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Abstract 
Gradient grained metals whose microstructure is characterized by a spatially graded grain size 

distribution show a better strength-ductility combination than their homogeneous counterparts. 
Kinematic hardening associated with geometrically necessary dislocations (GNDs) is considered to 
be a dominant strengthening mechanism in gradient grained metals. However, the precise kinematics 
of GND accumulation and the nature of the back stress fields remain unclear, restricting the 
understanding of their deformation mechanisms. In this work, a nonlocal crystal plasticity model 
which explicitly accounts for the interaction between dislocations and grain boundaries is developed. 
The nonlocal feature is achieved by introducing a flux term to account for the spatial redistribution of 
dislocations due to their motion. In addition, back stress produced by the spatial variation of GND 
density introduces an explicit internal length scale into the model. The nonlocal nature of the model 
on the slip system level enables the direct investigation of strain gradient effects caused by internal 
deformation heterogeneities. Furthermore, the interaction between dislocations and grain boundaries 
leads to the formation of pileups near grain boundaries, which is key to studying the grain size 
effects in polycrystals. Finite element implementation of the model for polycrystals with different 
grain sizes quantitatively captures the grain size effect. Simulation results of gradient grained 
materials and their homogeneous counterparts demonstrate that smaller grains lead to higher GND 
density and enhanced back stress. Small grains significantly contribute to the GND hardening and 
GND-induced kinematic hardening in gradient grained metals. This investigation helps to understand 
the underlying strengthening mechanisms of gradient grained metals, and the model can be readily 
applied to other kinds of heterogeneous materials. 
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1. Introduction 

In recent years, inspired by the gradient structure in some biological materials selected by 
nature, gradient grained materials have been fabricated and shown to have many mechanical 
properties superior to their homogeneous counterparts, such as a superior strength-ductility synergy, 
improved fatigue and fracture resistance and enhanced frictional performance (Jiang et al., 2022a; Li 
et al., 2020a; Li et al., 2020b; Lu, 2014; Ma and Zhu, 2017; Wu and Zhu, 2021; Zhu and Wu, 2023). 
For example, Fang et al. (2011) showed that the yield strength of a gradient grained copper was 
about twice that of the coarse-grained one while preserving the ductility. Chen et al. (2020) reported 
that the coefficients of friction of a gradient nano-grained Cu-Ag alloy could be comparable to that 
of the nano-grained metal and remain unaltered during multiple repeated sliding. Both the low-cycle 
and high-cycle fatigue life were shown to be improved by introducing gradient microstructure in 
TWIP steel (Shao et al., 2019; Shao et al., 2017). 

As a typical structural material, the microstructure of gradient grained material dominates the 
deformation mechanisms and the resulting macroscopic mechanical response (Ding et al., 2018; 
Jamalian and Field, 2020; Li et al., 2020a; Lin et al., 2018; Qin et al., 2022). Therefore, 
understanding the deformations mechanism is the key to correlating the microstructure with the 
mechanical properties. Many studies have revealed that geometrically necessary dislocations (GNDs) 
induced by the graded microstructure dominate the micromechanics of gradient grained materials 
subjecting to various loading conditions. During uniaxial tension, the nonuniform deformation-
induced GNDs contribute to the strain hardening of gradient structured materials through forest 
hardening (Cheng et al., 2018; Wu et al., 2014a). In sliding contacts, the GNDs could result in 
localized microstructure change, which will influence the coefficients of friction and surface integrity 
of the crystalline materials (Xu et al., 2021). For gradient grained material under cyclic loading-
unloading, the accumulated GNDs in the border demarcating the gradient nano-grained layer and 
coarse-grained core affect the local stress concentration/strain localization behavior and thus affect 
their fatigue life (Shao et al., 2019; Shao et al., 2017).   

Apart from the aforementioned mechanisms, other strengthening and strain hardening 
mechanisms related to GNDs have attracted wide attention due to the fact that they are basic but 
important for understanding the strength-ductility synergy of gradient grained materials (Hasan et al., 
2019; Moering et al., 2016; Wu et al., 2020; Wu et al., 2014b; Yang et al., 2016; Yang et al., 2015; 
Zhao et al., 2019; Zhao et al., 2020). Specifically, kinematic hardening (originating from back stress, 
which characterizes the movement of the center of the yielding surface within the paradigm of 
conventional plastic mechanics) was revealed to be the dominant hardening mechanism (Cheng et al., 
2022; Cheng et al., 2018; Liu et al., 2018; Wang et al., 2018; Yang et al., 2016). For example, in a 
gradient grained interstitial-free steel, the back stress was found to contribute about 35% to the flow 
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stress (Yang et al., 2016). In a gradient nanotwinned metal, the back stress increased rapidly and 
saturated in the early deformation stage ( 1% 2%ε = − ); for a sample with an ultimate strength of 
525 MPa, the ultimate back stress level was as high as 350 MPa (Cheng et al., 2018). Although 
kinematic hardening was considered a dominant strain hardening mechanism in gradient grained 
material, the nature of the back stress fields remains unclear and requires further study.  

The graded polycrystals in gradient grained materials lead to deformation heterogeneities at two 
scales. At the grain scale, GNDs accumulated at grain boundaries due to the slip discontinuous 
among grains. These GNDs, on the one hand, act as obstacles for the movement of dislocations and 
thus contribute to forest hardening (a type of isotropic hardening) (Ashby, 1970); on the other hand, 
their spatially heterogeneous distribution gives rise to type II (inter-granular) back stress (Feaugas 
and Haddou, 2003; Zecevic and Knezevic, 2015; Zecevic et al., 2016), which impede further 
dislocation motion and provide kinematic hardening (Zhu and Wu, 2023). At the sample scale, 
nonuniform deformation arises due to the strain partition between coarse-grained and fine-grained 
layers (Jamalian and Field, 2020; Li et al., 2017; Wu et al., 2014a; Yang et al., 2015), especially for a 
sheet specimen, giving rise to GNDs and type I back stress, also causing isotropic hardening and 
kinematic hardening. In this work type III (intra-granular) back stress is not involved due to the 
limited strain range discussed. Currently, the prevailing view for the nature of kinematic hardening in 
gradient grained materials is the type I back stress. In this work, we also use the term “GND-induced 
kinematic hardening” to represent the kinematic hardening since it can imply the physical origin of 
the kinematic hardening behavior. For example, Wu et al. (2014a) experimentally observed that 
during the tensile deformation of a gradient grained sheet specimen, the early necking instability of 
the fine-grained layer introduced nonuniform lateral deformation, which should be accommodated by 
GNDs. These GNDs, in turn, were considered the cause of a high level of back stress. However, it 
was shown that during the tension of cylindrical samples in which the coarse-grained and fine-
grained layer deformation is fairly compatible, the back stress is also very strong (Lee et al., 2019a; 
Lee et al., 2019b; Liu et al., 2018; Zhao et al., 2021). Therefore, the underlying mechanisms for back 
stress warrant further clarification.  

To study the deformation mechanisms of metallic materials, molecular dynamics (MD) and 
discrete dislocation dynamics (DDD) should be preferred candidates (Fang et al., 2018; Jiang et al., 
2019; Lu et al., 2022; Zhou et al., 2018). However, the attainable model sizes, grain sizes, and grain 
numbers are usually too restricted to match the situations in an experiment because of the heavy 
computational burden. For example, in MD simulations of gradient grained materials, the largest 
grain size was 105 nm (Li et al., 2015), much less than the grain size of the substrate in a real 
gradient grained sample. Therefore, the GB-related deformation mechanisms revealed by the MD 
simulations may differ from those in real samples. In particular, the effects of dislocation pileup 
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specifically concerned in heterostructured materials (Wu and Zhu, 2017; Zhu et al., 2021; Zhu and 
Wu, 2019) can not be well studied through MD. Furthermore, in DDD simulation, the plastic 
deformation was usually constrained to be smaller than 3%, restricting the revealing of the strain 
hardening behavior (Lu et al., 2022). In comparison, the crystal plasticity finite element method 
(CPFEM) usually serves as an advanced tool to investigate the effects of grain size and grain 
orientation on larger scales while still directly representing the spatio-temporal dynamics of 
dislocation-related deformation processes (Roters et al., 2019).  

CPFEM based on either local or nonlocal constitutive models have been developed to study the 
grain size-dependent issues in metallic materials; some were also applied to gradient grained 
materials. The corresponding local crystal plasticity (CP) model can be classified into two types. The 
first type of local CP model captured the grain size effect by explicitly introducing a grain size 
dependent equation (e.g., Hall-Petch relation) in the constitutive law (Lu et al., 2019a; Lu et al., 2020; 
Wang et al., 2017; Weng, 1983; Zeng et al., 2015). This kind of model is direct and also easy to be 
implemented numerically. Moreover, a quantitative relationship between the microstructure and 
macroscopic mechanical response can be obtained. However, its rationality depends on the spatial 
resolution on which one envisages a constitutive model for implementation. For example, in the 
work of (Lu et al., 2019b; Lu et al., 2020) to deal with the relation between grain size and the 
macroscopic response of gradient grained material containing a large number of grains, a 
homogenization scheme is adopted, which allocates a grain cluster (e.g., 50 grains) to each material 
point. In these simulations, the direct introduction of the Hall-Petch relation would be acceptable if it 
is added (at the material point level) after the averaging. On the contrary, when the models are with a 
sub-grain resolution to represent the behavior of each material point within individual grains, the 
influence of grain size is a macroscopic result and should be an outcome rather than an input of the 
model, as also been pointed out by Haouala et al. (2018).  

