

Increasing the range accuracy of three-dimensional ghost imaging ladar using optimum slicing number method

Yang Xu, Zhang Yong, Xu Lu, Yang Cheng-Hua, Wang Qiang, Liu Yue-Hao, Zhao Yuan Citation: Chin. Phys. B . 2015, 24(12): 124202. doi: 10.1088/1674-1056/24/12/124202

Journal homepage: http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb

What follows is a list of articles you may be interested in

Ghost imaging with broad distance

Duan De-Yang, Zhang Lu, Du Shao-Jiang, Xia Yun-Jie Chin. Phys. B . 2015, 24(10): 104203. doi: 10.1088/1674-1056/24/10/104203

Phase modulation pseudocolor encoding ghost imaging

Duan De-Yang, Zhang Lu, Du Shao-Jiang, Xia Yun-Jie Chin. Phys. B . 2015, 24(2): 024202. doi: 10.1088/1674-1056/24/2/024202

Correspondence normalized ghost imaging on compressive sensing

Zhao Sheng-Mei, Zhuang Peng Chin. Phys. B . 2014, 23(5): 054203. doi: 10.1088/1674-1056/23/5/054203

Noise analysis in ghost imaging from the perspective of coherent-mode representation

S

Bai Yan-Feng, Yang Wen-Xing, Yu Xiao-Qiang of the set Chin. Phys. B . 2012, 21(4): 044206. doi: 10.1088/1674-1056/21/4/044206

中国物理B Chinese Physics B

Volume 24 Number 12 December 2015

Formerly Chinese Physics

A Series Journal of the Chinese Physical Society Distributed by IOP Publishing

Online: iopscience.iop.org/cpb cpb.iphy.ac.cn

CHINESE PHYSICAL SOCIETY

Chinese Physics B (First published in 1992)

Published monthly in hard copy by the Chinese Physical Society and online by IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK Institutional subscription information: 2015 volume For all countries, except the United States, Canada and Central and South America, the subscription rate per annual volume is UK \pounds 974 (electronic only) or UK \pounds 1063 (print + electronic). Delivery is by air-speeded mail from the United Kingdom. Orders to: Journals Subscription Fulfilment, IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK For the United States, Canada and Central and South America, the subscription rate per annual volume is US\$1925 (electronic only) or US\$2100 (print + electronic). Delivery is by transatlantic airfreight and onward mailing. Orders to: IOP Publishing, P. O. Box 320, Congers, NY 10920-0320, USA (c) 2015 Chinese Physical Society and IOP Publishing Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner. Supported by the National Natural Science Foundation of China, the China Association for Science and Technology, and the Science Publication Foundation, Chinese Academy of Sciences Editorial Office: Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China Tel: (86-10) 82649026 or 82649519. Fax: (86-10) 82649027. E-mail: cpb@aphy.iphy.ac.cn 主管单位:中国科学院 国际统一刊号: ISSN 1674-1056 主办单位:中国物理学会和中国科学院物理研究所 国内统一刊号: CN 11-5639/O4 编辑部地址:北京 中关村 中国科学院物理研究所内 承办单位:中国科学院物理研究所 主 编: 欧阳钟灿 通讯地址: 100190 北京 603 信箱 出 版:中国物理学会 Chinese Physics B 编辑部 印刷装订:北京科信印刷厂 电 话: (010) 82649026, 82649519 传 真: (010) 82649027 编 辑: Chinese Physics B 编辑部 国内发行: Chinese Physics B 出版发行部 "Chinese Physics B"网址: 国外发行: IOP Publishing Ltd http://cpb.iphy.ac.cn (编辑部) 发行范围:公开发行 http://iopscience.iop.org/cpb (IOPP) Published by the Chinese Physical Society 顾问 **Advisory Board** 教授,院士 陈佳洱 Prof. Academician Chen Jia-Er

北京大学物理学院,北京 100871 School of Physics, Peking University, Beijing 100871, China 冯 端 教授,院士 Prof. Academician Feng Duan Department of Physics, Nanjing University, Nanjing 210093, China 南京大学物理系,南京 210093 李政道 教授,院士 Prof. Academician T. D. Lee Department of Physics, Columbia University, New York, NY 10027, USA Prof. Academician Li Yin-Yuan 李荫远 研究员,院士 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China , ċ 丁肇中 教授,院士 Prof. Academician Samuel C. C. Ting LEP3, CERN, CH-1211, Geneva 23, Switzerland Prof. Academician C. N. Yang 杨振宁 教授,院士 Institute for Theoretical Physics, State University of New York, USA 杨福家 教授,院士 Prof. Academician Yang Fu-Jia 复旦大学物理二系,上海 200433 Department of Nuclear Physics, Fudan University, Shanghai 200433, China 研究员,院士 中国科学技术协会,北京 100863 Prof. Academician Zhou Guang-Zhao (Chou Kuang-Chao) 周光召 China Association for Science and Technology, Beijing 100863, China Prof. Academician Wang Nai-Yan 王乃彦 研究员,院士 中国原子能科学研究院,北京 102413 China Institute of Atomic Energy, Beijing 102413, China 梁敬魁 研究员,院士 Prof. Academician Liang Jing-Kui 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2012 - 2015主 编 Editor-in-Chief Prof. Academician Ouyang Zhong-Can 欧阳钟灿 研究员,院士 中国科学院理论物理研究所, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 北京 100190 副主编 **Associate Editors** Prof. Academician Zhao Zhong-Xian 赵忠贤 研究员,院士 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 杨国桢 研究员,院士 Prof. Academician Yang Guo-Zhen 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 张 杰 研究员,院士 Prof. Academician Zhang Jie 上海交通大学物理与天文系, Department of Physics and Astronomy, Shanghai Jiao Tong University, 上海 200240 Shanghai 200240, China

