exhausted. Then, it will fly back to
the charging station for battery re-charging. Due to the short
distance, the data collection between the UAV and IoT devices
can be supported by many off-the-shelf accessing technologies,
such as WiFi, 4G/5G, NB-IoT, etc. Thus, in this work, we
mainly focus on the wireless backhaul link from the UAV to
the BS considering the already congested network with limited
spectrum resource. To support the massive data transmission,
we equip the UAV with cognitive radio (CR) capability, which
is called cognitive-UAV (CUAV), and establish the wireless
backhaul link between the UAV and BS based on the white
spectrums in the network. In addition, we also assume that
the CUAV can harvest energy for battery charging, e.g., solar
energy, when serving in the network.

To offload data traffic, the CUAV will implement the F-C-
T procedure in a time-slotted way as shown in Fig. 21. For
each time slot t, it contains two phases, namely, flying phase

1Since we mainly focus on the wireless backhaul link in this work, we
adopt the time-division mode to study data collection and data transmission
separately. The strategy design idea can also apply to other cases with different
working modes, such as the frequency-division mode where both two phases
are implemented at the same time over different bands.

2In this paper, we consider the CUAV serves each area with the same fixed
height.

Fig. 1. The cognitive unmanned aerial vehicle assisted network architecture.

Fig. 2. The F-C-T procedure.

and offloading phase, whose length is T1 and T2, respectively.
During the flying phase, the CUAV will either fly from the
current area ît to area ĩt or keep hovering at the current area.
We denote the location of the CUAV at it as lit = (xit , yit)

2.
Then, the flight distance at time slot t can be described as

dt =

√(
xĩt
− xît

)2
+
(
yĩt − yît

)2
. (1)

In general, due to battery power constraint, the maximum speed
of the CUAV is vmax. Thus, if the CUAV flies to another area,
the set of candidate areas served by the CUAV in time slot t is
Ĩ =

{
ĩt ∈ I/̂it|dt ≤ vmax · T1

}
. If it chooses to hover at the

current area, there is ĩt = ît.

B. CUAV-Assisted Data Offloading Work Flow

During the offloading phase, the CUAV will collect data
within the area and transmit to the BS periodically. More
explicitly, the offloading phase for each time slot contains M
offloading periods, and each period includes a data collection
(DC) step and a data transmission (DT) step. In time slot t, the
time proportion of DC step is δt and that of DT is 1−δt. In the
DC step, the CUAV will collect data from IoT devices within
the serving area, and the data in time slot t within area ĩt is
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collected at a rate of Rt
ĩt

in bps. After that, the CUAV will
reach the DT step following a periodic sensing-transmission
(ST) protocol. We consider the partially observable scenario,
where the CUAV can only select K̂ bands among all the K
available bands to sense and opportunistically access due to
the hardware limitation. Specifically, at the beginning of each
ST period, the CUAV will execute spectrum sensing on the
selected K̂ bands. If idle ones exists, it will transmit data
accordingly, otherwise, it will keep silence until the next ST
period starts. The length for sensing and transmitting in each
ST period is denoted as τs and τtr, respectively, and there are N
ST periods in each offloading period. The transmission power
on each band k is assumed to keep constant during the time slot
t, which is denoted as P k,t

tr . Furthermore, during the offloading
phase in each time slot t, in addition to data collection and data
transmission, the CUAV will harvest energy as well, and the
harvested energy in time slot t is denoted as Et

har.
Following the aforementioned work flow, the CUAV will

start at the charging station, implement the F-C-T procedure at
each time slot, and fly back to the charging station before the
remaining energy falling below a certain level Eth. Considering
the limited on-board energy, how to make the CUAV offload as
much traffic as possible while consuming less energy is critical.
Note that the environment of traffic, spectrum, and energy is
all temporally-spatially heterogeneous in the network, which
determines the data volume to be transmitted, the data volume
that can be transmitted, and the energy supply, respectively.
Hence, for offloading efficiency, it is necessary to jointly design
the trajectory, time allocation between the DC step and the DT
step, band selection for data transmission, and transmission
power control on each band, which, however, is non-trivial,
especially under the dynamic spectrum-energy environment.

C. Energy Consumption Model

The energy consumption of the CUAV is mainly composed
of two components associated with its propulsion and commu-
nication.