The second type of local CP model considered the deformation incompatibility induced slip 
rate/dislocation density differences in the region near and away from GB to represent the physics at 
GB (e.g., dislocation pileup) (Agius et al., 2022; Ghorbani Moghaddam et al., 2017; Haouala et al., 
2020a; Haouala et al., 2018; Jiang et al., 2022b; Liu et al., 2020; Mayeur et al., 2015; Rubio et al., 
2019). Thus the constitutive properties in regions near the GB are modified, and the GB 
strengthening in polycrystals can be well reflected. The advantages of this kind of model lie in that 
the properties of the grain boundary affected region are determined based on the dislocation pileup 
mechanism associated with crystallographic relationships between adjacent grains, which endow the 
models with more physical meanings, and sometimes even the morphology of the grain can be 
recognized (Agius et al., 2022). However, the grain boundary affected region usually requires an 
artificial length-scale parameter to characterize the region size, which is defined from different 
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viewpoints by different research groups. Therefore, this length-scale parameter, along with how the 
constitutive relations of the grain boundary affected region are defined, will influence the modeling 
results. In addition, the GB properties (e.g., GB strength) can not be considered in these models. 

The nonlocal gradient CP model may also be classified into two categories. The first type is 
based on strain gradient plasticity theories (Acharya et al., 2003; Cheong et al., 2005; Dunne et al., 
2007; Evers et al., 2004a, b; Evers et al., 2002; Gurtin, 2002; Haouala et al., 2020b; Lebensohn and 
Needleman, 2016; Lyu et al., 2017; Lyu et al., 2015; Ma et al., 2006), in which the GND density 
resulting from the inhomogeneous nature of plasticity in polycrystals can be calculated directly. 
Lower-order (Acharya and Beaudoin, 2000; Cheong et al., 2005) and higher-order (Bargmann et al., 
2010) strain gradient plasticity models have been proposed to study the grain size effect in 
polycrystals. The lower-order models are established within the framework of classical continuum 
mechanics, where extra hardening due to the plastic slip gradient (or GND density) is involved in the 
constitutive law. The numerical approach for solving the constitutive equations is the same as that for 
the local models, except that the gradient term needs to be solved using ad-hoc methods, such as 
utilizing the derivations of the shape functions within a single element (Dai, 1997). Recently, Xu 
(2021) proposed a new approach to calculate the GND density based on a nonlocal domain integral 
to accurately represent the dislocation density near the crack tip. Compared to the lower-order 
models, additional higher-order stresses and boundary conditions are required in the higher-order 
models, which make them numerically more complicated and computationally more expensive 
(Gurtin, 2002). In both lower-order and higher-order strain gradient plasticity models, intrinsic 
material length scale(s) are introduced for dimensional consistency. Unfortunately, the values of the 
intrinsic material length scale(s) are usually obtained by experimental fitting and their physical 
meanings are still under discussion (Liu and Dunstan, 2017; Voyiadjis and Song, 2019; Zhao et al., 
2022). Moreover, in some small-scale experiments where strain gradients are absent, such as the 
uniaxial compression of submicron/micron pillars (Greer et al., 2005), size effects were also 
observed, which pose issues on the strain gradient plasticity models to represent the physics of 
plasticity fully.  

The second type of nonlocal CP model is established on the continuum dislocation dynamics 
(CDD) model, which describes the generation, annihilation and transportation of dislocations based 
on physical averages of the kinematics and dynamics of dislocations (Arsenlis et al., 2004; Groma et 
al., 2003; Hochrainer et al., 2014; Leung et al., 2015; Lim et al., 2011; Luscher et al., 2016; Mayeur 
et al., 2016; Reuber et al., 2014; Wulfinghoff and Böhlke, 2015). The transportation of dislocations 
among material points due to slip renders the model nonlocal. Compared to the aforementioned local 
models and nonlocal strain gradient-type models, a continuum representation of dislocation systems 
is achieved in the CDD-based CP model, by which various size effects in small-scale plasticity 
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caused by different mechanisms such as dislocation pileup, strain gradient and source limitation can 
be accounted for (Hochrainer et al., 2014). Meanwhile, no arbitrary constitutive equations or 
parameters are required to represent the corresponding mechanisms. The CDD theory bridges the gap 
between the discrete dislocation dynamics and the dislocation density-based CP model. Therefore, 
the scope of application of the CDD-based CP model and its computational efficiency usually lies 
between the discrete dislocation dynamics approach and conventional dislocation density-based 
CPFEM. 

The capability of the models mentioned above in describing/predicting the grain size effect has 
been widely confirmed. However, compared to the local models that usually need ad-hoc handling 
on the GB, the nonlocal model naturally captures the extra hardening due to inhomogeneous 
plasticity (Voyiadjis and Song, 2019). Specifically, the CDD-based model physically describes the 
collective behavior of dislocations, which is an ideal tool for revealing the deformation mechanisms 
of metallic materials rather than mimicking the stress-strain relations. For gradient grained materials 
concerned in this work, only local models explicitly including the grain size were established to 
describe their macroscopic mechanical response (Lu et al., 2019b; Wang et al., 2017; Zeng et al., 
2015). It stimulates this work to conduct a parsimonious modeling with minimum number of 
artificial parameters to clarify the nature of the back stress fields in gradient grained material. 
Specifically, no grain-size-related equations will be introduced into the model. Compared to existing 
nonlocal CP models, a major contribution of this work is that a GB model based on the dislocation-
GB interaction mechanisms revealed by experiments or MD is naturally incorporated into the 
CPFEM framework facilitated by the dislocation transportation in CDD model, which enables us to 
study the GB-related problems without introducing any other ad-hoc equations to describe the 
dislocation density/slip rate change in the grain interior due to dislocation-GB interactions. 

The rest of this paper is organized as follows: In section 2, constitutive equations and 
dislocation evolution laws are presented in a finite-strain framework. In section 3, the developed 
model is implemented into the Düsseldorf Advanced Material Simulation Kit (DAMASK) (Roters et 
al., 2019). Particular focus is placed on the dislocation-GB interaction in the current CP framework. 
In section 4, homogeneously-grained materials with different grain sizes and gradient grained 
materials are simulated, and the results are analyzed in detail and compared with experimental results. 
Finally, conclusions are presented in Section 5. 

2. Constitutive model  

2.1. Continuum mechanics framework 

In the finite-strain description of elastic-plastic problems, the deformation kinematics is usually 
described in three configurations, i.e., the reference configuration, the intermediate configuration and 
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the current configuration. The deformation gradient tensor can be decomposed into an elastic part 
and a plastic part through the following multiplicative decomposition: 

                                                                                   e p= ⋅F F F .                                                                            (1) 

The elastic part Fe describes the elastic lattice distortion or the rigid-body rotation, and the plastic 
part Fp describes the plastic deformation induced by crystallographic slip, twinning, phase 
transformation, etc. Fe maps a material point from the intermediate configuration to the current 
configuration, Fp maps a material point from the reference configuration to the intermediate 
configuration. 

In the intermediate configuration, the constitutive relation can be formulated in terms of the 

second Piola-Kirchhoff stress S  and the elastic Green-Lagrange strain tensor eE  as 

                                                            ( ) ( )T1 1
e e e edet :− −= ⋅ ⋅ =S F F σ F C E ,                                                      (2) 

where σ  is the Cauchy stress tensor, C  is the fourth-order elastic stiffness tensor, eE  is defined as  

                                                                         ( )T
e e e

1
2

= ⋅ −E F F I .                                                                      (3) 

In this work, dislocation glide is the mechanism controlling plastic deformation. The driving 
force for dislocation motion is the resolved shear stress on the respective slip system. Besides, back 
stress induced by the nonuniform spatial arrangement of dislocation may impede dislocation motion. 
So, the effective resolved shear stress on the slip system α  is taken to be  

                                                                      ( ) b:α α α ατ τ= ⊗ −S s n ,                                                                   (4) 

where αs  represents the slip direction and αn  is the normal vector of the slip plane. The expression 

for back stress b
ατ  will be given later.  

The shear rates αγ  produced by the slip of dislocations on all slip systems slip1, ... , Nα =  

contribute to the plastic velocity gradient additively: 

                                                                              
slip

p
1

N
α α α

α

γ
=

= ⊗∑L s n ,                                                                   (5) 

which results in the change of the plastic deformation gradient, 

                                                                                   p p p= ⋅F L F .                                                                           (6) 

The shear rate is described by the Orowan equation (Orowan, 1934),                                                                                                                                                                                                                                                                 

                                                                               p p
p

v bα α αγ ρ= ∑ ,                                                                         (7) 
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where αρ p  is the mobile dislocation density of type p (which will be defined in section 2.2), α
pv  is the 

dislocation velocity, b is the magnitude of the Burgers vector b. In the following, the evolution of 
dislocation density and the dislocation velocity will be formulated. 

2.2. Dislocation structure and dislocation density evolution 

In this dislocation density-based model, the dislocation structure is characterized by the signed 
edge and screw dislocations and edge and screw dislocation dipoles, as defined by (Reuber et al., 

2014). { }e, s∈c  is used to distinguish the dislocation character of either edge or screw; 

{ }e , e , s , s∈ + − + −p  further identifies the dislocation polarity. As two examples, e
αρ +  denotes the 

density of single positive edge dislocations on slip system α , e,dip
βρ  is the density of edge dislocation 

dipoles on slip system β . 

