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Increasing the range accuracy of three-dimensional ghost imaging
ladar using optimum slicing number method∗

Yang Xu(杨 旭), Zhang Yong(张 勇), Xu Lu(徐 璐), Yang Cheng-Hua(杨成华),
Wang Qiang(王 强), Liu Yue-Hao(刘越豪), and Zhao Yuan(赵 远)†

Department of Physics, Harbin Institute of Technology, Harbin 150001, China

(Received 28 April 2015; revised manuscript received 7 July 2015; published online 20 October 2015)

The range accuracy of three-dimensional (3D) ghost imaging is derived. Based on the derived range accuracy equa-
tion, the relationship between the slicing number and the range accuracy is analyzed and an optimum slicing number (OSN)
is determined. According to the OSN, an improved 3D ghost imaging algorithm is proposed to increase the range accu-
racy. Experimental results indicate that the slicing number can affect the range accuracy significantly and the highest range
accuracy can be achieved if the 3D ghost imaging system works with OSN.

Keywords: ghost imaging, range accuracy, optimum slicing number

PACS: 42.30.Va, 42.50.Dv DOI: 10.1088/1674-1056/24/12/124202

1. Introduction
Ghost imaging with a thermal source has been widely

studied recently.[1–5] Moreover, Erkmen and Shapiro de-
scribed a computational ghost imaging arrangement, the so-
called virtual ghost imaging, by utilizing a single bucket de-
tector with no spatial resolution.[6,7] Their proposed method
facilitated the application of ghost imaging in practice.[8] Un-
like the conventional thermal ghost imaging, their proposal
omitted the reference arm path. From then on, more and more
researchers have paid a great deal of attention to the applica-
tion of ghost imaging.[9–14] More recently, three-dimensional
(3D) ghost imaging has been reported.[15,16] Compared with
the two-dimensional (2D) ghost imaging, 3D ghost imaging
can provide a great deal of information about the target for
remote sensing.

However, there is no analysis on the range accuracy of
the 3D ghost imaging. Range accuracy is one of the most im-
portant parameters to evaluate the quality of range images and
the centriod method is usually utilized to increase the range
accuracy. In this paper, the range accuracy of 3D ghost imag-
ing with the centriod method is derived for the first time and
the influence of the slicing number on the range accuracy is
also analyzed. According to the theoretical analysis, it is con-
cluded that a large slicing number cannot always assure a high
range accuracy. Therefore, an optimum slicing number (OSN)
of the 3D ghost imaging is determined. The slicing number
over or below the OSN will lead to the decrease of range accu-
racy of the 3D ghost imaging. In addition, the OSN method is
introduced to increase the range accuracy and the OSN is also
derived based on the range equation.

An outdoor experiment is performed in the study to il-

luminate the theoretical analysis results. The target of our
experiment is a wall of a building about 180 m away. The
OSN method, centriod method, and conventional method are
utilized to obtain range images of the target respectively. A
comparison among the range images obtained with different
methods shows that the range accuracy of the OSN method is
best. The range image of the target is measured by a scanning
laser radar used as a reference, and range accuracies of range
images obtained with different methods are calculated. The
calculated results quantitatively indicate that the range accu-
racy with the OSN method is highest. The investigation of this
study shows the potential application of 3D ghost imaging in
the field of remote sensing in the future.

2. Theory of 3D ghost imaging with centroid
method
The difference between conventional 2D ghost imaging

and 3D ghost imaging is that the sensor with no spatial resolu-
tion (bucket detector) of 3D ghost imaging is a time-resolved
detector. The reflected light from the target is collected by no
spatial resolution detector. If targets are located at different
positions, ghost imaging of all the different targets can be ob-
tained at different time slices. The schematic of the 3D ghost
imaging system is shown in Fig. 1. The source of this system
is a pulse laser. The laser is modulated by a transmission spa-
tial light modulator (SLM) and a telescope system is utilized to
emit speckle patterns on the target. The detector in this system
is a time-resolution single-pixel detector and we use a collect-
ing lens to collect echo light. After a correlation calculation
between the output of the bucket detector and speckle inten-
sity distributions, 3D images of the target can be obtained.