1) Energy Consumption on Propulsion: Recalling the of-
floading work flow of CUAV as shown in Fig. 2, for each time
slot t, the energy consumption on propulsion mainly contains
two parts. One is for flying during the flying phase T1 if the
CUAV chooses to move from the current area ît to another
one ĩt. According to the analytical energy model derived in
[34], the power consumption for flying can be calculated as (2)
shown on the top of the next page. In (2), P0 represents the
blade profile power when the CUAV keeps hovering, and it can
be modeled as

P0 =
ϕ

8
ρµβΩ3χ3, (3)

and P1 is the induced power when hovering, denoted as

P1 = (1 + κ)
G3/2

√
2ρβ

. (4)

Except for the speed vt = dt

T1
, all other parameters in (2),

(3), and (4) are constants. φ, µ, β, Ω, and χ are parameters
related to the blade rotor of CUAV. ω, ϕ, and G are all fuselage
size parameters. Moreover, ρ and κ are air density and induced

power factor, respectively. Due to the space limitation, these
parameters’ meanings can refer to [34].

Another consumption is for hovering during the offloading
phase for data collection and data transmission, which also
exists in the flying phase if the CUAV chooses to stay at the
current area in this time slot. By substituting vt = 0 into (2),
we can obtain the power consumption for hovering as

Ph = P0 + P1. (5)

As a result, for each time slot t, if the CUAV chooses to
fly to another area, the total energy consumption on propulsion
can be expressed as

Et
pro = P t

f · T1 + Ph · T2. (6)

Otherwise, its propulsion energy can be denoted as

Et
pro = Ph · (T1 + T2) . (7)

2) Energy Consumption on Communications: As for energy
consumption on communications, it also contains two com-
ponents related to spectrum sensing and data transmission,
respectively. In general, the power consumed for sensing is
much less than that for transmission, and τs ≪ τtr [35].
Therefore, we only consider the energy consumption on data
transmission here.

As for each ST period n during each offloading period m
in time slot t, we adopt a binary indicator qk,tn,m ∈ {0, 1} to
denote the state of band k. qk,tn,m = 0 represents the idle state,
otherwise, qk,tn,m = 1. For band k, since data can be transmitted
on it only when it is in the idle state, the energy consumption
for data transmission in time slot t on band k can be calculated
by

Ek,t
com =

M∑
m=1

N∑
n=1

(
1− qk,tn,m

)
P k,t
tr τtr. (8)

3) Total Energy Consumption: In summary, the total energy
consumption in time slot t can be calculated as

Et
con = Et

pro
+

K∑
k=1

bk,tE
k,t
com, (9)

where bk,t is a binary indicator to indicate whether the CUAV
accesses to band k in time slot t.

We denote the remaining energy at the beginning of time
slot t as Et. Considering the energy consumption and energy
harvesting in time slot t− 1, we can obtain that

Et = min
{
Et−1 − Et−1

con + Et−1
har , Emax

}
, (10)

where Emax represents the battery capacity of the CUAV.

D. Communication Model

First, we consider the data collection in each time slot t.
During the offloading phase T2, since the time proportion for
data collection is δt, we can derive the collected data volume
that to be transmitted in each offloading phase as

W t
c =

I∑
ĩt=1

zĩt ·R
t
ĩt
· δt · T2, (11)
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P t
f = P0

(
1 +

3(vt)
2

φ2

)
+ P1

√1 +
(vt)

4

4v04
− (vt)

2

2v02

1/2

+
1

2
ωρµβ(vt)

3
. (2)

where zĩt is a binary to denote whether the CUAV serves area
ĩt in time slot t.

Next, we show the data volume that can be transmitted from
the CUAV to BS. As for each time slot t, the data transmission
rate on band k can be described as

Rk,t
tr

= bk,t ·Bk,t · log2

(
1 +

gt
ub
· P k,t

tr

Bk,t · n0

)
, (12)

where Bk,t denotes the bandwidth of the band k accessed by
the CUAV, n0 is known as the power spectral density of additive
white Gaussian noise, and gt

ub
denotes the power propagation

gain between the CUAV and BS, which can be modeled as

gt
ub

= g0 ·
(
dtub
)−ξ

, (13)

where g0 and ξ denote the antenna related constant and the
path loss factor, respectively. Since we focus on the wireless
backhaul link between UAV and base station in an open field
environment with LoS connections, for simplicity, we employ
the path loss model for the strategy design. It would not affect
the key contribution of this work and the developed joint
strategy can also apply to the case if other channel models
are employed. Besides, dtub is the distance between the CUAV
and BS located in the center of the network, calculated as

dtub =

√(
xĩt

)2
+
(
yĩt
)2
. (14)

Recalling that qk,tn,m denotes the state of band k in time slot
t, therefore, the data volume transmitted by the CUAV in the
whole offloading phase can be modeled as

W t
tr =

M∑
m=1

N∑
n=1

K∑
k=1

(
1− qk,tn,m

)
· τtr ·Rk,t

tr
. (15)

The actual offloaded data traffic volume by the CUAV is
determined by the smaller one between the collected volume as
(11) and that can be transmitted as (15), which can be expressed
as

Wt = min
{
W t

c
,W t

tr

}
. (16)

to improve the for offloading efficiency, how to balance the
data collection and data transmission is of significant important,
which depends on the co-design of trajectory, time allocation,
transmission power, and band selection.