The total dislocation density on the slip system α  is,  

e s
α α αρ ρ ρ= + .                                                                 (8) 

The total dislocation densities of edge and screw type on the same slip system are 

e e+ e e,dip= +α α α αρ ρ ρ ρ−+  and s s+ s s,dip=α α α αρ ρ ρ ρ−+ + , respectively. With the above definitions, GND densities 

can be readily calculated as the absolute value of the excess densities of edge and screw characters: 

      
GND,e e+ e

GND,s s+ s ,

,α α α

α α α

ρ ρ ρ

ρ ρ ρ

−

−

= −

= −
                                                           (9) 

The total dipole density is the sum of the edge part and screw part: 

                                                                            dip e,dip s,dip
α α αρ ρ ρ= + .                                                           (10) 

Dislocation dipoles contain two dislocations with the same character but opposite signs. Thus, 
the formation of dipoles does not change the total dislocation density. Dipoles are stable if the 
distance between the two dislocations (the dipole height) does not exceed the upper bounds (Reuber 
et al., 2014): 

                                                                             
( )e

s

ˆ
8 1

ˆ
4

Gbd

Gbd

α
α

α
α

π υ τ

π τ

=
−

=
,                                                                 (11) 

where G is the shear modulus, υ  is Poisson’s ratio. Otherwise, the dipole will dissociate under the 

applied stress. On the other hand, the dipole height should not be smaller than the lower bounds ed


α  
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and sd


α , under which two dislocations in the dipole will annihilate spontaneously.  

 

Fig. 1. Schematic of a dislocation loop on its slip plane with slip direction αs  and normal αn . 

1 2 3, ,l l l  denote the basis of the lattice coordinate system; 1 2 3, ,e e e  are the basis of the slip system 

triad. 
 

Fig. 1 shows the convention adopted in this work for the signs of dislocations, the slip direction 
αs  and the slip plane normal αn . In Fig. 1, two coordinate systems are defined: 1 2 3, ,l l l  denote the 

basis of the lattice coordinate system; 1 2 3, ,e e e  are the basis of the slip system triad. The expansion 

of the dislocation loop causes a positive shear, and the glide directions of dislocations with different 
characters are 

e+

e

s+

s

α α

α α

α α

α α

−

−

=

= −

= −

=

m s
m s
m t
m t

,                                                                       (12) 

where α α α= ×t s n . The glide direction of a positive edge dislocation is consistent with the Burgers 

vector direction, i.e. b=s b . 

In the conventional dislocation density-based CP model, only dislocation multiplication and 
annihilation are considered. However, apart from the multiplication and annihilation of dislocations, 
dislocation behavior also includes the transformation between dislocation dipoles and monopolar 
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dislocations (change of state) and the transport of dislocations within the material. Therefore, in this 
work, the latter two mechanisms are also included. The dislocation density evolution laws in the 
following subsections are based on the work of Reuber et al. (2014), which we modify to remove 
some internal inconsistencies in some rate equations and to reduce the number of parameters with no 
physical meanings.  

2.2.1 Dislocation multiplication 

In the present work, dislocation generation is accomplished by loop expansion, as shown in Fig. 
1. Considering that the slip of edge and screw dislocations contribute equally to the generation rates, 
the multiplication rate is given as  

( ) ( )e e s s
mult f

1

α α α α

α α
γ γ γ γ

ρ ρ
+ − + −+ + +

=p bk

   

 ,                                                  (13) 

assuming that the dislocation mean free path is controlled by forest dislocations, where k1 is a 
dimensionless scaling constant correlating the mean free path of dislocations with the forest 

dislocation spacing f1 αρ . The forest dislocation density is given by 

( )
slip

f e s
=1

= +
N

α β α β β α β

β

ρ ρ ρ⋅ ⋅∑ n t n s .  

2.2.2 Change of dislocation state 

During the plastic deformation, dislocations may change their state. For example, dislocations 
of opposite signs can form dipoles, and dipoles will dissociate when the resolved shear stress is large 
enough to separate them. A dipoles is formed as two opposite dislocations capture each other. The 

capture occurs once an opposite-sign dislocation comes into the capture distance ˆ2 cdα  around the 

captured dislocation. During the formation of dislocation dipoles, the losses of monopolar dislocation 
densities proposed by Reuber et al. (2014) are modified to be, 

                                               ( )sin dip sin dip

ˆ2 c
c c c c c c

d
b

α
α α α α α αρ ρ ρ γ ρ γ→ + → − + − − +

−
= = +    .                                         (14) 

The two terms in the bracket on the right-hand side of Eq. (14) describe reactions of two mobile 

dislocations of opposite signs. Note that dipoles with a height less than cd α


 will not form; this 

mechanism will be considered in the dislocation annihilation part in the next section. Since the 
formation of dislocation dipoles does not change the total dislocation density (in this work, the total 
dislocation density is calculated in the manner of counting one dipole as two dislocations), the 
generation rate of dipole density is given by 
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                                                           ( )sin dip ,dip

ˆ4 c
c c c c c

d
b

α
α α α α αρ ρ γ ρ γ→ + − − += +   .                                                 (15) 

Based on Eq. (11), with the increase of resolved shear stress on the slip plane, the upper bounds 
for the stable dislocation dipoles will decrease, leading to the dissociation of dipoles whose heights 
are between the “old” bounds and “new” bounds. If we assume the dipoles are distributed equally 
over the available heights, the changes in dipole density and mobile dislocation density due to the 
change of dipole heights are written in rate forms as,  

                                                          
dip sin ,dip ,dip

dip sin dip sin ,dip

ˆ
ˆ

ˆ1
ˆ2

c
c c

c c

c
c c c

c c

d
d d

d
d d

α
α α

α α

α
α α α

α α

ρ ρ

ρ ρ ρ

→

→ + → −

=
−

= = −
−









 



,                                              (16) 

where ( ),old
ˆ ˆ ˆ 0c c cd d d d dtα α α= − <  and ,old

ˆ
cdα  denotes the “old” dipole height. If ˆ 0cdα > , the dipoles 

stay stable and the dislocation densities will not change. 

2.2.3 Dislocation annihilation 

The annihilation of dislocations can be classified into athermal and thermally activated ones. In 
this work, we aim to study the mechanical behavior of gradient grained materials at room 
temperature; thus, the thermally activated annihilation, such as the out-of-plane motion (climb) of 

edge dislocations, is ignored. Dipoles of height less than the stable height cd α


 annihilate 

spontaneously. This process does not require thermal assistance and is different for edge and screw 

dipoles. Edge dipoles annihilate directly when the dipole heights are lower than cd α


; while screw 

dipoles annihilate by cross slip, as shown in Fig. 2. Both processes can be expressed as (Reuber et al., 
2014; Roters, 2011), 

                                                           ( )athAnn ,dip
22 c

c c c c c
d
b

α
α α α α αρ ρ γ ρ γ+ − − += − +



   .                                              (17) 

 

 
Fig. 2. Schematic of the annihilation of screw dipoles. Edge jogs are generated after the annihilation 
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of screw dipoles. 
 

The annihilation of edge dipoles will leave vacancies or interstitials. In contrast, the collapse of 

screw dipoles by cross slip will deposit edge jogs on the collinear slip system β , as shown in Fig. 2. 

The length of the edge jog is equal to the average half the annihilation distance, 

s
jog 2

dl
α

=


.                                                                            (18) 

Assuming that the segment length of screw dipoles is in direct proportion to the mean forest 
dislocation spacing, the change of edge dislocation density due to the destruction of screw dipoles is, 

                                                        cross-slip s,dip
jog e+ jog e 2 jog f2

k l
α

β β ρ
ρ ρ ρ−= = −



  ,                                                 (19) 

where 2k  is a proportionality factor, cross-slip s,dip athAnn s,dip
α αρ ρ=  . Besides, moving dislocations may 

eradicate one of the two dislocations forming a dipole, which releases the other dislocation (hence 
the mobile dislocation densities are unchanged) but leads to a net decrease in the dipole density, 

( ) ( )athAnn-KO ,dip ,dip

ˆ2 c c

c c c c

d d

b

α α

α α α αρ ρ γ γ− +

−
= − +



                                               (20) 

2.2.4 Dislocation fluxes 

The key point of this model, which makes it a nonlocal one, is the consideration of dislocation 
fluxes, i.e., the transport of dislocations among material points based on the kinematics of 
dislocations. Flux terms have been introduced into dislocation density-based CP theory by many 
researchers (Arsenlis et al., 2004; Hochrainer et al., 2014; Leung et al., 2015; Lim et al., 2011; 
Luscher et al., 2016; Mayeur et al., 2016; Wulfinghoff and Böhlke, 2015). The dislocation fluxes on 

the slip system α  can be defined as p p p
α α αρ=f v , where the velocities of different species are 

p pvα α α=v m , the scalar velocities vα  will be given in section 2.3. The evolution of dislocation density 

due to transportation among material points is given to be (Reuber et al., 2014), 

                                                                               div 0p p
α αρ + =f ,                                                                    (21) 

where the symbol “div” denotes the divergence of the flux. 