∗Project supported by the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 61108072).
†Corresponding author. E-mail: zhaoyuan@hit.edu.cn
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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speckle partern
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Fig. 1. (color online) Schematic diagram of 3D ghost imaging system.

According to the basic theory of ghost imaging, the
image of a certain time slice can be obtained by correlat-
ing total reflected light intensity B(t) measured by time-
resolution single-pixel detector and the intensity distribution
of speckle pattern I (𝑟, t) measured by the CCD. The speckle
pattern I (𝑟, t) illuminating on targets is generated by com-
puter. Hence, the correlation function of intensity fluctuations
G(2) (𝑟, t) can be expressed as[17]

G(2)(𝑟, t) = 〈Bs(t)Is (𝑟, t)〉−〈Bs(t)〉〈Is (𝑟, t)〉 . (1)

In Eq. (1), G(2) (𝑟, t) presents the image of 3D ghost imaging

at a certain time-slice t; 〈X〉= 1
M

N
∑
s

Xs represents the ensemble

average, where M is the number of measurements, subscript s
refers to the s-th experiment at the time slice t; I (𝑟, t) denotes
the intensity distribution of the speckle pattern illuminating
the target at the transverse coordinate 𝑟 and the time slice t.
The 3D ghost imaging is used to obtain the images in the far
field. Hence, the speckle patterns at different time slices are
the same. It implies that the speckle pattern I (𝑟, t) does not
change with time slice t. Hence, I (𝑟, t) can be expressed as
I (𝑟). In Eq. (1), Bs (t) is the reflective intensity in the object
arm at the time slice t. Bs (t) takes different values at various
time slices. It is because the targets in the field of view are at
different positions and the echo light beams from the different
targets are not the same.

In the setup, the light of the laser is expressed as

P(t) = P0 exp
[
− t2

2a2

]
, (2)

where P0 is the peak power of the laser and a is the pulse
width. The intensity distribution of the laser is modulated by
the SLM. Therefore, the intensity distribution illuminating the
target can be given by

P(𝑟, t) = P0 exp
[
− t2

2a2

]
· I (𝑟) , (3)

where I (𝑟) is the speckle pattern illuminating the target. Sup-
posing that the optical receiving system can collect all the echo
light from targets, the intensity reflected from the targets at the
transverse coordinates 𝑟 is described as

R(𝑟, t) = I (𝑟) ·T (𝑟)P0 exp
[
− t2

2a2

]
g(t) , (4)

where T (𝑟) is the reflectivity of the target and g(t) is the
range-gate of the detector. In this system, the range-gate of
this bucket detector is expressed as

g(t) =
N

∑
n=1

δ (t− t1−nT ) , (5)

where t1 is the start time, T is the time step, and N is the total
number of range gates. Suppose that t(r)0 is the time delay of
the corresponding object at the transverse coordinates 𝑟. Sub-
mitting Eq. (5) into Eq. (4), the bucket detector received by
gate n is given by

B(n) = ∑
𝑟

I (𝑟) ·T (𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

]
. (6)

According to Eqs. (1) and (6), the nth slice of the correla-
tion function of intensity fluctuations is expressed as

G(2) (𝑟, t1 +nT ) = P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

]
G(r) , (7)

G(𝑟) =
1
M

M

∑
n=1

(
∑
𝑟

I(𝑟) ·T (𝑟)

)
· Is (𝑟)

− 1
M

M

∑
n=1

(
∑
𝑟

I (𝑟) ·T (𝑟)

)
· 1

M

M

∑
s=1

Is (𝑟), (8)

where G(𝑟) is the ghost image at the transverse coordinate 𝑟.
The number of measurement M should be very large to ensure
a high enough SNR.