E. Problem Formulation

To achieve the efficient CUAV-assisted data offloading, we
jointly design the trajectory, time allocation, transmission pow-
er, and spectrum access for the CUAV to obtain the optimal
T3B joint strategy. Specifically, we take energy efficiency as
the objective, expressed as EEt = Wt

Et
con

. Then, we formulate

the energy efficiency optimization problem as

P1: max
{z,b,P,δ}

T∑
t=1

EEt {z,b,P, δ} (17a)

s.t.
∑

ĩt∈Ĩ∪ît

zĩt = 1, ∀t ∈ {1, 2, ...} , (17b)

∑
k∈K

bk,t = K̂, ∀t ∈ {1, 2, ...} , (17c)

Et ≥ Eth, ∀t ∈ {1, 2, ...} , (17d)

P k,t
tr ≤ Pmax, ∀k ∈ K̂, ∀t ∈ {1, 2, ...} , (17e)

0 < δt < 1,∀t ∈ {1, 2, ...} , (17f)

zĩt ∈ {0, 1} , ∀ĩt ∈ Î ∪ ît,∀t ∈ {1, 2, ...} , (17g)

bk,t ∈ {0, 1} , ∀k ∈ K, ∀t ∈ {1, 2, ...} . (17h)

z denotes which area the CUAV will fly to, b represents which
bands are selected to access, P indicates the transmission power
on the K̂ selected bands, and δ is the ratio of DC part and DT
part. (17b) means in time slot t the CUAV can only choose
one serving area. (17c) indicates that in time slot t the CUAV
accesses K̂ spectrums from K available spectrums. (17d)
constrains the remaining energy of the CUAV to ensure that
it can fly back to the charging station before its battery energy
is exhausted. Note that the terminal time T that the CUAV
returns to the charging station before its energy falls below a
threshold Eth is not a pre-defined deterministic constant, which
is closely related to the energy replenishment at each area. Since
the goal is to maximize the accumulative energy efficiency, the
environment on energy replenishment would be very important,
affecting both trajectory and communication strategies, to pro-
long the work time T .

For problem P1, to optimize the energy efficiency of the
CUAV, the exact information on traffic demand, spectrum
availability, and energy replenishment is required. However,
such information is usually uncertain and hardly obtainable
precisely in advance, which brings challenges to the traditional
model-based optimization approaches. Even those issues might
be approximately described by certain statistical models in
some cases, the formulated optimization problem is an NP-
hard problem due to the fractional objective function and the
binary decision variables. Furthermore, considering the time-
varying environment, if we rely on the traditional optimization
approaches, we need to re-solve the optimization problem
once the environmental information changes, which would be
inefficient, even might be infeasible to track the environment
dynamics.

Hence, considering the uncertain and dynamic feature on
traffic demand, spectrum availability, and energy replenishment,
in the next section, we develop a model-free DRL solution
for our T3B joint strategy (DRL-T3B), by which the CUAV
can autonomously learn the best decision under the uncertain
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environment in a trial-and-error way and adapt to the dynamics.
Specifically, this model-free solution enables the CUAV to
obtain the optimal strategy in a trial-and-error way, where the
CUAV pays more attention to exploration at the beginning to
learn the environment characteristics and adjusts its strategy
based on feedback from interaction with the environment. As
the time goes on, the CUAV will exploit the result from
exploration to obtain its optimal strategy3.

IV. A DEEP REINFORCEMENT LEARNING SOLUTION FOR
T3B JOINT STRATEGY

A. Reinforcement Learning Framework of the T3B Strategy
At each time slot t, the CUAV will first observe the current

state st, and execute action at according to a certain policy π.
Then it will obtain an immediate reward rt. The RL method
aims to make the CUAV find the optimal policy π∗ that maxi-
mizes the expected discounted cumulative reward described as

Q (st, at) = E

[ ∞∑
λ=0

γλrt+λ

∣∣∣∣∣ st, at
]
, (18)

which is also called Q-function. γ ∈ [0, 1] is the discount factor
reflecting the influence of future rewards. Next, with regard to
problem P1, we present the RL models as follows.