邢定钰	教授,院士 南京大学物理学院,南京 210093	Prof. Academician Xing Ding-Yu School of Physics, Naniing University, Naniing 210093, China			
沈保根	研究员,院士 中国科学院物理研究所,北京 100190	Prof. Academician Shen Bao-Gen Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China			
龚旗煌	教授,院士 北京大学物理学院,北京 100871	Prof. Academician Gong Qi-Huang School of Physics, Peking University, Beijing 100871, China			
沈 平	教授 香港科技大学物理学系,香港九龍	Prof. Sheng Ping Department of Physics, The Hong Kong University of Science and Technology,			
编辑委员	编辑委员 Editorial Board Kowloon, Hong Kong, China				
2011-2 Prof F	010 B. de Boer	van der Waals-Zeeman Institute der Universiteit van Amsterdam			
1 101. 1 .	it. de boer	Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands			
Prof. H. 陈东敏	F. Braun 教授	Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany Prof. Chen Dong-Min Bowland Institute for Science, Harvard University, USA			
冯世平	教授 北京师范大学物理系, 北京 100875	Prof. Feng Shi-Ping Department of Physics, Beijing Normal University, Beijing 100875, China			
高鸿钧	研究员, 院士 中国科学院物理研究所, 北京 100190	Prof. Academician Gao Hong-Jun Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China			
顾长志	研究员 中国科学院物理研究所, 北京 100190	Prof. Gu Chang-Zhi Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China			
胡岗	教授 北京师范大学物理系, 北京 100875	Prof. Hu Gang Department of Physics, Beijing Normal University, Beijing 100875, China			
侯建国	教授, 院士 中国科学技术大学中国科学院结构分析 重点实验室, 合肥 230026	Prof. Academician Hou Jian-Guo Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China			
李方华	研究员, 院士 中国科学院物理研究所, 北京 100190	Prof. Academician Li Fang-Hua Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China			
闵乃本	教授,院士 南京大学物理系,南京 210093	Prof. Academician Min Nai-Ben Department of Physics, Nanjing University, Nanjing 210093, China			
聂玉昕	研究员 中国科学院物理研究所,北京 100190	Prof. Nie Yu-Xin Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China			
潘建伟	教授, 院士 中国科学技术大学近代物理系, 合肥 230026	Prof. Academician Pan Jian-Wei Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China			
沈志勋	教授	Prof. Shen Zhi-Xun Stanford University, Stanford, CA 94305–4045, USA			
苏肇冰	研究员,院士 中国科学院理论物理研究所, 北京 100190	Prof. Academician Su Zhao-Bing Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190. China			
孙昌璞	研究员,院士 中国科学院理论物理研究所, 北京 100190	Prof. Academician Sun Chang-Pu Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China			
王恩哥	研究员, 院士 北京大学物理学院, 北京 100871	Prof. Academician Wang En-Ge School of Physics, Peking University, Beijing 100871, China			
夏建白	研究员,院士 中国科学院半导体研究所, 北京 100083	Prof. Academician Xia Jian-Bai Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China			
冼鼎昌	研究员, 院士 中国科学院高能物理研究所, 北京 100049	Prof. Academician Xian Ding-Chang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China			
向 涛	研究员,院士 中国科学院理论物理研究所, 北京 100190	Prof. Academician Xiang Tao Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China			
谢心澄	教授 北京大学物理学院,北京 100871	Prof. Xie Xin-Cheng School of Physics, Peking University, Beijing 100871, China			
詹文龙	研究员,院士	Prof. Academician Zhan Wen-Long			
朱邦芬	中国科子院, 北京 100804 教授, 院士 清化士学物理系 北京 100084	Prof. Academician Zhu Bang-Fen Department of Physics Tringhous University Boijing 100084 China			
2013-2	有半八子彻理示, 北东 100084 018	Department of Physics, Tsinghua Oniversity, Deijing 100064, Onina			
Prof. An	tonio H. Castro Neto	Physics Department, Faculty of Science, National University of Singapore,			
Prof. Ch	ia-Ling Chien	Singapore 117546, Singapore Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA			
Prof. David Andelman		School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Is-			
Prof. Ma	sao Doi	rael Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192. Japan			
Prof. Michiyoshi Tanaka		Research Institute for Scientific Measurements, Tohoku University, Katahira 2–1–1, Aoba-ku 980, Sendai, Japan			
Prof. Werner A. Hofer		Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 3BX, UK			
」车耈	X1Z	Prof. Ding Jun Department of Materials Science & Engineering, National University of Singapore, Singapore 117576, Singapore			
贺贤土	研究员,院士 北京应用物理与计算数学研究所, 北京 100088	Prof. Academician He Xian-Tu Institute of Applied Physics and Computational Mathematics, Beijing 100088, China			
金晓峰	教授 复旦大学物理系,上海 200433	Prof. Jin Xiao-Feng Department of Physics, Fudan University, Shanghai 200433, China			

