About
17
Publications
19,742
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,784
Citations
Publications
Publications (17)
While neural networks are highly effective at learning task-relevant representations from data, they typically do not learn representations with the kind of symbolic structure that is hypothesized to support high-level cognitive processes, nor do they naturally model such structures within problem domains that are continuous in space and time. To f...
We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynami...
We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynami...
Using Intel's Loihi neuromorphic research chip and ABR's Nengo Deep Learning toolkit, we analyze the inference speed, dynamic power consumption, and energy cost per inference of a two-layer neural network keyword spotter trained to recognize a single phrase. We perform comparative analyses of this keyword spotter running on more conventional hardwa...
Using Intel's Loihi neuromorphic research chip and ABR's Nengo Deep Learning toolkit, we analyze the inference speed, dynamic power consumption, and energy cost per inference of a two-layer neural network keyword spotter trained to recognize a single phrase. We perform comparative analyses of this keyword spotter running on more conventional hardwa...
We use a spiking neural network model of working memory (WM) capable of performing the spatial delayed response task (DRT) to investigate two drugs that affect WM: guanfacine (GFC) and phenylephrine (PHE). In this model, the loss of information over time results from changes in the spiking neural activity through recurrent connections. We reproduce...
We describe a large-scale functional brain model that includes detailed, conductance-based, compartmental models of individual neurons. We call the model BioSpaun, to indicate the increased biological plausibility of these neurons, and because it is a direct extension of the Spaun model \cite{Eliasmith2012b}. We demonstrate that including these det...
Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo...
We present a spiking neuron brain model implemented in 318,870 LIF neurons organized with distinct cortical modules, a basal ganglia, and a thalamus, that is capable of flexibly following memorized commands. Neural activity represents a structured set of rules, such as "If you see a 1, then push button A, and if you see a 2, then push button B". Sy...
Modeling the Brain
Neurons are pretty complicated cells. They display an endless variety of shapes that sprout highly variable numbers of axons and dendrites; they sport time- and voltage-dependent ion channels along with an impressive array of neurotransmitter receptors; and they connect intimately with near neighbors as well as former neighbors w...
We present a model of sym ol manipulation implemented usin! spi"in! neurons and closely tied to the anatomy of the corte#, asal !an!lia, and thalamus$ The model is a !eneral% purpose neural controller &hich plays a role analo!ous to a production system$ 'nformation stored in corte# is used y the asal !an!lia as the asis for selectin! et&een a set o...
A fundamental process for cognition is action selection: choosing a particular action out of the many possible actions available. This process is widely believed to involve the basal ganglia, and we present here a model of action selection that uses spiking neurons and is in accordance with the connectivity and neuron types found in this area. Sinc...