1) State: For any time slot t, we define the state observed
by the CUAV as

st =
{
ît;Et−1;ηt−1

}
, (19)

where ît indicates the current location of the CUAV in time
slot t. We put it as a state element because the traffic demand,
the spectrum availability, and the energy supply are all related
to it. Et−1 denotes the remaining energy of the CUAV at the
beginning of time slot t. By perceiving its remaining energy, the
CUAV will determine whether to continue to offload traffic or
return to the charging station. ηt−1 =

{
ηt−1
1 , ηt−1

2 , ..., ηt−1

K̂

}
contains the busy-idle ratio (BIR) information of K̂ selected
bands in the previous time slot t−1. It can reflect the uncertain
spectrum environment.

2) Action: At each time t, based on the state st, the CUAV
will execute an action at, which contains all the decisions in
the T3B joint strategy, i.e.,

at = {zt; δt;Pt;bt} . (20)

zt, δt, Pt, and bt denote the decision of trajectory, time allo-
cation, transmission power, and spectrum access, respectively.
Due to the δt and Pt, the action space is continuous, which
is intractable for the discrete control solution, such as deep
Q-network (DQN), double deep Q-network (DDQN), etc. To
tackle this issue, we divide the δt and Pt into several levels,
making the action space discrete. In each time slot t, the CUAV
will choose an action from the finite action space.

3Note that the DRL based solution may not reach the optimal strategy if the
network environment changes rapidly. Fortunately, as pointed in many research
works [36] [37], in general, the traffic demand and spectrum environment in the
telecommunication network usually follows certain statistic characteristics on a
large time scale and would not change rapidly. Therefore, the developed DRL
solution could help the CUAV capture the statistical pattern of the environment
to learn the best joint strategy, and adapt to the environmental dynamics.

3) Reward: The reward function can evaluate how good an
action at is chose in state st. An effective reward definition can
transform the hard-to-optimized objective into an accumulative
reward optimization. With regard to the T3B strategy, the goal
is to achieve energy-efficient traffic offloading. Therefore, the
reward can be well defined as

rt =
Wt

σ · Et
con

, (21)

where σ is a bias coefficient, with which the CUAV can achieve
a trade-off between offloaded traffic and energy consumption.
When the remaining energy is higher than the threshold Eth,
the CUAV can continue to offload traffic, so the reward can be
defined as its energy efficiency in time slot t.

B. Proposed DDQN-Based DRL Solution: DRL-T3B

As aforementioned, in RL the agent aims to find the optimal
policy π∗, which is a mapping from state to action to maximize
the Q-function as (18). According to the Bellman Equation, the
optimal Q-function can be modeled as

Q∗ (st, at) = Eπ∗

[
rt + γmax

a
Q∗ (st+1, a)

∣∣∣ st, at] , (22)

which can be achieved by iteratively updating the Q-function
as in (23) presented on the top of the next page. Since the
remaining energy Et−1 and BIR factor ηt−1 are continuous
variables, the classic RL algorithm built on a look-up table, e.g.,
Q-Learning, can be hardly adopted here, because the Q-table
to evaluate all state-action pairs cannot be constructed, which
is also known as the curse of dimensionality for Q-Learning
algorithm [38] [39]. Therefore, we develop a double deep Q-
network (DDQN) based DRL solution for the T3B joint strat-
egy, where deep neural network is adopted to approximately
evaluate Q-values, named DRL-T3B.

In DDQN, there are two deep neural networks (DNNs)
with the same structure, namely, main network Q with neuron
weight parameters θ and target network Q̂ with neuron weight
parameters θ̂. The main network is used to calculate the
evaluated Q-value Q (st, at;θ) and select the optimal action
as

a∗t+1 = argmax
a

Q (st+1,a;θ) . (24)

The target network is used to obtain the target Q-value ex-
pressed as

yDDQN
t

= rt + γQ̂
(
st+1, a

∗
t+1; θ̂

)
, (25)

which will be employed to construct the loss function as

L (θ) = E
[(
yDDQN
t

−Q (st, at;θ)
)2]

, (26)

using for training the main network. Comparing with the
traditional DQN, where the target Q-value is obtained based on
the maximum Q̂ along with the same policy for action selection,
calculated as

yDQN
t

= rt + γmax
a

Q̂
(
st+1, a; θ̂

)
, (27)

since DDQN decouples action evaluation from action selection,
it can mitigate the overestimation problem and achieve better
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Q (st, at)← Q (st, at) + α
{
rt + γmax

a
Q (st+1, a)−Q (st, at)

}
. (23)

Fig. 3. The framework of proposed DRL-based solution.

performance [40].
The training process is summarized in Algorithm 1. Note that

the data for training the DNN is obtained as the CUAV interacts
with environment. As shown in Fig. 3, after the initialization,
the CUAV will work following the F-C-T procedure as designed
in section III. At each time slot t, the CUAV will observe the
state st, i.e., its current location ît, remaining energy Et−1 and
the BIR information ηt−1, and then take an action at based
on ε-greedy policy, where it will randomly choose an action at
with the probability of ε, while choosing the optimal one with
the probability of 1− ε to determine the next served area, the
time allocation for DC and DT, the accessing bands, and the
transmission power allocated on them. By selecting actions via
the ε-greedy policy, the CUAV can achieve a trade-off between
exploration and exploitation. At the beginning, ε will be set to
a large value to enable the CUAV to explore the environment,
which will be gradually decreased as the algorithm converges.