李儒新	研究员 中国科学院上海光学精密机械研究所, 上海,201800	Prof. Li Ru-Xin Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
吕 力	上海 201800 研究员 山国利学院物理研究所 北京 100100	Prof. Lü Li Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
李晓光	中国科学阮初理研九所,北京 100190 教授	Prof. Li Xiao-Guang
	中国科学技术大学物理系, 合肥 230026	Department of Physics, University of Science and Technology of China, Hefei 230026, China
沈元壤	教授	Prof. Shen Yuan-Rang Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
王亚愚	教授 清化大学物理系 北京 100084	Prof. Wang Ya-Yu Department of Physics, Tsinghua University, Beijing 100084, China
王玉鹏	研究员	Prof. Wang Yu-Peng
王肇中	中国科学阮初珪研九所, 北京 100190 教授	Prof. Wang Zhao-Zhong
		Laboratory for Photonics and Nanostructures(LPN) CNRS–UPR20, Route de Nozay, 91460 Marcoussis, France
闻海虎	教授 南京大学物理学院系. 南京 210093	Prof. Wen Hai-Hu School of Physics, Nanjing University, Nanjing 210093, China
徐至展	研究员,院士 中国科学院上海光学精密机械研究所,	Prof. Academician Xu Zhi-Zhan Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of
许岑珂	上海 201800 助理教授	Assist. Prof. Xu Cen-Ke
		USA USA University of California, Santa Barbara, CA 93106,
辞其坤	教授, 院士 清华大学物理系, 北京 100084	Prof. Academician Xue Qi-Kun Department of Physics, Tsinghua University, Beijing 100084, China
叶 军	教授	Prof. Ye Jun Department of Physics, University of Colorado, Boulder, Colorado, 80200,0440, USA
张振宇	教授	Prof. Z. Y. Zhang Oak Ridge National Laboratory, Oak Ridge, TN 37831–6032, USA
2015-	2020	
Prof. J. Prof. R	. Y. Rhee obert J. Jovnt	Department of Physics, Sungkyunkwan University, Suwon, Korea Physics Department, University of Wisconsin-Madison, Madison, USA
程建春	教授	Prof. Cheng Jian-Chun
戴 希	南京入学物理学阮,南京 210093 研究员	Prof. Dai Xi
郭光灿	中国科学院物理研究所,北京 100190 教授,院士	Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Prof. Academician Guo Guang-Can
	中国科学技术大学物理学院, 合 m 230026	School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
刘朝星	加 250020 助理教授	Assist. Prof. Liu Chao-Xing Department of Physics. Pennsylvania State University PA 16802-6300 USA
刘 荧	教授	Prof. Liu Ying
	上 海 父 逋 天 字 牣 埋 与 大 乂 系, 上 海 200240	Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
龙桂鲁	教授 清华大学物理系,北京 100084	Prof. Long Gui-Lu Department of Physics, Tsinghua University, Beijing 100084 China
牛谦	教授	Prof. Niu Qian Department of Physics, University of Texas, Austin, TX 78712, USA
欧阳颀	教授,院士 北京大学物理学院 北京 100871	Prof. Academician Ouyang Qi School of Physics Peking University Beijing 100871 China
孙秀冬	教授 	Prof. Sun Xiu-Dong Department of Physics, Harbin Institute of Technology, Harbin 150001, China
童利民		Prof. Tong Li-Min
	浙 江 天 字 光 电 信 息 工 程 字 系, 机 州 310027	Hangzhou 310027, China
重彭尔	教授 香港科技大学物理系,香港九龍	Prof. Tong Peng-Er Department of Physics, The Hong Kong University of Science and Technology,
王开友	研究员	Prof. Wang Kai-You
釉茎滩	中国科学院半导体研究所,北京 100083	Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China Prof. Wei Su Huai
解思深	研究员 院十	National Renewable Energy Laboratory, Golden, Colorado 80401-3393, USA Prof. Academician Xie Si-Shen
山田紫	中国科学院物理研究所,北京 100190	Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Brof, Academisian Vo Chao, Hui
町 朝))件	研九贝, 阮工 中国科学院武汉物理与数学研究所, 武汉 430071	Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
郁明阳	教授	Prof. Yu Ming-Yang Theoretical Physics I. Ruhr University, D-44780 Bochum, Germany
张富春	教授	Prof. Zhang Fu-Chun Department of Physics The University of Hong Kong, Hong Kong, China
张 勇	育商人子彻理系, 育商 教授	Prof. Zhang Yong
		Electrical and Computer Engineering Department, The University of North Carolina at Charlotte, Charlotte, USA
郑 波	教授 浙江士受物理系 杭州 310097	Prof. Zheng Bo Physics Department, Zhejjang University, Hangzhou 310027, China
周兴江	而在六子初连东,他们 310027 研究员	Prof. Zhou Xing-Jiang
编辑	中国科学院物理研究所,北京 100190 Editorial Staff	Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
/m -m	王久丽 Wang Jiu-Li 章志英 Zhang Zhi-Y	Ying 蔡建伟 Cai Jian-Wei 翟 振 Zhai Zhen 郭红丽 Guo Hong-Li

Increasing the range accuracy of three-dimensional ghost imaging ladar using optimum slicing number method*

Yang Xu(杨 旭), Zhang Yong(张 勇), Xu Lu(徐 璐), Yang Cheng-Hua(杨成华), Wang Qiang(王 强), Liu Yue-Hao(刘越豪), and Zhao Yuan(赵 远)[†]

Department of Physics, Harbin Institute of Technology, Harbin 150001, China

(Received 28 April 2015; revised manuscript received 7 July 2015; published online 20 October 2015)

The range accuracy of three-dimensional (3D) ghost imaging is derived. Based on the derived range accuracy equation, the relationship between the slicing number and the range accuracy is analyzed and an optimum slicing number (OSN) is determined. According to the OSN, an improved 3D ghost imaging algorithm is proposed to increase the range accuracy. Experimental results indicate that the slicing number can affect the range accuracy significantly and the highest range accuracy can be achieved if the 3D ghost imaging system works with OSN.

Keywords: ghost imaging, range accuracy, optimum slicing number

PACS: 42.30.Va, 42.50.Dv

DOI: 10.1088/1674-1056/24/12/124202

1. Introduction

Ghost imaging with a thermal source has been widely studied recently.^[1–5] Moreover, Erkmen and Shapiro described a computational ghost imaging arrangement, the socalled virtual ghost imaging, by utilizing a single bucket detector with no spatial resolution.^[6,7] Their proposed method facilitated the application of ghost imaging in practice.^[8] Unlike the conventional thermal ghost imaging, their proposal omitted the reference arm path. From then on, more and more researchers have paid a great deal of attention to the application of ghost imaging.^[9–14] More recently, three-dimensional (3D) ghost imaging has been reported.^[15,16] Compared with the two-dimensional (2D) ghost imaging, 3D ghost imaging can provide a great deal of information about the target for remote sensing.