Through Eqs. (7) and (8), we can obtain K slices of in-
tensity images. For transverse coordinate 𝑟, the maximum
G(2) (𝑟, t +nT ) can be picked out and the corresponding n
should be recorded as m. Therefore, in the conventional
method, the distance between the target at transverse coordi-
nate 𝑟 and the detection system can be expressed as

dr =
c
2
(t1 +mT ) s.t.

m = argmax
{

G(2) (𝑟, t1 +mT )
}

m=1...K
. (9)

However, the range accuracy of this method is relatively low.
In practice, the centroid method is utilized to process the ghost
imaging slice.

With the help of Eq. (7), the distance at transverse coor-
dinates 𝑟 can be derived by the centroid method, which can be
expressed as

d =
c
2

N
∑

n=1
(t1 +nT )

(
G(𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

])
N
∑

n=1

(
G(𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

]) . (10)

Range accuracy is an important parameter to evaluate
the quality of the 3D ghost imaging. Range accuracy ∆d =

d− ct(r)0 /2 is given by
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∆d =
c
2

N
∑

n=1

(
t1 +nT − t(r)0

)(
G(𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

])
N
∑

n=1

(
G(𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

]) . (11)

3. Analysis of the range accuracy of 3D ghost
imaging

Equation (11) gives the range accuracy of 3D ghost imag-
ing with the centroid method. When t1− t(r)0 = 1

2 nT and the
SNR of intensity images is at a high value, range accuracy
∆d should be 0. In ghost imaging, the noise is always larger
than the signal in a single shot measurement. Thousands of
measurements are performed and averaged to obtain the high-
quality intensity images. Suppose that there are M-shot mea-
surements, the SNR of the ghost imaging is

√
M times larger

than that of a single shot measurement.[18] If the number of

measurements is large enough, the SNR can be a considerable
value. Nevertheless, the number of the measurements is not
infinite. The influence of the noise on the 3D ghost imaging
range accuracy cannot be ignored.

When the noise of intensity images is not small enough to
be ignored, the ghost image is:

G(𝑟) = G′ (𝑟)
(

1+
1

SNRn

)
, (12)

where G′ (𝑟) is the ghost image signal, and noise of ghost
imaging can be expressed as noise = G′ (𝑟)/SNRn. Submit-
ting Eq. (11) into Eq. (12), the range accuracy is given as

∆d =
c
2

N
∑

n=1
(t1 +nT − t(r)0 )

(
G(𝑟)

(
1+

1
SNRn

)
P0 exp

[
−
(t(r)0 − t1−nT )

2a2

])
N
∑

n=1

(
G(𝑟)

(
1+

1
SNRn

)
P0 exp

[
−
(t(r)0 − t1−nT )

2a2

]) . (13)

According to Eq. (13), the range accuracy changes with
the slicing number. Figure 2 shows the variations of range ac-
curacy with the slicing number for different SNR levels. The
average SNR of all slices is utilized to value the SNR level, and
average SNR is expressed as

SNR =
1
K

K

∑
n=1

SNRn, (14)

where K is the total number of slices. In Fig. 2, the average
SNR values of all slices are selected as 1, 10, 100. If SNR is at
a high level, the range accuracy improves with the increase of
the slicing number. When the slicing number is selected to be
above a certain value, the range accuracy does not change with
the slicing number. If SNR is at a low level, the range accuracy
improves rapidly like the high level SNR circumstance below a
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Fig. 2. (color online) Variations of range accuracy with the slicing num-
ber for average SNR values of 1, 10, and 100.

certain slicing number. However, when the slicing number is
above this slicing number, the influence of the noise becomes
more and more intense. Range accuracy fluctuation greatly
increases with slicing number increasing. Therefore, simply
increasing the slicing number will reduce the range accuracy.
The slicing number should be set as a particular value to en-
sure a high range accuracy. This particular value is defined as
the optimum slicing number (OSN) of the system.