After taking the action at, the CUAV can obtain a reward rt,
and get the next state st+1. This experience will be stored in a
repaly memory unit in the form of a tuple as {st, at, st+1, rt},
which will act as a piece of training data. As the CUAV repeats
the F-C-T procedure, the number of tuples in the memory unit
will keep growing. Once it exceeds the capacity of the replay
memory unit Jme, new tuples will replace the previous ones.
The DNN will be trained by sampling a mini-batch Jmi tuples

from the memory unit. Specifically, for each piece of tuple,
st and at will be fed into the main network to calculate the
evaluated Q-value. Then rt and st+1 are used to calculate the
target Q-value as (25). Finally, the evaluated Q-value and the
target Q-value will be used to construct the loss function as
(26), and the neuron weight parameters of the main network
θ will be updated by implementing a gradient step on the loss
function. In addition, neuron weight parameters of the target
network θ̂ are copied from the main network every F time
slots.

Remark 1: Note that although the fairness issue is not
considered during the strategy design, the CUAV would fly
around the network and serve different areas before hovering
on the best place. Specifically, at the beginning, it will fly
around the network to explore the environment. As the time
goes on, it will learn the environment and hover on the area with
the maximal energy-efficiency. When the environment changes,
e.g., the traffic demand of the serving area decreases, it will
re-explore the environment again by flying to different areas to
find the new hot spot and provide services accordingly. Thus,
for the proposed DRL-T3B strategy, although it attempts to
maximize the energy-efficiency, the CUAV would need to fly
among different areas to find the optimal one, especially under
the dynamic environment.

Remark 2: At each time slot t, the DRL algorithm is
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Algorithm 1 A DDQN-based DRL solution: DRL-T3B

1: Initialize: θ, θ̂, Jme, Jmi, γ, α, ε, Train=true.
2: for episode = 1,2,... do
3: Initialize state s1 =

{
î1;E0;η0

}
.

4: for t=1,2,... do
5: Observe current state st =

{
ît;Et−1;ηt−1

}
.

6: Choose action at = {zt; δt;Pt;bt} based on the state
st via the ε-greedy policy.

7: Execute the action at, obtain reward rt, update state
to st+1.

8: If episode mod 100 = 0 do
9: ε← max(0.99ε, 10−2).

10: end if
11: If Train do
12: Store {st; at; st+1; rt} in the memory unit. Count

the number of tuples in the memory unit as j.
13: If j ≥ Jme do
14: Use new tuple to update the oldest one.
15: end if
16: end if
17: if Train and j ≥ Jme do
18: Sample a mini-batch tuples to train the main network.
19: Use the main network to calculate the evaluated Q-

value and obtain the optimal action as (24). Use the target
network to calculate the target Q-value as (25).

20: Use the evaluated Q-value and the target Q-value to
construct the loss function L (θ) as (26).

21: Perform a gradient descent method on the loss
function to update the neuron weight parameters θ.

22: if t mod F = 0 do
23: Copy the main network neuron weight param-

eters to the target network as θ̂ ← θ.
24: end if
25: end if
26: end for
27: end for
28: Algorithm end

implemented in two phases, including an operating phase and
a training phase. Specifically, during the operating phase, the
cognitive UAV will employ the DNN to obtain an action at
based on the current state st. Then, it will execute this action
to interact with the environment and get an immediate reward
rt from the environment feedback. Meanwhile, the state will
turn to st+1. Such interaction experience will be stored in the
replay memory in the form of a tuple as {st, at, st+1, rt}. Then,
during the training phase, the DNN will be trained by sampling
a mini-batch tuples from the memory, and the parameters will
be updated accordingly. Note that it might not be necessary to
have the training phase in each time slot and the parameters of
the DNN could be updated every few time slots.

C. Computational Complexity of the Proposed DDQN-Based
DRL Solution

The computational complexity of the proposed DRL algo-
rithm mainly comes from two parts, namely, operating phase

and training phase [41] [42]. The operating phase is to using
the DNN to generate decisions for the T3B joint strategy. Its
computational complexity is determined by the architecture of
DNNs. We denote Nmax as the number of neurons for the
widest layer in a full collected DNN with U layers. Then,
according to [42], the complexity can be calculated as

O(Toper) = Q
(
U(Nmax)

2
)
. (28)

For the training phase, the computational complexity depends
on both forward and backward propagation in the deep neu-
ral networks (DNNs). As for the propagation algorithm, the
computational complexity is determined by the architecture of
DNNs. Considering a full connected DNN with U layers, where
the number of neurons in each layer u is Nu

neu. Then, according
to [41], the computational complexity of forward propagation
can be calculated as (29) shown on the top of next page.