However, there is no analysis on the range accuracy of the 3D ghost imaging. Range accuracy is one of the most important parameters to evaluate the quality of range images and the centriod method is usually utilized to increase the range accuracy. In this paper, the range accuracy of 3D ghost imaging with the centriod method is derived for the first time and the influence of the slicing number on the range accuracy is also analyzed. According to the theoretical analysis, it is concluded that a large slicing number cannot always assure a high range accuracy. Therefore, an optimum slicing number (OSN) of the 3D ghost imaging is determined. The slicing number over or below the OSN will lead to the decrease of range accuracy of the 3D ghost imaging. In addition, the OSN method is introduced to increase the range accuracy and the OSN is also derived based on the range equation.

An outdoor experiment is performed in the study to il-

*Project supported by the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 61108072).

[†]Corresponding author. E-mail: zhaoyuan@hit.edu.cn

luminate the theoretical analysis results. The target of our experiment is a wall of a building about 180 m away. The OSN method, centriod method, and conventional method are utilized to obtain range images of the target respectively. A comparison among the range images obtained with different methods shows that the range accuracy of the OSN method is best. The range image of the target is measured by a scanning laser radar used as a reference, and range accuracies of range images obtained with different methods are calculated. The calculated results quantitatively indicate that the range accuracy with the OSN method is highest. The investigation of this study shows the potential application of 3D ghost imaging in the field of remote sensing in the future.

2. Theory of 3D ghost imaging with centroid method

The difference between conventional 2D ghost imaging and 3D ghost imaging is that the sensor with no spatial resolution (bucket detector) of 3D ghost imaging is a time-resolved detector. The reflected light from the target is collected by no spatial resolution detector. If targets are located at different positions, ghost imaging of all the different targets can be obtained at different time slices. The schematic of the 3D ghost imaging system is shown in Fig. 1. The source of this system is a pulse laser. The laser is modulated by a transmission spatial light modulator (SLM) and a telescope system is utilized to emit speckle patterns on the target. The detector in this system is a time-resolution single-pixel detector and we use a collecting lens to collect echo light. After a correlation calculation between the output of the bucket detector and speckle intensity distributions, 3D images of the target can be obtained.

^{© 2015} Chinese Physical Society and IOP Publishing Ltd

Fig. 1. (color online) Schematic diagram of 3D ghost imaging system.

According to the basic theory of ghost imaging, the image of a certain time slice can be obtained by correlating total reflected light intensity B(t) measured by time-resolution single-pixel detector and the intensity distribution of speckle pattern $I(\mathbf{r},t)$ measured by the CCD. The speckle pattern $I(\mathbf{r},t)$ illuminating on targets is generated by computer. Hence, the correlation function of intensity fluctuations $G^{(2)}(\mathbf{r},t)$ can be expressed as^[17]

$$G^{(2)}(\boldsymbol{r},t) = \langle B_{s}(t)I_{s}(\boldsymbol{r},t)\rangle - \langle B_{s}(t)\rangle \langle I_{s}(\boldsymbol{r},t)\rangle.$$
(1)

In Eq. (1), $G^{(2)}(\mathbf{r},t)$ presents the image of 3D ghost imaging at a certain time-slice t; $\langle X \rangle = \frac{1}{M} \sum_{s}^{N} X_{s}$ represents the ensemble average, where M is the number of measurements, subscript srefers to the *s*-th experiment at the time slice t; $I(\mathbf{r},t)$ denotes the intensity distribution of the speckle pattern illuminating the target at the transverse coordinate \mathbf{r} and the time slice t. The 3D ghost imaging is used to obtain the images in the far field. Hence, the speckle patterns at different time slices are the same. It implies that the speckle pattern $I(\mathbf{r},t)$ does not change with time slice t. Hence, $I(\mathbf{r},t)$ can be expressed as $I(\mathbf{r})$. In Eq. (1), $B_{s}(t)$ is the reflective intensity in the object arm at the time slice t. $B_{s}(t)$ takes different values at various time slices. It is because the targets in the field of view are at different positions and the echo light beams from the different targets are not the same.

In the setup, the light of the laser is expressed as

$$P(t) = P_0 \exp\left[-\frac{t^2}{2a^2}\right],\tag{2}$$

where P_0 is the peak power of the laser and *a* is the pulse width. The intensity distribution of the laser is modulated by the SLM. Therefore, the intensity distribution illuminating the target can be given by

$$P(\mathbf{r},t) = P_0 \exp\left[-\frac{t^2}{2a^2}\right] \cdot I(\mathbf{r}), \qquad (3)$$

where I(r) is the speckle pattern illuminating the target. Supposing that the optical receiving system can collect all the echo light from targets, the intensity reflected from the targets at the transverse coordinates r is described as

$$R(\mathbf{r},t) = I(\mathbf{r}) \cdot T(\mathbf{r}) P_0 \exp\left[-\frac{t^2}{2a^2}\right] g(t),$$

where T(r) is the reflectivity of the target and g(t) is the range-gate of the detector. In this system, the range-gate of this bucket detector is expressed as

$$g(t) = \sum_{n=1}^{N} \delta(t - t_1 - nT), \qquad (5)$$

where t_1 is the start time, T is the time step, and N is the total number of range gates. Suppose that $t_0^{(r)}$ is the time delay of the corresponding object at the transverse coordinates r. Submitting Eq. (5) into Eq. (4), the bucket detector received by gate n is given by

$$B(n) = \sum_{r} I(r) \cdot T(r) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)^2}{2a^2}\right].$$
 (6)