According to the above analysis, it can be concluded that
the noise is a major factor influencing the range accuracy when
the slicing number is greater than the OSN. When the slicing
number is less than or equal to OSN, the range accuracies at
different SNR levels are nearly the same. Therefore, we can
use Eq. (11) to calculate the range of targets. Range accuracy
is best when the slicing number is set as OSN. We propose to
process each range slice according to the OSN and to synthe-
size the results into a full range image. The OSN method can
be expressed as

d =
c
2

∑
m+N/2
m−N/2 (t1 +nT )

(
G(𝑟)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

])
∑

m+N/2
m−N/2

(
G(r)P0 exp

[
−
(t(r)0 − t1−nT )2

2a2

]) ,

(15)

where N is the OSN; n = 1,2,3, . . .; and G(2)(𝑟, t1 + nT )
reaches the maximum value when n = m. Through Eq. (14),
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we can determine the OSN which is considered as the key
point for the OSN method. According to the definition of m,
the maximum of the correlation function of intensity fluctua-
tion G(2) (𝑟, t1 +nT )max is expressed as

G(2) (𝑟, t1 +nT )max = P0 exp
[
−
(t(r)0 − t1−mT )2

2a2

]
G(r) . (16)

If G(2) (𝑟, t1 +nT ) satisfies the inequality

G(2) (𝑟, t1 +nT )<
G(2) (𝑟, t1 +nT )max

SNR
,

the contribution of the correlation function of intensity fluc-
tuation G(2) (𝑟, t1 +nT ) to 𝑟 is less than that of the noise of
G(2) (𝑟, t1 +nT )max. In this case, these calculated intensity
fluctuations are actually unreliable and should be rejected. Ac-
cording to Eq. (13), when n = m + N/2 and n = m−N/2,
G(2)(𝑟, t1 + nT ) equals G(2)(𝑟, t1 +nT )max/SNR. Utilizing
Eqs. (7) and (15), the relationship is shown as

exp
[
−
(t(r)0 − t1− (m+ N

2 )T )
2

2a2

]
=

1
SNR

exp
[
−
(t(r)0 − t1−mT )2

2a2

]
,

exp
[
−
(t(r)0 − t1− (m− N

2 )T )
2

2a2

]
=

1
SNR

exp
[
−
(t(r)0 − t1−mT )2

2a2

]
.

(17)

Solving Eq. (15), the OSN is given by

N =
2
T

√
2a2 lnSNR. (18)

The noise of ghost imaging originates from different com-
binations of field variations and shot noises.[19,20] As to our
system, SNR is dominated by the shot noise of a single pixel
detector and the noise generated during the propagation of
a speckle. The OSN method is a modified centriod method
which can eliminate the influence of shot noise. Besides, the
conventional centriod method utilizes all ghost imaging slices
to calculate the range image. All the noise from slices with-
out target information will reduce the 3D ghost imaging range
accuracy. With the OSN method, only the slices containing
target information are used to obtain the range image. Noises
from useless slices cannot influence the range image. There-
fore, the range accuracy of 3D ghost imaging with the OSN
method is higher than that with the conventional method and
the centriod method.

4. Experiment of 3D ghost imaging
In order to further illustrate that the OSN method can im-

prove the range accuracy of 3D ghost imaging, the experiment
is carried out.

In our experimental system, a diode-pumped, active Q-
switched Nd:YAG solid-state laser is used as a source. The
wavelength of the laser is at 532 nm with a pulse width of
30 ns. The repetition frequency of a pulse is 10 Hz and the
average energy of each pulse is 0.2 mJ. The laser is controlled
by an external triggering.

The SLM in our system is a translucent liquid crystal
SLM based on the amplitude. Its maximum frame rate is
60 Hz. In this experiment, the SLM works at a frame rate
of 10 Hz. The active area of the SLM is 36.9 mm×27.6 mm
and its pixel size is 32 µm×32 µm. The SLM is controlled by
a computer which generates the random binary patterns, and
transmits them to the SLM. The size of the random binary pat-
tern is 1024×768 and the rate of change of the pattern on the
SLM is 10 Hz.

The echoed signal is recorded by an ultrafast PIN photo-
diode with 1.5 GHz response frequency. There is a high-speed
data acquisition card connected to the PIN photodiode and the
sampling frequency of this data acquisition card is 200 MHz.
The data acquisition card is used to record the echoed light
from the target at the different time slices. The interval be-
tween every two slices is 10ns. This experiment performs
10000-times continuous measurements to obtain the experi-
mental results.