Finally, according to Eq. (8), the total dislocation density rate total
αρ  is  

                                                       total e+ e e,dip s+ s s,dip+α α α α α α αρ ρ ρ ρ ρ ρ ρ− −= + + + +       ,                                                 (22) 
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where the rate equations for each species can be obtained by summarizing equations (13)-(21) to 
obtain the following sets of partial differential equations, 

                                                 

e+ e+ mult e+ sin dip e+ dip sin e+ jog e+

e e mult e sin dip e dip sin e jog e

s+ s+ mult s+ sin dip s+ dip sin s+

s s mult s sin dip s

div

div

div

div

f

f

f

f

α α α α α α

α α α α α α

α α α α α

α α α

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

→ →

− − − → − → − −

→ →

− − − → −

+ = + + +

+ = + + +

+ = + +

+ = +

    

    

   

   dip sin s

e,dip sin dip e,dip dip sin e,dip athAnn e,dip athAnn-KO e,dip

s,dip sin dip s,dip dip sin s,dip athAnn s,dip athAnn-KO s,dip

α α

α α α α α

α α α α α

ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

→ −

→ →

→ →

+

= + + +

= + + +



    

    

                          (23) 

2.3. Dislocation kinetics 
In order to close the system of equations, another constitutive equation is needed to specify the 

dislocation glide velocity. Gliding dislocations will encounter obstacles during slip. Some obstacles, 
such as solution particles and Peierls barriers, can be overcome with thermal assistance. In contrast, 
many strong obstacles can only be overcome by stress (such as forest dislocations and GBs). For 

dislocation-dislocation interactions, the critical shear stress cr
ατ  is defined. When the resolved shear 

stress ατ  is smaller than this value, dislocations cannot move; when ατ  surpasses this value such 

that the effective shear stress on the slip plane eff cr=α α ατ τ τ−  is positive, dislocations can glide. The 

critical shear stress due to dislocation-dislocation interactions can be described as  

                                                                         
slip

'
cr

1

N

Gbα αα α

α

τ ξ ρ′
=

= ∑ ,                                                                   (24) 

where ααξ ′  describes the interaction strength between slip systems α  and α′ . For FCC metals, there 

are six interaction types among the twelve slip systems listed in Table 1, i.e., self-interaction, 
coplanar interaction, collinear interaction, Hirth locks, glissile junctions, and Lomer–Cottrell locks 
(Kubin et al., 2008). Their strengths are shown in Table 2. The interaction types between different 
slip systems are given in Table 3. 

 
Table 1. Convention of slip systems for FCC materials. 
𝛼𝛼 Slip plane Slip direction 
1  

(1 1 1) 
[0 1 1�] 

2 [1� 0 1]  
3 [1 1�  0] 
4  [0 1� 1�] 
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5 
6 

(1� 1� 1) [1 0 1]  
[1� 1  0] 

7  
(1 1� 1�) 

[0 1� 1] 
8 [1� 0 1�] 
9 [1 1  0] 
10  

(1� 1 1�) 
[0 1 1] 

11 
12 

[1 0 1�] 
[1� 1�  0] 

 
Table 2. The interaction types and strength for FCC materials (Kubin et al., 2008). 

Interaction type Interaction coefficient 
Self interaction 0.122 

Coplanar interaction 0.122  
Collinear interaction 0.625 

Hirth lock 
Glissile junction 

0.07 
0.137 

Lomer–Cottrell lock 0.122 

 
Table 3. The interaction types between different slip systems for FCC materials. 

Note: “s” means self-interaction, “cp” means coplanar interaction, “cl” is collinear interaction, “h” is Hirth lock, “g” 

means glissile junction, “l” denotes Lomer–Cottrell lock. 

 

For pure copper studied in this work, the dislocation glide velocity is assumed to depend 
linearly on the effective shear stress with a mobility B,  

         𝛼𝛼 
𝛼𝛼′ 

1 2 3 4 5 6 7 8 9 10 11 12 

1 s cp cp h l g cl g g h g l 
2 cp s cp l h g g h l g cl g 
3 cp cp s g g cl g l h l g h 
4 h l g s cp cp h g l cl g g 
5 l h g cp s cp g cl g g h l 
6 g g cl cp cp s l g h g l h 
7 cl g g h g l s cp cp h l g 
8 g h l g cl g cp s cp l h g 
9 g l h l g h cp cp s g g cl 
10 h g l cl g g h l g s cp cp 
11 g cl g g h l l h g cp s cp 
12 l g h g l h g g cl cp cp s 
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                                                                                      effv Bα ατ= .                                                                         (25) 

2.4. Back stress model 

Physically, the back stress comes from the spatially heterogeneous distribution of GNDs. In 
conventional constitutive models, the back stress is usually introduced to describe the particular 
mechanical behavior of materials during cyclic deformation, such as ratchetting and the Bauschinger 
effect (Kang and Kan, 2017). The objective of this work is to probe the effect of GND-induced 
kinematic hardening on the strain hardening behavior of gradient grained materials, rather than 
depicting the stress-strain curves. Therefore, a back stress model which is derived based on a 
continuum description of dislocations is employed (Groma et al., 2003),  

( )
e s

b
e s

grad grad+
2 1

DGb α α
α

α α

ρ ρτ
π ρ υ ρ

∆ ∆
 

=   − 
s t ,                                                   (26) 

where D is a constant, which is usually taken to be 1 (Geers et al., 2009); the symbols grad s  and 

grad t  denote the directional derivative of e
αρ∆  and s

αρ∆  along the directions of the vectors s and t, 

respectively. Similar forms of back stress have also been considered by Zaiser and co-workers 
(Zaiser and Hochrainer, 2006; Zaiser et al., 2007). Eq. (26) indicates that the back stress is related to 
the spatial gradient of GND density, so it is essentially proportional to a second-order strain gradient 
(Zaiser and Moretti, 2005). When the sample scale is of the same order of magnitude as the internal 
length scale, strain gradient effects become significant. Here, the internal length scale of the second-

order strain gradient effect is proportional to the dislocation spacing 1 ρ , so it is expected to 

become relevant in regions of a few dislocation spacings around the barriers constraining dislocation 
motion.  

3. Finite element implementation of the constitutive models and boundary conditions for 
dislocation flux 

3.1 The integration scheme  

The constitutive equations developed in this work were solved by the finite element method. In 
order to determine the stress necessary to achieve the prescribed deformation and update the 

microstructure variables as the computation time increases from t0→t, the fully implicit integration 

scheme is employed. In this work, the constitutive equations are solved in the intermediate 
configuration, while other stress measures can be obtained by simple transformation rules. According 
to Eqs. (1)-(3), the second Piola-Kirchhoff stress S  can be written as, 
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                                                      ( ) ( )T T T 1
e e p p

1 1: :
2 2

S C F F I C F F FF I− −= ⋅ − = − ,                                    (27) 

which implies that either the elastic or plastic part of the deformation gradient should be known for 
solving the stress. The plastic deformation gradient rate can be determined by the plastic velocity 

gradient pL  as p p pF L F= ⋅ , which in turn depends on the second Piola-Kirchhoff stress S  driving 

the plastic deformation and the microstructure state variables ω , i.e.,  

                                                                                    ( )p ,L S ω= f .                                                                     (28) 

In this work, ( ),S ωf  is defined by Eq. (5), and the microstructure state variables only comprise the 

densities of different dislocation species, as given in section 2.2. The evolution rate of the state 
variables depends on the current stress state and microstructures,  

                                                                                    ( ),ω S ω= g ,                                                                      (29) 

where the function ( ),S ωg  has been defined elaborately in section 2.2 (Eqs. (13)-(21)). Now the 

remaining task is to solve Eqs. (28) and (29), with which the stress can be calculated with the 
deformation gradient increasing from F(t0) to F(t), meanwhile the state variables at the end of the 
time step t are also updated. Since the stress and the state variables are coupling with each other, one 

at least has to solve a 18×18 matrix (6 for S  and 12 for  ω ), which leads to a heavy computation 

burden. To resolve this problem, the set of equations can be solved using a two-level scheme 
alternatively: 
(1) In the stress level, the stress is solved by solving Eqs. (6), (27), (28) at a constant state ω . 
(2) In the microstructure level, the state ω  is solved by solving Eq. (29) for a given stress S . 

(1) Stress level integration 
To sovle Eqs. (6), (27), (28) for the time integration of stress, Eq. (6) can be written as , 

 
( ) ( ) ( ) ( )p p 0

p p

F F
L F

−
=

∆

t t
t t

t
,                                                          (30) 

the deformation gradients at the end of the increment can be given as, 

      
( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

1

p p p 0

1
e p 0 p

F I L F

F F F I L

−

−

= − ∆

= − ∆

t t t t

t t t t t
.                                                     (31) 

The second Piola-Kirchhoff stress at the end of the increment is thus, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T 1 T
p p 0 p 0 p

T

1 :
2

B A B

S C I L F F F F I L I− −

 
    = − ∆ − ∆ −    
 
 

t t t t t t t t t


 

.              (32) 
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The stress level integration is done by using the Newton–Raphson scheme, where eF , pL and S  can 

be chosen as the objective for integration. Since a small change in S  results in an enormous change 

in pL , the Newton–Raphson scheme is built around pL . The residual of pL  after n iterations can be 

written as,  

 ( )( )( )p, e p, ,R L S F L ω= −n n nf  ,                                                           (33) 

where p,L n
  is the guess value for pL  and ( )( )( )e p, ,S L ωnf F   is the value calculated by the 

constitutive model. The Newton–Raphson scheme is employed to obtain pL  at iteration n+1, 

 

( )( )( )p, e p,

1

p, 1 p,
p

,

:

R L S F L ω

RL L R
L

−

+

= −

 ∂
= −   ∂ 

n n n

n
n n n

f 

 



.                                                         (34) 

The term pR L∂ ∂n
  is calculated as, 

 
p p

R SI I
L S L

∂ ∂ ∂
= ⊗ −

∂ ∂ ∂
n f
 

,                                                                (35) 

where S∂ ∂f  is known from the constitutive law (Eq. (28)), and pS L∂ ∂   is given as, 

              ( )
T

p T

p p

:
2

LS C AB B A I I
L L

 ∂∂ ∆
= − + ⊗  ∂ ∂ 

t 

 

.                                              (36) 

The iteration is considered to be converged when all components of Rn  are below a given tolerance.  