According to Eqs. (1) and (6), the *n*th slice of the correlation function of intensity fluctuations is expressed as

$$G^{(2)}(\mathbf{r},t_1+nT) = P_0 \exp\left[-\frac{(t_0^{(r)}-t_1-nT)^2}{2a^2}\right] G(r), \quad (7)$$

$$G(\mathbf{r}) = \frac{1}{M} \sum_{n=1}^{M} \left(\sum_{\mathbf{r}} I(\mathbf{r}) \cdot T(\mathbf{r}) \right) \cdot I_{s}(\mathbf{r}) - \frac{1}{M} \sum_{n=1}^{M} \left(\sum_{\mathbf{r}} I(\mathbf{r}) \cdot T(\mathbf{r}) \right) \cdot \frac{1}{M} \sum_{s=1}^{M} I_{s}(\mathbf{r}), \quad (8)$$

where G(r) is the ghost image at the transverse coordinate r. The number of measurement M should be very large to ensure a high enough SNR.

Through Eqs. (7) and (8), we can obtain *K* slices of intensity images. For transverse coordinate *r*, the maximum $G^{(2)}(r,t+nT)$ can be picked out and the corresponding *n* should be recorded as *m*. Therefore, in the conventional method, the distance between the target at transverse coordinate *r* and the detection system can be expressed as

$$d_{r} = \frac{c}{2} (t_{1} + mT) \quad \text{s.t.}$$

$$m = \arg \max \left\{ G^{(2)} (r, t_{1} + mT) \right\}_{m=1...K}.$$
 (9)

However, the range accuracy of this method is relatively low. In practice, the centroid method is utilized to process the ghost imaging slice.

With the help of Eq. (7), the distance at transverse coordinates r can be derived by the centroid method, which can be expressed as

$$d = \frac{c}{2} \frac{\sum_{n=1}^{N} (t_1 + nT) \left(G(\mathbf{r}) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)^2}{2a^2} \right] \right)}{\sum_{n=1}^{N} \left(G(\mathbf{r}) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)^2}{2a^2} \right] \right)}.$$
 (10)

Range accuracy is an important parameter to evaluate the quality of the 3D ghost imaging. Range accuracy $\Delta d = d - ct_0^{(r)}/2$ is given by

124202-2

(4)

$$\Delta d = \frac{c}{2} \frac{\sum_{n=1}^{N} \left(t_1 + nT - t_0^{(r)} \right) \left(G(r) P_0 \exp\left[-\frac{\left(t_0^{(r)} - t_1 - nT \right)^2}{2a^2} \right] \right)}{\sum_{n=1}^{N} \left(G(r) P_0 \exp\left[-\frac{\left(t_0^{(r)} - t_1 - nT \right)^2}{2a^2} \right] \right)}.$$
(11)

3. Analysis of the range accuracy of 3D ghost imaging

Equation (11) gives the range accuracy of 3D ghost imaging with the centroid method. When $t_1 - t_0^{(r)} = \frac{1}{2}nT$ and the *SNR* of intensity images is at a high value, range accuracy Δd should be 0. In ghost imaging, the noise is always larger than the signal in a single shot measurement. Thousands of measurements are performed and averaged to obtain the highquality intensity images. Suppose that there are *M*-shot measurements, the *SNR* of the ghost imaging is \sqrt{M} times larger than that of a single shot measurement.^[18] If the number of measurements is large enough, the *SNR* can be a considerable value. Nevertheless, the number of the measurements is not infinite. The influence of the noise on the 3D ghost imaging range accuracy cannot be ignored.

When the noise of intensity images is not small enough to be ignored, the ghost image is:

$$G(\mathbf{r}) = G'(\mathbf{r}) \left(1 + \frac{1}{SNR_n} \right), \tag{12}$$

where $G'(\mathbf{r})$ is the ghost image signal, and noise of ghost imaging can be expressed as noise $= G'(\mathbf{r})/SNR_n$. Submitting Eq. (11) into Eq. (12), the range accuracy is given as

$$\Delta d = \frac{c}{2} \frac{\sum_{n=1}^{N} (t_1 + nT - t_0^{(r)}) \left(G(r) \left(1 + \frac{1}{SNR_n} \right) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)}{2a^2} \right] \right)}{\sum_{n=1}^{N} \left(G(r) \left(1 + \frac{1}{SNR_n} \right) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)}{2a^2} \right] \right)}.$$
(13)

According to Eq. (13), the range accuracy changes with the slicing number. Figure 2 shows the variations of range accuracy with the slicing number for different *SNR* levels. The average *SNR* of all slices is utilized to value the *SNR* level, and average *SNR* is expressed as

$$SNR = \frac{1}{K} \sum_{n=1}^{K} SNR_n, \tag{14}$$

where *K* is the total number of slices. In Fig. 2, the average *SNR* values of all slices are selected as 1, 10, 100. If *SNR* is at a high level, the range accuracy improves with the increase of the slicing number. When the slicing number is selected to be above a certain value, the range accuracy does not change with the slicing number. If *SNR* is at a low level, the range accuracy improves rapidly like the high level *SNR* circumstance below a

Fig. 2. (color online) Variations of range accuracy with the slicing number for average *SNR* values of 1, 10, and 100.

certain slicing number. However, when the slicing number is above this slicing number, the influence of the noise becomes more and more intense. Range accuracy fluctuation greatly increases with slicing number increasing. Therefore, simply increasing the slicing number will reduce the range accuracy. The slicing number should be set as a particular value to ensure a high range accuracy. This particular value is defined as the optimum slicing number (OSN) of the system.