Where N0
neuN

1
neu +

U∑
u=2

Nu
neuN

u−1
neu Nu−2

neu is the number of the

multiplications performed in a full connected DNN,
U∑

u=1
Nu

neu

is the number of activation function employed in DNN. The
computational complexity of the backward propagation can
be calculated as (30) shown on the top of next page. Where

O

(
U∑

u=2
Nu

neuN
u−1
neu Nu−2

neu + U(U − 1)

)
is the computational

complexity for the gradient operation within the backward
propagation. Then, the computational complexity of the training
phase can be expressed as

O(Ttrain) = O ((Tfwd + Tbwd)) . (31)

Suppose that there are ϖ1 iterations in training phases and
ϖ2 operating phases before convergence, the computational
complexity of the proposed DRL algorithm can be expressed
as

ODDQN = ϖ1O(Ttrain) +ϖ2O(Toper). (32)

TABLE I
HYPER-PARAMETERS OF DNNS IN THE PROPOSED DRL-T3B

Parameters Values

Number of hidden layers 3
Number of neurons in hidden layers [128,128,64]

Activation function ReLu
Memory unit size Jme 10000

Mini-batch size Jmi 300
Discount rate γ 0.9
Learning rate α 0.01

Update frequency of the target network F 200

V. SIMULATION RESULTS AND DISCUSSIONS

We take the campus of Dalian University of Technology as
the simulation scenario, where I = 10 candidate serving points
are set as in Fig. 4. The CUAV takes off from the charging
station located in the center of the network with the battery
capacity as Emax = 3250 mAh (corresponding to 152100J
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O (Tfwd) = O

(
N0

neu
N1

neu
+

U∑
u=2

Nu
neu

Nu−1
neu

Nu−2
neu

+
U∑

u=1

Nu
neu

)
, (29)

O (Tbwd) = O

(
2

U∑
u=2

Nu
neuN

u−1
neu Nu−2

neu + U(U − 1) +N0
neuN

1
neu

)
, (30)

Fig. 4. Simulation scenario and spectrum measurements.

(a) episode=1. (b) episode=1000. (c) episode=3000.

Fig. 5. The trajectory of the CUAV under CASE 1.

under 13V) and returns to it before energy falls below the
threshold Eth = 565 mAh (corresponding to 26442J under
13V), which is the largest energy consumption required for the
CUAV to return to the charging station from all the areas. We
call the whole serving cycle an episode. In addition, we divide
the CUAV-assisted network into 3 regions, and consider the
spectrum environment of different areas in each region to be
the same. We use SAM-60BX to measure real spectrum data
in area i = 2, area i = 5, and area i = 8, respectively. The
measurement work is carried out on four bands, ranging from

2576 to 2577 MHz, 2578 to 2579 MHz, 2580 to 2581 MHz, and
2582 to 2583 MHz, respectively. The measurement results can
be seen at the bottom of Fig. 4, in which the red part represents
occupied state. Assume that the CUAV can choose K̂ = 1
band from the K = 4 candidate bands, and communication
parameters are set as g0 = 4, ξ = 4. The bias coefficient
is set as σ = 1. In any time slot t, the optional action on
transmission power and time ratio of DC step and DT step
are discretized into Pt = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (in W)
and δt ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, respectively.
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(a) episode=1. (b) episode=1000. (c) episode=3000.

Fig. 6. The trajectory of the CUAV under CASE 2.

(a) episode=1. (b) episode=3000.

0 1000 2000 3000 4000 5000 6000 7000
episode

0

0.5

1

1.5

2

2.5

3

3.5

A
cc

um
ul

at
ed

 e
ne

rg
y 

ef
fic

ie
nc

y

105

CASE3
CASE1

(c) Accumulated energy efficiency in an episode under CASE 1
and CASE 3.

Fig. 7. The trajectory of the CUAV under CASE 3 and the accumulated energy efficiency in an episode under two cases.

Referring to [43]–[46], we set the hyper-parameters for DNN
as shown in Table I. To be specific, according to [43] and [44],
we set γ = 0.9 and α = 0.01. As for the DNN architecture, we
construct it with 3 hidden layers and take ReLu as the activation
function, where the neurons in each layer follow the settings
in [45] and [46].