(2) Microstructure level integration 
The second level of integration updates the state variables for a given stress S. Different 

schemes can be employed to do this. Kords (2013) has compared the performance of several 
integration schemes such as explicit Euler integrator, adaptive Euler integrator, fourth-order explicit 
Runge-Kutta integrator and fifth-order adaptive Runge-Kutta integrator. It is found that the adaptive 
Euler integrator performed best for different constitutive models taking into account the computation 
efficiency and accuracy. Therefore, the adaptive Euler integration scheme is used in this work for 
solving the state variables ω . This integrator is essentially an enhancement of the explicit Euler 
integrator, while the error is estimated by evaluating the state variables again after the stress 
integration. Based on Eq. (29), ω  at the end of the increment can be given as   

         ( ) ( ) ( ) ( )( )0 0 0,ω ω S ω= + ∆t t g t t t                                                     (37) 
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using the explicit Euler integrator. For the adaptive Euler integrator, ω  is further calculated by 

integrating the stress again using the known ( )ω t  and recalculated ( )S t , i.e.,  

 ( ) ( ) ( ) ( )( )0 ,ω ω S ω= + ∆t t g t t t .                                                    (38) 

The error is defined as, 

 
( ) ( )

2
ω ω

ξ
−

=
t t

,                                                                    (39) 

which is compared to a given tolerance to determine the convergence of the iteration.  
The dislocation density change due to flux (as given in section 3.2) is updated immediately after 

every update of dislocation densities due to multiplication, change of state and annihilation. With the 
above schemes for stress integration and state variables update, the procedure for solving the 
constitutive equations can be summarized by the flow chart below, 

 
Fig. 3. Flow chart for numerically solving the constitutive equations. 

3.2 Finite volume upwind scheme for solving dislocation flux  

In this work, the finite volume upwind scheme is employed for solving the transport equation 
(Eq. (21)). Furthermore, additional boundary conditions for dislocation fluxes, which are key to the 
interface-dominated mechanical response, will also be given in detail.  

To numerically solve the flux function, the body is discretized into grid points (corresponding to 
integration points in the finite element method) where each grid point is associated with a “control 
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volume”, as shown in Fig. 4. By using the divergence theorem over the control volume surrounding 
the material point, the volume integral of the flux divergence 

                                              div d d divn n n
p p p p

nV V

V a A Vα α α α

∂

= ⋅ = ⋅ =∑∫ ∫f f a f a f  ,                                (40) 

is calculated as the sum of average fluxes p
αf  over all surfaces n with outward unit normal vector na  

and area nA . Then, Eq. (21) can be rewritten as, 

                                                                      
1 0n n

p p
n

A
V

α αρ + ⋅ =∑ f a

 .                                                              (41) 

Now the interfaces can be sorted, i.e., dislocations flow in through some interfaces and flow out 
through the remaining ones. 
 

 

Fig. 4. Control volume with basis triad 1 2 3, ,l l l  for each material point. An (n∈[1,6]) represent the 

outward unit normal vectors of the six surfaces.  
 

Fluxes p
αf  of all mobile dislocation species are evaluated at the center of the control volumes. 

If dislocations in the concerned control volume flow out through surface n into an adjacent control 

volume, 0n
p
α ⋅ >f a , then ,

out

pn S α∈  and the boundary flux is set to p p
α α=f f ;  if dislocations flow in 

through surface n, 0n n
p
α ⋅ <，f a , then ,

in

pn S α∈  and the boundary flux is set to , n
p p
α α=f f , where n

p
α，f  

is evaluated at the grid point of the adjacent control volume. With these definitions, we have 

                                      
, ,

out in

,
flux

flux out flux in from adjacent control volumes

1 1
p p

n n n n n
p p p

n S n S

A A
V Vα α

α α αρ
∈ ∈

= − ⋅ − ⋅∑ ∑f a f a




,                                        (42) 

by which the rate form of the dislocation density change due to dislocation flux is given explicitly. 
Note that during finite element implementation the time step has to meet the CFL (Courant-



Int. J. Plast. 163 (2023) 103553; https://doi.org/10.1016/j.ijplas.2023.103553 
 

20 
 

Friedrichs-Lewy) condition of 3t V v∆ < . This condition ensures that dislocations are, in any time 

step, only exchanged among adjacent integration points.  

3.3 Boundary conditions for dislocation fluxes 

In polycrystals, moving dislocations will encounter interfaces (e.g., GBs) that stop them or free 
surfaces where they can leave without surface passivation (Hua et al., 2021). Therefore, additional 
boundary conditions have to be specified to complete the boundary value problem when dislocation 
fluxes are involved. In the current work, two common cases, i.e., dislocation-GB interactions and 
dislocation-surface interactions, are considered for polycrystalline metals. The latter can be treated 
straightforwardly within the above transport scheme by computing the fluxes out of a surface in the 
same manner as in a bulk control volume; meanwhile, there are no inbound fluxes through the 
surface(s) that coincide with the surface of the material body. In contrast, dislocation-GB interactions 
are more complex and will be discussed in detail.  

Considering a polycrystal in which GBs are free of pre-existing dislocations, once a sequence of 
dislocations is pushed against a GB, dislocations are stopped and form pileups. When the shear stress 
at the tip of a pileup reaches a critical value, the leading dislocation will be absorbed by the GB or 
“transmitted” through the GB, i.e., emitting another dislocation to the adjacent gain. Both processes 
generate ledges on the GB. In the present work, the interactions of dislocations with GB are 
considered in the form of blocking and transmission. The continuous absorption of dislocations at 
GBs without emission is not considered since the grain boundaries will become unstable; thus, they 
need to emit dislocations to release the local high energy, which implies a transmission process. 
Therefore, the transmission, which can be treated as a combination of absorption (annihilation) and 
emission (nucleation), is employed. That is to say, the annihilation and nucleation of dislocations at 
GBs are considered in this work, but in a more suitable way under the assumption that grain 
boundaries are at a stable state. The boundary condition for blocking is simply imposed by setting, in 
a GB adjacent voxel (control volume shown in Fig. 4), the flux through the control volume surface 
that coincides with the GB equals zero. The mathematical description for transmission is given below.  

It can be concluded from the review paper (Bayerschen et al., 2016) that for modeling 
dislocation transmission through GB, three dominant factors have to be considered: the orientation 
relationship between grains, the Burgers vector magnitude of the debris deposited in the GB, the 
resolved shear stress on the outgoing slip system. In MD simulations, the shear stress is relatively 
high because alternative plastic relaxation mechanisms are absent; therefore, GB barriers can be 
readily overcome. In DDD simulations parameterized by MD, GBs can also be overcome by means 
of local stress concentrations, which lead to local stresses at the GB that may substantially exceed the 
average stress in the grain. In the currently adopted CP method, such stress concentrations are 
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averaged out; hence the stress fields are too smooth to produce the required local stress 
concentrations for dislocations to be transmitted through GBs so that dislocations remain stuck. 
However, this does not mean that the CP modeling cannot capture the transmission process. In fact, 
one can learn from experimental results and small-scale simulations in conjunction with statistical 
arguments to derive conditions for dislocation transmission in the CP framework.  

Recent experimental results (Bieler et al., 2019) showed that for aluminum polycrystals with 
near-cube oriented grains, slip transfer across GBs is only consistently evident when the 

misorientation angles between grains are less than 15°. When misorientation angles are higher than 

15°, slip transfer was only occasionally observed. Alizadeh et al. (2020) also showed that slip 

transfer is more likely to occur when the Luster–Morris parameter (the definition can be found in the 
referenced paper) is larger than 0.9, and the magnitude of the residual Burgers vector is less than 
0.35b. These experimental findings indicate that whether a dislocation can transmit through GB is a 
probabilistic event rather than an absolute one. These experimental results can be well interpreted by 
existing experimental measurements (Wilkinson et al., 2014), numerical simulations (Groma and 
Bakó, 1998; Wilkinson et al., 2014) and theoretical derivations (Groma and Bakó, 1998; Zaiser and 
Seeger, 2002), which show that the stress field created by an ensemble of randomly distributed 
dislocations is stochastic and can be described by a probability density function with a Gaussian 
center and asymptotic power-law tails. High local shear stresses in the tails of the distribution will be 
present with sufficient probability to locally assist dislocation transmission through GBs. The tails of 
the probability density function of local shear stress are given by (Groma and Bakó, 1998) 

                                                                              
2 2

3( )
CG bP ρ
τ τ

=
−

,                                                               (43) 

where C is a factor of the order of unity that depends on the line orientation and Burgers vector 
distribution of the dislocations that generate the internal stress field; the first moment of this 

probability density function is the mesoscopic shear stress τ , which can be calculated in the CP 

framework. The density function is symmetrical around this τ . The tails in the scenario mentioned 

above describe the probability density of stress close to dislocation lines. 
In the CP framework where dislocations are assumed to be randomly distributed inside each 

material point, whether dislocations can be transmitted through GBs depends greatly on the local 
stress facing the GB. Based on the above discussions, the transmission probability can be considered 

as the probability that the local stress is larger than the GB strength c, trans
ατ . Therefore, instead of 

considering a specific dislocation arrangement and calculating the shear stress e.g. at the tip of a 
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pileup, which is what happens by default in DDD simulations, we consider in this CDD framework 
that once a dislocation impinges on the GB, it transmits through the GB with probability 

[ ]trans 0 1P ∈ ， . The transmission probability can be obtained by integration of Eq. (43),  

                                                
( ) ( )

2 2

trans 2 2

c, trans c, trans

1 1
2

CG bP
α α α α

ρ

τ τ τ τ

 
 = +
 − + 

,                                       (44) 

where the local stress average τ  is equated with the shear stress ατ  evaluated from the CP 

framework. The critical strength for dislocation transmission through GBs is determined as (Fan et 
al., 2011; Li et al., 2009) 

                                                                  
( )

( )

2

GB in ledge
c, trans 2

in

E b G b

b

α α
α

α

η
τ

+
= ,                                                         (45) 

where GBE  is the GB energy, which depends on the GB type, materials properties, the misorientation 

angle between adjacent grains, etc. In this work, we consider the general GBs, and the GB energy is 
calculated using the method proposed by Bulatov et al. (2014), which has been implemented into the 

current CPFEM framework. ledgebα  is the magnitude of Burgers vector of the GB ledge, inbα  denotes 

that of the incoming dislocation, η  is a constant taken to be 0.5 (Hull and Bacon, 2001).  