According to the above analysis, it can be concluded that the noise is a major factor influencing the range accuracy when the slicing number is greater than the OSN. When the slicing number is less than or equal to OSN, the range accuracies at different *SNR* levels are nearly the same. Therefore, we can use Eq. (11) to calculate the range of targets. Range accuracy is best when the slicing number is set as OSN. We propose to process each range slice according to the OSN and to synthesize the results into a full range image. The OSN method can be expressed as

$$d = \frac{c}{2} \frac{\sum_{m-N/2}^{m+N/2} (t_1 + nT) \left(G(r) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)^2}{2a^2} \right] \right)}{\sum_{m-N/2}^{m+N/2} \left(G(r) P_0 \exp\left[-\frac{(t_0^{(r)} - t_1 - nT)^2}{2a^2} \right] \right)},$$
(15)

where N is the OSN; n = 1, 2, 3, ...; and $G^{(2)}(\mathbf{r}, t_1 + nT)$ reaches the maximum value when n = m. Through Eq. (14),

we can determine the OSN which is considered as the key point for the OSN method. According to the definition of *m*, the maximum of the correlation function of intensity fluctuation $G^{(2)}(\mathbf{r},t_1+nT)_{\text{max}}$ is expressed as

$$G^{(2)}(\mathbf{r},t_1+nT)_{\max} = P_0 \exp\left[-\frac{(t_0^{(r)}-t_1-mT)^2}{2a^2}\right] G(r).$$
(16)

If $G^{(2)}(\boldsymbol{r},t_1+nT)$ satisfies the inequality

$$G^{(2)}(r,t_1+nT) < rac{G^{(2)}(r,t_1+nT)_{\max}}{SNR}$$

the contribution of the correlation function of intensity fluctuation $G^{(2)}(\mathbf{r},t_1+nT)$ to \mathbf{r} is less than that of the noise of $G^{(2)}(\mathbf{r},t_1+nT)_{\text{max}}$. In this case, these calculated intensity fluctuations are actually unreliable and should be rejected. According to Eq. (13), when n = m + N/2 and n = m - N/2, $G^{(2)}(\mathbf{r},t_1+nT)$ equals $G^{(2)}(\mathbf{r},t_1+nT)_{\text{max}}/SNR$. Utilizing Eqs. (7) and (15), the relationship is shown as

$$\begin{cases} \exp\left[-\frac{(t_0^{(r)} - t_1 - (m + \frac{N}{2})T)^2}{2a^2}\right] \\ = \frac{1}{SNR} \exp\left[-\frac{(t_0^{(r)} - t_1 - mT)^2}{2a^2}\right], \\ \exp\left[-\frac{(t_0^{(r)} - t_1 - (m - \frac{N}{2})T)^2}{2a^2}\right] \\ = \frac{1}{SNR} \exp\left[-\frac{(t_0^{(r)} - t_1 - mT)^2}{2a^2}\right]. \end{cases}$$
(17)

Solving Eq. (15), the OSN is given by

$$N = \frac{2}{T}\sqrt{2a^2\ln SNR}.$$
 (18)

The noise of ghost imaging originates from different combinations of field variations and shot noises.^[19,20] As to our system, *SNR* is dominated by the shot noise of a single pixel detector and the noise generated during the propagation of a speckle. The OSN method is a modified centriod method which can eliminate the influence of shot noise. Besides, the conventional centriod method utilizes all ghost imaging slices to calculate the range image. All the noise from slices without target information will reduce the 3D ghost imaging range accuracy. With the OSN method, only the slices containing target information are used to obtain the range image. Noises from useless slices cannot influence the range image. Therefore, the range accuracy of 3D ghost imaging with the OSN method is higher than that with the conventional method and the centriod method.

4. Experiment of 3D ghost imaging

In order to further illustrate that the OSN method can improve the range accuracy of 3D ghost imaging, the experiment is carried out. In our experimental system, a diode-pumped, active Qswitched Nd:YAG solid-state laser is used as a source. The wavelength of the laser is at 532 nm with a pulse width of 30 ns. The repetition frequency of a pulse is 10 Hz and the average energy of each pulse is 0.2 mJ. The laser is controlled by an external triggering.

The SLM in our system is a translucent liquid crystal SLM based on the amplitude. Its maximum frame rate is 60 Hz. In this experiment, the SLM works at a frame rate of 10 Hz. The active area of the SLM is 36.9 mm \times 27.6 mm and its pixel size is 32 μ m \times 32 μ m. The SLM is controlled by a computer which generates the random binary patterns, and transmits them to the SLM. The size of the random binary pattern is 1024×768 and the rate of change of the pattern on the SLM is 10 Hz.

The echoed signal is recorded by an ultrafast PIN photodiode with 1.5 GHz response frequency. There is a high-speed data acquisition card connected to the PIN photodiode and the sampling frequency of this data acquisition card is 200 MHz. The data acquisition card is used to record the echoed light from the target at the different time slices. The interval between every two slices is 10ns. This experiment performs 10000-times continuous measurements to obtain the experimental results.

A 75-mm aperture convex lens with a focal length of 300 mm is utilized as the optical receiving system. There is a 5-nm narrow-band filter with a wavelength of 532-nm positioned in front of the PIN photodiode. The experiment is conducted at night, and the narrow-band filter in the experiment is used to reduce the background noise as much as possible. This experiment is performed on condition that the laser pulse width is 10 ns, the *SNR* is 10, and the target is about 180m away. According to Eq. (16), the OSN of our experimental system is calculated to be 4.