A 75-mm aperture convex lens with a focal length of
300 mm is utilized as the optical receiving system. There is
a 5-nm narrow-band filter with a wavelength of 532-nm posi-
tioned in front of the PIN photodiode. The experiment is con-
ducted at night, and the narrow-band filter in the experiment
is used to reduce the background noise as much as possible.
This experiment is performed on condition that the laser pulse
width is 10 ns, the SNR is 10, and the target is about 180m
away. According to Eq. (16), the OSN of our experimental
system is calculated to be 4.

The experimental targets and the 3D ghost imaging re-
sults obtained respectively by the conventional method, the
centroid method and the OSN method are all shown in Fig. 3.
Figure 3(a) shows the picture of the target and the range of this
target is from 160 m to 190 m. Figures 3(b)–3(d) are the results
of 3D ghost imaging, obtained by the conventional method,
the centroid method and the OSN method respectively. As
shown in Fig. 3(a), the target is a wall of a building. The nor-
mal direction of the target is not parallel to the illuminating
direction. Figures 3(b)–3(d) are range images of the target in a
red rectangular frame in Fig. 3(a), obtained by different meth-
ods. Different colors in these range images represent different
ranges. Utilizing the colorbar and colors on the range images,
range information can be obtained intuitively.

Results with different methods are not similar to each
other. As shown in Fig. 3(a), the range of the wall from right to
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left increases gradually. Therefore, the color of range images
from right to left should changes from the blue to the red grad-
ually. However, the color of Fig. 3(b) changes from right to left
in a stepwise manner. There is an obvious boundary between
different colors. The range accuracy of Fig. 3(b) is lower than
that of Fig. 3(d). Although, the color of Fig. 3(c) changes
gradually from right to left, there are many noise points in the

range image. The range accuracy of Fig. 3(c) is also lower
than that of Fig. 3(d). Unlike the colors of Figs. 3(b) and 3(c),
the color of Fig. 3(d) changes gradually from right to left, and
the number of noise points is less than those in Fig. 3(c). Of
all the above, the range accuracy of OSN is highest , which is
shown by comparing differences between Figs. 3(a), 3(b), and
3(c).
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Fig. 3. (color online) (a) Picture of the target and the target about 180 m away, 3D ghost images obtained with (b) the conventional
method, (c) the centriod method, and (d) the OSN method. The colorbar on the right side in each panel represents the range scale.

Furthermore, in order to illuminate that the range accu-
racy of Fig. 3(d) is better than those of Figs. 3(b) and 3(c)
quantificationally, range accuracy values of Figs. 3(b)–3(d) are
calculated respectively. We utilize the range root-mean-square
error (RMSE) to evaluate the range accuracy. The RMSE is
expressed as

σ =

√
∑
i, j

(Gi, j−Oi, j)2

i× j
, (19)

where Gi, j is the range image value of the (i, j) target, ob-
tained with one of the above methods, and Oi, j is the real range
value of the (i, j) target. (i, j) represents the coordinate of the
range image. According to Eq. (17), the RMSE of Fig. 3(b) is
σ1 = 1.47 m; the RMSE of Fig. 3(c) is σ2 = 0.94 m; and the
RMSE of Fig. 3(d) is σ3 = 0.47 m. By comparing the RMSEs
of the range image obtained with different methods, it can be

concluded that the range accuracy of Fig. 3(d) is higher than
those of Figs. 3(b) and 3(c).

The experimental results and the calculated RMSEs illus-
trate that Fig. 3(d) accords more with the reality than Figs. 3(b)
and 3(c). The range image of the target in Fig. 3(d) can cor-
rectly reflect the range information of the target. The range
accuracy of Fig. 3(d) based on the OSN method is nearly a
third higher than that of Fig. 3(b) obtained using the conven-
tional method and twice higher than that of Fig. 3(c) obtained
using the centriod method. The experimental results strongly
support the theoretical analysis in the subsection.