With probability trans1 P−  a dislocation is blocked. For a dislocation that transmits through a GB, 

a geometric criterion needs to be constructed to determine the slip plane and slip direction of the 
corresponding outgoing dislocation. TEM observations (Lee et al., 1989) showed that the orientation 
relationship between the incoming and outgoing slip plane, the magnitude of Burgers vector of the 
residual dislocation and the resolved shear stress on the outgoing slip system co-determine the 
character of the outgoing dislocation. It was further demonstrated that if the resolved shear stress on 
one outgoing slip system is maximum among all slip systems, but the transmission leaves a ledge 
with a large Burgers vector on the GB, this process will eventually cease to operate. Therefore, the 
following conditions are adopted in this work to determine the outgoing slip systems: 

(1) The angle between the traces of the incoming and outgoing slip planes on the GB, i.e., A B·α βl l  

shown in Fig. 5, should be minimum.  

(2) The magnitude of the Burgers vector of the residual dislocation in out−b b  is minimum. 

(3) The outgoing slip system has operated, while the resolved shear stress on the outgoing slip 
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system is not necessarily maximum, i.e., eff 0βτ > .  

 

 
Fig. 5. Schematic of two slip systems α, β in adjacent grains A and B. 

 
The above GB-dislocation interaction mechanisms have been implemented into the CPFEM 

framework by serving as boundary conditions for dislocation transport, while no ad-hoc equations 
were required to describe the GB hardening. This allows us to study the GB-related deformation 
mechanisms and macro/micro-mechanical response of both homogeneous polycrystals and gradient 
grained polycrystals directly and physically.  

4. Uniaxial tensile response of homogeneously-grained copper 

4.1. Finite element model 

In order to study the mechanical properties of gradient grained materials, the tensile responses 
of homogeneously-grained polycrystals are simulated at first to validate and parameterize the 
developed model. In this work, the 2D model is employed to ease the computation burden, which 
comes from two aspects (Kords, 2013). Firstly, for numerically solving the dislocation transport term, 
the finite volume upwind scheme is used, i.e., the spatial domain is discretized into a number of 
voxels. Therefore, to ensure that no dislocation can move further than the next neighboring voxel 

within one time step, the time step should be limited to satisfy the condition of 3∆ =t V v , where V 

is the volume of the voxel and v is the dislocation velocity. This limitation reduces the computation 
efficiency, i.e., the time step needed to integrate the state is generally much smaller than the time 
step required by the mechanical boundary value solver. Secondly, due to the non-locality of the 
constitutive model, the integration of one material point depends on those of its neighboring material 
points. Specifically, if an integration point does not converge and has to do a timestep cutback, then 
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all neighbors have to do cutbacks as well to ensure that non-converged integration points are always 
surrounded by a layer of already converged integration points. This will further reduce the 
computation efficiency. Therefore, to reduce the computation cost, we use 2D models in the current 
simulation. Kords (2013) also adopted a 2D model (with only one element along the Z direction) to 
simulate an indentation problem by using the original version of the constitutive model employed in 
this work. In the future, the FFT approach will be combined with the current model to promote 
computation efficiency, as in Refs. (Haouala et al., 2020b; Lebensohn and Needleman, 2016). 

Therefore, representative volume elements (RVEs) consisting of 50 randomly oriented grains 
were employed for homogeneously-grained materials, as shown in Fig. 6. The model was generated 
using the Voronoi algorithm by the open-source software Neper (Quey et al., 2011), and discretized 

with 40×40×1 (x×y×z) 8-node brick elements with reduced integration (C3D8R). The mesh 

convergence study demonstrates that the mesh resolution adopted here is sufficiently high for the 
homogeneous polycrystals studied, as shown in the Appendix. To simulate the uniaxial tensile 
deformation, displacement constraints of Uy=0 and Ux=0 were applied on the lower surface 
(negative x-z plane) and left surface (negative y-z plane), respectively, and uniaxial tension was 

applied on the right surface (positive y-z plane) along x-direction at a strain rate of 46 10 s−× . 

Displacements and dislocation fluxes were not allowed along the z-direction.  

 

 
Fig. 6. RVE containing 50 randomly orientated grains generated using the Voronoi algorithm. The 

RVE was discretized with 40×40×1 (x×y×z) hexahedron elements during finite element simulation.  

4.2. Validation of the constitutive model and parameter calibration 

Fig. 7 shows the simulation results for homogeneous copper polycrystals with grains sizes 
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ranging from 5 µm to 80 µm. The material parameters adopted for this constitutive model are 
summarized in Table 4, most of which have clear physical meanings or clear physical bounds. The 
elastic constants are obtained from the work of Luscher et al. (2013). The magnitude of the Burgers 
vector is given by Espinosa et al. (2006). Essmann and Mughrabi (1979) showed that the stable edge 
dipole and screw dipole heights are 6b and 200b-2000b. In this work, we take 6b for the edge dipole 
and 200b for the screw dipole, respectively, as adopted by Grilli et al. (2018). The strength of the 

Peierls barrier is given as 0.5 MPa (Grilli, 2016). The edge jog parameter 2k  can be determined by 

referring to the work of Kords (2013) on aluminum and nickel. The dislocation mobility B controls 
the dislocation velocity, and it has been validated that the simulation results show negligible 

difference for Β ≤10 Pa·s. So Β is set to be 10 Pa·s in this work to promote computation efficiency. 

The remaining two parameters, which obviously affect the simulation results, are the dislocation 
multiplication coefficient and the initial dislocation density. In this work, every type of monopolar 

dislocation density on each slip system is set to be 2.5×1010/m2, and the dipole density is set to be 0, 

leading to a total dislocation density of 12 2
initial 1.2 10 mρ = ×  at every material point, which is the 

same as that adopted in (Haouala et al., 2020b; Haouala et al., 2018) for modeling the Hall-Petch 

effect of polycrystalline FCC metals. The dislocation multiplication coefficient 1k ( 110 100≤ ≤k ) is 

taken to be 50 to mimic the experimental results. 
 

Table 4. Parameters for the nonlocal constitutive model. 
Parameter Symbol Value Reference 
Elastic constants (Pa) 𝐶𝐶11 168 × 109 (Luscher et al., 2013) 

(Luscher et al., 2013) 
(Luscher et al., 2013) 

𝐶𝐶12 121.4 × 109 
𝐶𝐶44 75.3 × 109 

Initial dislocation densities (m m3⁄ ) 𝜌𝜌𝑝𝑝0 2.5 × 1010  

Initial dipole densities (m m3⁄ ) 𝜌𝜌𝑐𝑐,dip
0  0  

Magnitude of the Burger vector (m) b 2.56 × 10−10 (Espinosa et al., 2006) 
Lower bound for edge dipole (m) 𝑑̆𝑑e 1.536 × 10−9 (Essmann and Mughrabi, 1979) 
Lower bound for screw dipole (m) 𝑑̆𝑑s 51.2 × 10−9 (Essmann and Mughrabi, 1979) 
Dislocation multiplication coefficient 𝑘𝑘1 50  
Edge jog parameter 𝑘𝑘2 0.01 (Kords, 2013) 
Dislocation viscosity (Pa·s) B 10  
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Fig. 7. (a) Simulated results of homogeneous copper polycrystals with grain sizes changing from 5 

µm to 80 µm with initial dislocation density of 1.2×1012/m2. (b) Comparison of the simulation 

results with experimental ones (Armstrong et al., 1962; Hansen and Ralph, 1982) at the true strains 

of 0.5% and 5%, with initial dislocation density of 1.2×1012/m2. (c) and (d) Simulated results of 

homogeneous copper polycrystals with initial dislocation densities of 2.4×1012/m2 and 3.6×1012/m2. 

 
Fig. 7(a) manifests that the flow stress increases gradually with the decrease of grain size. Thus 

the developed model can predict the grain size effect without inducing any grain size-dependent 
parameters. When the grain size increases above 40 µm, the simulation stress-strain curves show 
little difference, indicating that the grain size effect becomes rather weak, and the mechanical 
responses can be described by a local constitutive model in this grain size range. By further 
comparing with experimental results (Armstrong et al., 1962; Hansen and Ralph, 1982), the 
simulation results quantitatively capture the grain size effect for copper polycrystals at the true 
strains of 0.5% and 5%, i.e., the flow stress increases linearly with the increase of d-0.5, as shown in 
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Fig. 7(b). The above results indicate that the developed model can be utilized to study grain size-
dependent problems such as the gradient grained structure concerned in this work with few 
adjustable parameters.  