The experimental targets and the 3D ghost imaging results obtained respectively by the conventional method, the centroid method and the OSN method are all shown in Fig. 3. Figure 3(a) shows the picture of the target and the range of this target is from 160 m to 190 m. Figures 3(b)-3(d) are the results of 3D ghost imaging, obtained by the conventional method, the centroid method and the OSN method respectively. As shown in Fig. 3(a), the target is a wall of a building. The normal direction of the target is not parallel to the illuminating direction. Figures 3(b)-3(d) are range images of the target in a red rectangular frame in Fig. 3(a), obtained by different methods. Different colors in these range images represent different ranges. Utilizing the colorbar and colors on the range images, range information can be obtained intuitively.

Results with different methods are not similar to each other. As shown in Fig. 3(a), the range of the wall from right to

left increases gradually. Therefore, the color of range images from right to left should changes from the blue to the red gradually. However, the color of Fig. 3(b) changes from right to left in a stepwise manner. There is an obvious boundary between different colors. The range accuracy of Fig. 3(b) is lower than that of Fig. 3(d). Although, the color of Fig. 3(c) changes gradually from right to left, there are many noise points in the range image. The range accuracy of Fig. 3(c) is also lower than that of Fig. 3(d). Unlike the colors of Figs. 3(b) and 3(c), the color of Fig. 3(d) changes gradually from right to left, and the number of noise points is less than those in Fig. 3(c). Of all the above, the range accuracy of OSN is highest, which is shown by comparing differences between Figs. 3(a), 3(b), and 3(c).

Furthermore, in order to illuminate that the range accuracy of Fig. 3(d) is better than those of Figs. 3(b) and 3(c) quantificationally, range accuracy values of Figs. 3(b)-3(d) are calculated respectively. We utilize the range root-mean-square error (RMSE) to evaluate the range accuracy. The RMSE is expressed as

$$\sigma = \sqrt{\sum_{i,j} \frac{(G_{i,j} - O_{i,j})^2}{i \times j}},$$
(19)

where $G_{i,j}$ is the range image value of the (i, j) target, obtained with one of the above methods, and $O_{i,j}$ is the real range value of the (i, j) target. (i, j) represents the coordinate of the range image. According to Eq. (17), the RMSE of Fig. 3(b) is $\sigma_1 = 1.47$ m; the RMSE of Fig. 3(c) is $\sigma_2 = 0.94$ m; and the RMSE of Fig. 3(d) is $\sigma_3 = 0.47$ m. By comparing the RMSEs of the range image obtained with different methods, it can be concluded that the range accuracy of Fig. 3(d) is higher than those of Figs. 3(b) and 3(c).

The experimental results and the calculated RMSEs illustrate that Fig. 3(d) accords more with the reality than Figs. 3(b)and 3(c). The range image of the target in Fig. 3(d) can correctly reflect the range information of the target. The range accuracy of Fig. 3(d) based on the OSN method is nearly a third higher than that of Fig. 3(b) obtained using the conventional method and twice higher than that of Fig. 3(c) obtained using the centriod method. The experimental results strongly support the theoretical analysis in the subsection.

5. Conclusions

In this paper, the relationship between the slicing number and the range accuracy of the 3D ghost imaging is established for different SNRs. An OSN of the 3D ghost imaging is determined in this paper. When the 3D ghost imaging system works with the OSN method, the highest range accuracy can be achieved. According to the theoretical demonstration and the experimental analysis, one can come to the conclusion that utilizing the advanced method proposed in this paper can enhance the range accuracy significantly, and provide the range information of the target effectively. This research could promote the development of 3D ghost imaging in practice.

References

- [1] Gatti A, Brambilla E and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
- [2] Gatti A, Bache M and Magatti D 2006 J. Mod. Opt. 53 739
- [3] Valencia A, Scarcelli G and D' Angelo M 2005 Phys. Rev. Lett. 94 063601
- [4] Gatti A, Magatti D and Bache M 2005 Phys. Rev. Lett. 94 183602

- [5] Basano L and Ottonello P 2006 Appl. Phys. Lett. 89 091109
- [6] Erkmen B I and Shapiro J H 2008 Phys. Rev. A 77 043809
- [7] Erkmen B I and Shapiro J H 2009 Phys. Rev. A 79 023833
- [8] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
- [9] Hardy N D and Shapiro J H 2011 Phys. Rev. A 84 063824
- [10] Cheng J 2009 Opt. Express 17 7916
- [11] Shi D, Fan C and Zhang P 2013 *Opt. Express* **21** 2050
- [12] Chan K W, O'Sullivan M N and Boyd R W 2009 Phys. Rev. A 79 033808
- [13] Duan D and Xia Y 2014 J. Opt. Soc. Am. 31 183
- [14] Li L Z, Yao X R and Liu X F 2014 Acta Phys. Sin. 63 224201 (in Chinese)
- [15] Gong W, Zhao C and Jiao J 2013 arXiv:1301.5767 [quant-ph]
- [16] Hong Y, Li E R and Gong W L 2015 Opt. Express 23 14541
- [17] Bache M, Brambilla E and Gatti A 2004 Opt. Express 12 6067
- [18] Cheng J, Han S and Yan Y 2006 Chin. Phys. 15 2002
- [19] Erkmen B I and Shapiro J H 2009 Phys. Rev. A 79 023833
- [20] Hardy N D and Shapiro J H 2010 SPIE Optical Engineering + Applications, August 30, 2010, San Diego, California, USA, p. 78150L