5. Conclusions
In this paper, the relationship between the slicing number

and the range accuracy of the 3D ghost imaging is established
for different SNRs. An OSN of the 3D ghost imaging is de-
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termined in this paper. When the 3D ghost imaging system
works with the OSN method, the highest range accuracy can
be achieved. According to the theoretical demonstration and
the experimental analysis, one can come to the conclusion that
utilizing the advanced method proposed in this paper can en-
hance the range accuracy significantly, and provide the range
information of the target effectively. This research could pro-
mote the development of 3D ghost imaging in practice.
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127304 High-𝑘 gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment

Liu Chao-Wen, Xu Jing-Ping, Liu Lu and Lu Han-Han

127305 Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI)

of high-𝑘/metal gate nMOSFETs with gate-last process

Qi Lu-Wei, Yang Hong, Ren Shang-Qing, Xu Ye-Feng, Luo Wei-Chun, Xu Hao, Wang Yan-Rong, Tang Bo,

Wang Wen-Wu, Yan Jiang, Zhu Hui-Long, Zhao Chao, Chen Da-Peng and Ye Tian-Chun

(Continued on the Bookbinding Inside Back Cover)



127306 Investigation of trap states in Al2O3 InAlN/GaN metal–oxide–semiconductor high-electron-mobility

transistors

Zhang Peng, Zhao Sheng-Lei, Xue Jun-Shuai, Zhu Jie-Jie, Ma Xiao-Hua, Zhang Jin-Cheng and Hao Yue

127307 Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes

Yu Xiao-Xia, Zhou Yan, Liu Jia, Jin Hai-Bo, Fang Xiao-Yong and Cao Mao-Sheng

127309 Multi-step shot noise spectrum induced by a local large spin

Niu Peng-Bin, Shi Yun-Long, Sun Zhu and Nie Yi-Hang

127401 First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

Liu Lei, Lv Chao-Jia, Zhuang Chun-Qiang, Yi Li, Liu Hong and Du Jian-Guo

127402 Study of Nb/Nb𝑥Si1−𝑥/Nb Josephson junction arrays

Cao Wen-Hui, Li Jin-Jin, Zhong Yuan and He Qing

127501 Observation of spin glass transition in spinel LiCoMnO4

Chen Hong, Yang Xu, Zhang Pei-Song, Liang Lei, Hong Yuan-Ze, Wei Ying-Jin, Chen Gang, Du Fei and Wang

Chun-Zhong

127502 Structure, morphology, and magnetic properties of high-performance NiCuZn ferrite

He Xue-Min, Yan Shi-Ming, Li Zhi-Wen, Zhang Xing, Song Xue-Yin, Qiao Wen, Zhong Wei and Du You-Wei

127503 Fabrication and magnetic properties of 4SC(NH2)2–Ni0.97Cu0.03Cl2 single crystals

Chen Li-Min, Guo Ying, Liu Xu-Guang, Xie Qi-Yun, Tao Zhi-Kuo, Chen Jing, Zhou Ling-Ling and Liu Chun-

Sheng

127507 Al-doping-induced magnetocapacitance in the multiferroic AgCrS2

Liu Rong-Deng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Liu Yun-Tao, Chen Dong-Feng, Zhang

Sen, Zhao Yong-Gang and Wang Fang-Wei

127508 Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9

Dai Jia, Zhou Ping, Wang Peng-Shuai, Pang Fei, Tim J. Munsie, Graeme M. Luke, Zhang Jin-Shan and Yu

Wei-Qiang

127701 Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

Guo Yan-Yan, Guo Yun-Jun, Wei Tong and Liu Jun-Ming

127702 First-principles study of the relaxor ferroelectricity of Ba(Zr, Ti)O3

Yang Li-Juan, Wu Ling-Zhi and Dong Shuai

127703 Comparative research on the optical properties of three surface patterning ZnO ordered arrays

Hou Kai, Zhu Ya-Bin and Qiao Lu

127704 Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

Du Hong-Lei, Xue Qian, Gao Xiao-Yang, Yao Feng-Rui, Lu Shi-Yang, Wang Ye-Long, Liu Chun-Heng, Zhang
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