To demonstrate that the CUAV can learn an energy-efficient
offloading strategy, we present the trajectory of the CUAV under
three cases with different hot spots. For CASE 1, we set the
mean of traffic demand distribution in area i = 3 and area
i = 5 as 10Mbps, respectively, representing two hot spots, and
that of other areas are set within the range of (0, 1) (in Mbps).
For CASE 2, we adjust the locations of the hot spots and set
the mean of traffic demand distribution in area i = 2 and area
i = 6 as 10Mbps, and that of other areas are also set within
the range of (0, 1) (in Mbps). In the two cases, the variance of
the traffic demand in each area is set to 1 Kbps. The energy
replenishment in each area in the two cases obeys the same
normal distribution with the mean as 1000 J and the variance
as 100 J. We present the trajectory guided by the DRL-T3B
strategy under the two cases in Fig. 5 and Fig. 6, respectively.
From the results, we can see that the trajectory of the CUAV can
effectively capture the hot spots. At the beginning, the untrained
CUAV flies in a random way as shown in Fig. 5(a) and Fig.

6(a). Then, as the time goes on, it will gradually converge to
the optimal strategy, i.e., visit the hot spots as shown in Fig.
5(c) and Fig. 6(c). In addition, we can aslo find that some hot
spots will not be served by the CUAV, such as area i = 5
in CASE 1 and area i = 2 in CASE 2. That is because of
the remote locations of these areas. If the CUAV flies there
to offload traffic, more propulsion energy consumption will be
required, making the energy efficiency reduced. In summary,
the proposed DRL-T3B strategy can help the CUAV capture
the traffic characteristics and tend to serve the hot spots with a
high energy efficiency.

Next, we increase the mean of traffic demand distribution of
area i = 5 in CASE 1 from 10 Mbps to 15 Mbps, regarded
as CASE 3, and present the trajectory of the CUAV under
CASE 3, as well as the accumulated energy efficiency in an
episode under these two cases in Fig. 7. Comparing Fig. 7(b)
and Fig. 5(c), we can see that the CUAV will change to serve
the remote hot spot i = 5 in CASE 3. This is because the
traffic demand in area i = 5 is much higher than that in area
i = 3. Although flying to area i = 5 requires more propulsion
energy, the CUAV can offload more traffic there. As shown in
Fig. 7(c), the offloading efficiency of the CUAV under CASE
3 is higher than that under CASE 1, indicating that the CUAV
guided by the DRL-T3B strategy can effectively learn the traffic
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Fig. 8. Accumulated energy efficiency in an episode when the traffic demand
changes.
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Fig. 9. Accumulated energy efficiency in an episode of different algorithms.

environment and adjust its trajectory accordingly.
Then, to demonstrate the advantage of DRL solution on the

adaption to the dynamic environment, we consider that the
network environment follows CASE 1 and changes to CASE 2
after 5000 episodes (the locations of the hot spots change after
episode 5000). From Fig. 8, it can be seen that the accumulative
energy efficiency converges gradually during the first 5000
episodes. At the episode 5000, since the network environment
changes, the previous optimal strategy becomes bad, making
the reward drop significantly. Fortunately, it will increase and
re-converge soon, indicating the adaption of the developed
algorithm. In other words, the proposed DRL-T3B strategy can
help the CUAV capture the environment characteristics with the
ability of adaptation to environment changes.

Next, we compare the developed DDQN based algorithm
with other existing algorithms, including greedy-policy, DQN,
Q-learning, and random policy. The greedy policy here is to
obtain the best strategy based on the statistical information
of the environment. To be specific, at each time slot t, we
discretize the state space and let the CUAV choose the action
that could maximize the expectation of the immediate reward
based on the state transition probability. Such a greedy policy
can be regarded as an ideal case because the accurate statistical
information is usually unavailable in practice, which will be
used as the benchmark to evaluate the effectiveness of the
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Fig. 10. Accumulated energy efficiency in an episode of different strategies.

proposed DDQN algorithm. We show the accumulated energy
efficiency within an episode under the T3B strategy solved
by these algorithms in Fig. 9. The parameter settings are
the same as in CASE 1. From Fig. 9, we can see that the
developed DDQN algorithm can achieve the performance of
the greedy policy, even better after the convergence, because
it considers the impact of the current action on the future
and does not rely on the transition probability model, which
is not accurate considering the continuous state space. Such
observation indicates that the proposed solution can help the
CUAV achieve the optimal offloading efficiency by learning
from the environment. Comparing with DQN algorithm, since
two neural networks are employed in DDQN to calculate the
target Q-value asynchronously, instead of only relying on one
neural network as in DQN, the issue of over estimation in DQN
can be avoided by DDQN, making it achieve better convergence
performance. As for the Q-learning algorithm, since it can only
solve the problem with discrete states, we redefine the state
space by discretizing the energy Et−1 and the BIR ηt−1 into
several levels. From the results, it can be seen that the Q-
learning algorithm is not applicable to the case with continuous
state space. Even if it might be able to construct a Q-table by
discretizing the continuous state space with small discretization
levels to approximate the optimal strategy, it would be very
difficult to update the table and may converge very slowly
because of the huge dimension of it. As a result, the developed
DDQN based DRL-T3B strategy can help the CUAV learn the
uncertain environment to obtain the best decision effectively.