Figs. 7(c) and  7(d) further give the tensile response of copper polycrystals with initial 

dislocation densities of 12 2
initial 2.4 10 mρ = ×  and  12 2

initial 3.6 10 mρ = × , respectively. Comparing 

Figs. 7(a), 7(c) and 7(d), it is found that the initial flow stress of copper polycrystals depends both on 
the grain size and initial dislocation density. Specifically, the elastic limit of the copper polycrystals 
only depends on the initial dislocation density since the dislocation motion is controlled by the 
Taylor hardening law (Eq. (24)). The grain size shows no effect on the elastic limit, but significantly 
affects the flow stress at the plastic deformation stage. While all copper polycrystal show strain 
hardening, the strain hardening rate increases as the grain size decreases, which coincides with the 
experimental results and the simulation results obtained by Haouala et al. (Haouala et al., 2020b; 

Haouala et al., 2018).  Since the simulation results with initial dislocation density of 1.2×1012/m2 fit 

well with the experimental results, the following analyses on the homogeneously-grained copper 
polycrystals are based on these results.  

 

4.3. Grain size effect  

Before studying the strain hardening of gradient grained materials, homogeneously-grained 

counterparts with grain sizes ranging from 5 µm to 80 µm are firstly investigated to figure out the 
dependencies of GND-related hardening on grain size. Fig. 8 shows the simulated true stress-strain 
curves of the copper polycrystals; the results without considering back stress are also shown for 
comparison. It is clear that for copper with grain size larger than 20 µm, the simulation results with 
and without back stress are almost identical. With the decrease of grain size, the discrepancy between 
the stress-strain curves with and without back stress becomes more and more obvious. Therefore, in 
copper with large grain sizes, the GND-induced kinematic hardening hardly contributes to their 
strain hardening, while the GND-induced kinematic hardening becomes more and more pronounced 
with decreasing grain size. This conclusion agrees with experimental results (Gao et al., 2022; 
Mahato et al., 2016; Vinogradov et al., 1997), where metals with smaller grain sizes showed a 
stronger Bauschinger effect.  
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Fig. 8. Simulation results for copper with grain sizes changing from 5 µm to 80 µm, the results 
without considering back stress are also shown.  
 

The above findings can be understood from two different points of view: (1) Physically, back 
stress comes from the spatially heterogeneous distribution of GNDs. In the initial deformation stage, 
back stress comes from the pileup of GNDs at GBs. In the subsequent deformation stage, dislocation 
structures such as cells and walls also lead to the heterogeneous distribution of dislocations, which 
further enhances back stress. In this work, the formation of dislocation structures during plastic 
deformation is not considered due to the limited strain range, so the heterogeneities come mainly 
from the slip discontinuities (pileups) at GBs. Therefore, back stress comes into effect at the initial 
deformation stage and does not increase during further deformation. (2) From the point of view of 
model prediction, Eq. (26) manifests that back stress is controlled by the gradient of GND density. 
Essentially, it is the effect of the second-order gradient of strain. In the conventional strain gradient 
theory, an internal length scale is introduced for dimension equilibrium. When the sample size is of 
the same order of magnitude as the internal length scale, the strain gradient comes into effect, and the 
strain gradient effect increases with the decrease of sample size, known as “smaller is stronger” 
(Fleck et al., 1994; Voyiadjis and Song, 2019). In Eq. (26), the dominant length scale is the mean 

dislocation spacing 1 ρ . Similar to the (first-order) strain gradient theory, when the spacing of the 

barriers constraining dislocation movement is also of the order of 1 ρ , the back stress effect 

becomes obvious. For the current simulations, GBs act as the primary constraints for dislocation 
motion, so GND-induced kinematic hardening is stronger for grains with smaller sizes.  
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Fig. 9. Simulation results for copper with grain sizes changing from 5 µm to 80 µm, the results 
without dislocation flux are also shown.  

 
Fig. 9 shows the comparison of the simulated true stress-strain curves with and without 

considering dislocation flux for copper with grain sizes ranging from 5 µm to 80 µm. It is evident 
that with decreasing grain size, the difference between the results with and without dislocation flux 
becomes larger and larger, which coincides well with that obtained in (Haouala et al., 2020b), where 
a lower-order strain gradient CP model was employed. Note that the back stress is calculated through 
the gradient of GND density, so the effects of the dislocation flux term simultaneously include the 
contributions of back stress and GNDs themselves. To study their individual influence on the strain 
hardening behavior, we use three steps to obtain the hardening from back stress and GNDs 
themselves. I. Fig. 8 gives the simulation results without including back stress. Therefore, by 
comparing the stress-strain curves with those considering back stress, kinematic hardening can be 
obtained. II. Fig. 9 plots the simulation results without including dislocation flux, and the constitutive 
model degenerates into a local model. Therefore, the nonlocal effects, including the GND-induced 
forest hardening (isotropic one) and GND-induced kinematic hardening, are absent. By comparing 
the stress-strain curves with those considering dislocation flux, the overall GND hardening and 
kinematic hardening can be obtained. III. By further calculating the difference between the results 
obtained from step I and step II, the kinematic hardening and GND hardening can be separated. The 
final results are shown in Fig. 10. 
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Fig. 10. GND-induced kinematic hardening and GND hardening in copper with grain sizes in the 
range of 5 µm to 80 µm. 
 

Fig. 10 indicates that the GND-induced kinematic hardening emerges at the onset of plastic 
deformation and tends to saturate at an early deformation stage (less than 1%), which agrees with 
experimental findings (Cheng et al., 2018) on gradient nanotwinned copper. In comparison, the GND 
hardening increases gradually with the increase of strain. Moreover, GND hardening is stronger than 
GND-induced kinematic hardening. When the grain size is larger than 20 µm, the GND-related 
effects can be neglected. Therefore, conclusions can be drawn from the results in Figs. 8-10 that the 
smaller the grain size is, the stronger the GND hardening and GND-induced kinematic hardening are; 
GND-induced kinematic hardening emerges in the initial deformation stage and quickly reaches 
saturation, while GND hardening increases gradually in the deformation range of concern. 
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Fig. 11. Evolution of the total dislocation densities and GND densities for copper with different grain 
sizes. 
 

To further understand the effect of GNDs on the deformation behavior of copper polycrystals, 
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Fig. 11 exhibits the evolution of total dislocation densities and GND densities for polycrystals with 

different grain sizes. The total dislocation density is calculated as ( )
12

Total e s
1

= α α

α

ρ ρ ρ
=

+∑ . The GND 

densities are calculated as e e+ e=α α αρ ρ ρ∆ −− and s s+ s=α α αρ ρ ρ∆ −−  for edge and screw type, respectively. So 

the GND density can be either positive or negative on a slip system. For comparison purposes, the 

GND density depicted here is calculated as ( )
12

GND e s
1

= α α

α

ρ ρ ρ∆ ∆
=

+∑ . Fig. 11 demonstrates that in the 

investigated range of grain sizes (from 5 µm to 80 µm) and strain (0-5%), the smaller the grain size 
is, the higher the total dislocation density and GND density are. Moreover, both of them increase 
nearly linearly with strain due to rapid dislocation storage in the grain interior, which agrees with the 
experimental results (Zhang et al., 2020) and constitutive modeling results (Li and Soh, 2012).  

 

 

Fig. 12. The contours of (a) total dislocation density and (b) GND density for copper with different 
grain sizes at a true strain of ~5%.  
 

Fig. 12 depicts the contours of total dislocation density and GND density for copper 
polycrystals with different grain sizes at a true strain of ~5%. Fig. 12(a) shows that the total 
dislocation densities near the GB are much higher than those in the grain interior. With the increase 
of grain size, the dislocation density decreases, and the density differences in the GB region and 
grain interior become smaller and smaller, indicating that the deformation in copper with larger grain 
size is more homogeneous. Fig. 12(b) shows that the GNDs accumulate close to the GBs, 
manifesting that the CPFEM framework, in combination with the GB model, can well describe the 
role of GBs as obstacles to dislocation motion. The GND densities in copper polycrystals with 
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smaller grains are higher than those with larger grains, and the GND densities in the GB region of 
smaller grains are also higher than those of larger grains. 

5. Uniaxial tensile response of gradient grained copper 

5.1. Finite element model 

The effects of GNDs and back stress on the strain hardening of homogeneous copper 
polycrystals have been well understood based on the results shown in section 4. In this section, the 
tensile deformation of gradient grained copper is simulated to investigate the GND hardening and 
GND-induced kinematic hardening in gradient grained materials. In our previous work (Lu et al., 
2019b), it is theoretically estimated that there are around 120000 grains even in the two-dimensional 
Voronoi tessellation construction for the gradient grained copper experimentally studied by Fang et 
al. (2011), which has been chosen as a benchmark work for simulation. This polycrystalline 
aggregate can not be handled computationally even using a phenomenologically-based model. 
Instead, homogenization schemes that endow each material point with several grains can be adopted 
to deal with the high computational demands  (Lu et al., 2019b), and the macroscopic mechanical 
response of the gradient grained materials can be obtained. However, the motivation of this work is 
to study the underlying mechanisms behind the phenomenon. Therefore, a sandwich-structured 
gradient-grained copper is considered, whose grain number and grain size distribution are similar to 
those adopted by Zeng et al. (2015). Due to the symmetry, only 1/2 of the model is constructed for 
simulation, which comprises 84 grains, as shown in Fig. 13. The mesh convergence study shown in 
Appendix A demonstrates that a mesh resolution of d/6 (i.e., 36 meshes for each grain, which is 
larger than 32 meshes used in the homogeneous polycrystals) is sufficiently high for the 
homogeneous polycrystals studied. Therefore, the mesh in each layer of the gradient grained model 
is refined to be d/6 (which leads to a total mesh number of 2952) so that the calculation don’t suffer 
from a mesh problem. Similar to the simulation of homogeneously-grained copper, a single layer 
geometric model was employed, assuming plane strain deformation.  
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Fig. 13. Finite element model of the gradient grained polycrystal. Different colors represent grains 
with different orientations.  
 