To show the effectiveness of the joint design in the proposed
T3B strategy, we consider three other strategies where only par-
tial issues (band selection, time allocation, power control) are
considered as in [28]–[30]. For the fairness, we compare all the
strategies under the same DRL algorithm, and call them DRL-
T3, DRL-TBT, and DRL-T2B here, where band selection, time
allocation, and transmission power allocation is not considered,
respectively. Fig. 10 shows the accumulated energy efficiency
within an episode obtained by the four strategies. As shown in
Fig. 10, the proposed T3B joint strategy can assist the CUAV
to achieve higher energy efficiency compared to the other three
strategies. Since all the decisions on time allocation, power
control, and band selection will affect the balance between
data collection and data transmission, determining how much
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(a) episode=1. (b) episode=3000.
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Fig. 11. The trajectory of the CUAV under CASE 4 and the accumulated energy efficiency in an episode under two cases.

(a) episode=1. (b) episode=1000. (c) episode=3000.

Fig. 12. The trajectory of the CUAV under CASE 5.

data traffic that the CUAV can actually offload, the efficiency
will be reduced no matter which decision is not considered.
In other words, it is necessary to comprehensively address all
the issues and co-design the strategy on both trajectory and
communications, indicating the effectiveness of the proposed
joint strategy design.

Next, we study the effect of energy harvesting on the CUAV
trajectory. We increase the mean of energy replenishment
distribution of area i = 2 in CASE 2 from 1000 J to 10000
J, and call it as CASE 4. The CUAV’s trajectory under CASE
4 and the accumulated energy efficiency in an episode under
these two cases can be seen in Fig. 11. Comparing Fig. 11(b)
and Fig. 6(c), we can observe that the CUAV will prefer to
serve area i = 2, instead of area i = 6 as shown in Fig. 6(c),
because there exists more energy to harvest. The increment on
harvested energy will replenish more energy to the CUAV’s
battery, which can prolong its work-time. Hence, the CUAV
can implement the F-C-T procedure in a hot spot more times
in one episode, resulting in a higher energy efficiency as shown
in Fig. 11(c). As a result, we can conclude that the proposed
DRL-T3B strategy can not only help the CUAV learn the
traffic environment but also the energy environment, so that
it can serve the areas with high traffic demand and energy
replenishment to achieve higher energy efficiency.

Finally, we investigate the effect of spectrum availability on
the CUAV’s trajectory. We set the mean of traffic demand
distribution in area i = 3 and area i = 8 to 9Mbps and
10Mbps, respectively, and that of the other areas are set within
the range of (0,1) (in Mbps), and call it CASE 5. From Fig.
12(c), we can observe that the CUAV chooses to serve area
i = 3 despite there has lower traffic demand, that is because
the spectrum environment in area i = 8 is very poor. From the
bottom of Fig. 4, we can find that the spectrums in area i = 8
are always occupied, which means that there exists insufficient
spectrums for data transmission. Therefore, although the CUAV
can collect more traffic in area i = 8, the limited capability of
the wireless backhaul link built on the insufficient spectrums
can hardly transmit these traffic. Whereas, in area i = 3, since
most spectrums are in the idle state, the actual offloaded traffic
is much higher. This indicates that to achieve high offloading
efficiency, it is important to balance the data collection (related
to traffic demand) and the data transmission (related to spectrum
availability). Since the proposed DRL-T3B strategy can help the
CUAV capture the uncertain traffic and spectrum environment,
it can fly to the hot spot with sufficient spectrums to offload
traffic effectively by balancing the data collection and data
transmission.
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VI. CONCLUSIONS

In this paper, to optimize energy efficiency of the CUAV-
assisted network, we propose a T3B joint strategy. By jointly
optimizing trajectory design, time allocation, power control
and band selection, the CUAV can achieve an optimal energy
efficiency. Considering the heterogeneous and uncertain traffic
demand, energy replenishiment, and spectrum availability, we
develop a DRL solution to make the CUAV learn the best
decision autonomously. Simulation results have indicated that
the effectiveness of proposed DRL-T3B joint strategy.
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