The geometric model was divided into three layers (I, II, III), with each layer being endowed 
with a specific grain size. If the smallest grain size is d, then the grain size distribution along y-
direction is d, 2d and 4d. In this investigation, d is taken to be 5 µm, so the overall geometrical size 

of the model is 80 µm×105 µm (x×y). Uniaxial tension was applied in the x-direction at a strain rate 

of 46 10 s−× , all nodes’ displacements along z-direction were constrained to be zero. In order to 

eliminate the randomness induced by the grain orientation effect, three sets of simulations with 
different grain orientations were performed; the distribution curves of internal state variables and 
stress-strain curves shown in the following sections were obtained by averaging these results.    

5.2. Uniaxial tensile response of gradient grained copper 

In this section, the distributions of several internal state variables, such as total dislocation 
density, GND density and back stress, are first analyzed to understand the deformation features of the 
gradient grained material. Then GND hardening and GND-induced kinematic hardening are studied 
to figure out their influences on the mechanical response of gradient grained copper.   
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Fig. 14. (a) Contours of von Mises stress with and without considering dislocation flux at a true 

strain of ~5%, (b) average von Mises stress in each layer. 

 
Figs. 14(a) and 14(b) show the contours of von Mises stress and the average stress distribution 

in each layer for gradient grained copper at a true strain of ~5%. The results without considering 
dislocation flux are also shown for comparison. For the latter case, the stress contours are more 
homogeneous than those considering flux/GND effects. They show no systematic differences 
between the grain interiors and the regions near the GBs. If dislocation flux is not considered, the 
average stress level in the different layers does not depend on the grain size and shows a flat 
distribution, as shown in Fig. 14(b). For the simulation results considering dislocation transport 
which leads to GND accumulation at GBs, the average von Mises stress decreases with increasing 
grain size. Furthermore, The stresses in all layers are higher than those without GND effects, and 
stress concentrations emerge at the GBs.  
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Fig. 15. Contours of (a) the total dislocation density and (b) GND density in the gradient grained 
copper at a true strain of ~5%; the results without considering dislocation flux are also shown. 
Evolution of (c) the total dislocation density and (d) GND density in each layer during deformation.  
 

Figs. 15(a) and 15(b) give the contours of the total dislocation density and GND density at a 

true strain of ~5%, the simulation results without considering dislocation flux are also shown. 

Similar to the distribution of von Mises stress, both the total dislocation density and GND density 

show a gradient distribution when the flux term is involved, and dislocations accumulate 

preferentially at the grain boundaries. The distribution of GND density also coincides with the 

experimental observation (Hasan et al., 2019), i.e., GND density decreases from small grains to large 

grains in gradient grained materials. In contrast, the total dislocation density shows no gradient along 

the depth direction for the simulation results without dislocation flux, and dislocation accumulation 

has no systematic difference between the grain interiors and the near-GB regions. Moreover, since 

the non-locality of the CP model is realized through introducing a flux term, by which the dislocation 

information (dislocation density) exchange among material points can be obtained. If the dislocation 

flux term is not considered, then we only have the dislocation multiplication, annihilation and change 

of the dislocation state in one material point. The latter mechanisms only lead to the evolution of 

SSDs. Therefore, the GND density is zero when dislocation flux is absent, as shown in Fig. 15(b). 

Figs. 15(c) and 15(d) plot the total dislocation density and GND density evolution in each layer for 

the simulations with and without dislocation flux. When dislocation flux is included, the total 

dislocation density evolution shows an obvious difference in each layer, i.e., it increases more rapidly 

in the layer with smaller grain size. The same tendency is found for the evolution of GND density. In 
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contrast, for the results without dislocation flux, the dislocations only comprise the SSDs, and the 

dislocation density develops in almost the same way in each layer. As a result, the obtained total 

dislocation densities without dislocation flux are always lower than those considering dislocation 

flux.  

 

 
Fig. 16. Distributions of the total dislocation density and GND density in each layer of the gradient 
grained copper. 

 

Fig. 16 further quantitatively depicts the average values of the two kinds of dislocation densities 

in each layer. The average dislocation densities decrease from the surface to the core region. The 

average total dislocation densities in each layer are 15.6×1013/m2, 8.6×1013/m2, 4.1×1013/m2; while 

those of GND densities are 10.0×1013/m2, 5.3×1013/m2 and 2.5×1013/m2. The GND densities account 

for 64.1%, 61.6% and 60.9% in each layer, demonstrating that with the decrease of grain size, the 

contribution of GND density to the total dislocation density increases. Thus the GND hardening is 

more significant in materials with smaller grains.  
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Fig. 17. Distributions of back stress on the 12 slip systems in the gradient grained copper at a true 
strain of ~5%. 
 

Fig. 17 shows the distribution of back stress on the 12 slip systems at a true strain of ~5%. 
Similar to the distributions of von Mises stress, GND density and total dislocation density, the back 
stress increases with decreasing grain size, which is in accordance with the true stress-strain curves 
shown in Fig. 8 and experimental measurements (Gao et al., 2022; Mahato et al., 2016; Vinogradov 
et al., 1997). The results also indicate that back stress from the smaller grains is a non-negligible 
factor when discussing the GND-induced kinematic hardening in gradient grained material. 
 

 

Fig. 18. Simulated uniaxial tensile response of the gradient grained copper, the results without 
considering back stress and dislocation flux are also shown for comparison.  
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Fig. 18 gives the simulated stress-strain curves for the gradient grained copper. Simulation 
results without considering back stress and dislocation flux are also shown for comparison. In the 
simulated gradient grained copper, the effect of back stress is weaker. The contribution of GND 
hardening increases gradually with increasing strain. The effect of GND density is stronger than that 
of the back stress in gradient grained copper, which corresponds to the conclusions drawn from the 
results for homogeneous copper. The discrepancy in the stress-strain curves with and without 
including dislocation flux is very similar to that obtained by Haouala et al. (Haouala et al., 2020b; 
Haouala et al., 2018). Note that the grain size in the simulated gradient grained copper is set to be 
fairly large due to restrictions of computation efficiency; it is expected that both the back stress and 
GND density will have significant effects on the strain hardening of gradient grained copper with 
nanograined surface layers, such as the gradient nano-grained metals reported in experiments (Cheng 
et al., 2018; Yang et al., 2016).   
 

6. Conclusions 

The GND-related hardening mechanisms in homogeneously-grained polycrystals and gradient 
grained FCC metals are studied using a dislocation density-based nonlocal CPFEM model. 
Introducing the flux term in the model enables the dislocation density exchange among material 
points, which renders the model nonlocal. A back stress model characterizing the effect of the 
heterogeneous distribution of GNDs is constructed for studying the kinematic hardening behavior. 
Specifically, the interaction between dislocations and GBs is explicitly considered in the current 
work by setting boundary conditions for the dislocation flux based on the geometrical and 
mechanical criteria. CPFEM simulations of homogeneously-grained copper quantitatively capture 
the Hall-Petch effect due to the accumulation of GNDs at grain boundaries. It is shown that smaller 
grain size leads to higher GND density and back stress. The back stress increases rapidly during the 
initial deformation stage and shows no obvious increase under further loading, while the GND 
hardening increases gradually with the increase of strain. CPFEM simulations of gradient grained 
copper reproduce its salient deformation features, such as the gradient distribution of stress, total 
dislocation density, GND density, and back stress. Furthermore, small grains in gradient grained 
materials contribute significantly to GND-related hardening. We emphasize that all these features are 
captured, in a formulation including dislocation flux, without the necessity for introducing any 
explicit grain size-dependent terms into the constitutive equations. This work is helpful for 
understanding the strengthening mechanisms of gradient grained materials as well as other kinds of 
heterogeneously-grained materials.  
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Appendix. Mesh convergence study 

To demonstrate that the mesh resolution is sufficiently high for all cases studied in this work, 
the 2D RVE for the homogeneously-grained copper polycrystals in Fig. 6 is generated with different 
mesh numbers: 400, 1024, 1600 and 2500, using Neper. The tensile stress-strain curves of the 
homogeneously-grained copper polycrystals with different grain sizes using these mesh resolutions 
are shown in Fig. A1 below.  
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Fig. A1. Simulation results of the homogeneously-grained copper polycrystals with different grain 
sizes using the finite element models with different mesh resolutions.  
 

The results indicate that the difference in the stress-strain curves becomes smaller and smaller 
with increasing the element number. As the element number increases from 1600 to 2500, the stress-
strain curves nearly overlap for all cases studied. Therefore, to ensure the accuracy of the results and 

reduce the computation cost simultaneously, 1600 (40×40) elements are used to mesh the RVEs. 
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