Chinese Physics B

Volume 24 Number 12 December 2015

	TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
120201	Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of
	developments and existing problems
	Yi Sha-Sha, Pan Cong and Hu Zhong-Han
120504	Computational studies on the interactions of nanomaterials with proteins and their impacts
	An De-Yi, Su Ji-Guo, Li Chun-Hua and Li Jing-Yuan
126101	Structural modeling of proteins by integrating small-angle x-ray scattering data
	Zhang Yong-Hui, Peng Jun-Hui and Zhang Zhi-Yong
128701	Knowledge-based potentials in bioinformatics: From a physicist's viewpoint
	Zheng Wei-Mou
128702	A multi-field approach to DNA condensation
	Ran Shi-Yong and Jia Jun-Li
128703	Theoretical studies on sRNA-mediated regulation in bacteria
	Chang Xiao-Xue, Xu Liu-Fang and Shi Hua-Lin
128707	Application of self-consistent field theory to self-assembled bilayer membranes
	Zhang Ping-Wen and Shi An-Chang
128709	Firing dynamics of an autaptic neuron
	Wang Heng-Tong and Chen Yong
	SPECIAL TOPIC — 8th IUPAP International Conference on Biological Physics
120202	The construction of general basis functions in reweighting ensemble dynamics simulations: Reproduce
	equilibrium distribution in complex systems from multiple short simulation trajectories
	Zhang Chuan-Biao, Li Ming and Zhou Xin
120501	Langevin approach with rescaled noise for stochastic channel dynamics in Hodgkin–Huxley neurons
	Huang Yan-Dong, Li Xiang and Shuai Jian-Wei
126402	Saturated sodium chloride solution under an external static electric field: A molecular dynamics study
	Ren Gan and Wang Yan-Ting
127308	Colloidally deposited nanoparticle wires for biophysical detection
	Sophie C. Shen, Liu Wen-Tao and Diao Jia-Jie
128201	Label-free surface-enhanced infrared spectro-electro-chemical analysis of the Redox potential shift of
	cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition
	Liu Li, Wu Lie, Zeng Li and Jiang Xiu-E

120202	Computational prediction of over-annotated protein-coung genes in the genome of Agrobatic tam tame-	
	faciens strain C58	
	Yu Jia-Feng, Sui Tian-Xiang, Wang Hong-Mei, Wang Chun-Ling, Jing Li and Wang Ji-Hua	
128704	Catch-bond behavior of DNA condensate under tension	
	Li Wei, Wong Wei-Juan, Lim Ci-Ji, Ju Hai-Peng, Li Ming, Yan Jie and Wang Peng-Ye	
128705	Comparison of ligand migration and binding in heme proteins of the globin family	
	Karin Nienhaus and G. Ulrich Nienhaus	
128708	One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers	
	Si Tie-Yan	
	TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research	
127504	Magnetocaloric effects in RTX intermetallic compounds ($R = Gd-Tm$, $T = Fe-Cu$ and Pd, $X = Al$ and	
	Si)	
	Zhang Hu and Shen Bao-Gen	
127505	Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications	

Computational prediction of over-approximated protein-coding genes in the genome of Agrabacterium tume-

Liu Xiao-Li, Yang Yong, Wu Jian-Peng, Zhang Yi-Fan, Fan Hai-Ming and Ding Jun

- 127506 Self-assembled superparamagnetic nanoparticles as MRI contrast agents - A review Su Hong-Ying, Wu Chang-Qiang, Li Dan-Yang and Ai Hua
- 128501 Real-space observation of individual skyrmions in helimagnetic nanostripes Jin Chi-Ming and Du Hai-Feng

RAPID COMMUNICATION

126301 Raman phonons in multiferroic FeVO₄ crystals Zhang An-Min, Liu Kai, Ji Jian-Ting, He Chang-Zhen, Tian Yong, Jin Feng and Zhang Qing-Ming

GENERAL

128202

- 120301 Thermal vacuum state corresponding to squeezed chaotic light and its application Wan Zhi-Long, Fan Hong-Yi and Wang Zhen
- 120302 Dynamics of super-quantum discord and direct control with weak measurement in open quantum system Ji Ying-Hua
- معند. مراكب من المحمد 120303 Decoherence of genuine multipartite entanglement for local non-Markovian-Lorentzian reservoirs
- 120304
- 120305
- 120306

120307 Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

Wang Le, Zhao Sheng-Mei, Gong Long-Yan and Cheng Wei-Wen

- 120401 Unstable and exact periodic solutions of three-particles time-dependent FPU chains Liu Qi-Huai, Xing Ming-Yan, Li Xin-Xiang and Wang Chao
- 120502 Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi₂ Li Xiao-Ping, Sun Shun-Ping, Yu Yun, Wang Hong-Jin, Jiang Yong and Yi Dan-Qing
- 120503 Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles Cheng Xue-Tao and Liang Xin-Gang
- 120601 Border effect-based precise measurement of any frequency signal Bai Li-Na, Ye Bo, Xuan Mei-Na, Jin Yu-Zhen and Zhou Wei
- 120701 Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginarytype activation functions

Huang Yu-Jiao and Hu Hai-Gen

ATOMIC AND MOLECULAR PHYSICS

- 123101 Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets Zhang Yue-Xia and Zhang Xiao-Long
- 123201 Comment on "Relativistic atomic data for W XLVII" by S. Aggarwal et al. [Chin. Phys. B 24 (2015) 053201]

Kanti M. Aggarwal

Fast-electron-impact study on excitations of 4d electron of xenon 123401

> Zhang Xin, Liu Ya-Wei, Peng Yi-Geng, Xu Long-Quan, Ni Dong-Dong, Kang Xu, Wang Yang-Yang, Qi Yue-Ying and Zhu Lin-Fan

123601 Solvation of halogen ions in aqueous solutions at 500 K-600 K under 100 atm

Shen Hao, Hao Ting and Zhang Feng-Shou

ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS re DS JHORC NSSICS B

- 124101 Design of ultra wideband microwave absorber effectual for objects of arbitrary shape Gong Yuan-Xun, Zhou Zhong-Xiang, Jiang Jian-Tang and Zhao Hong-Jie
- 124102 Propagation of an Airy-Gaussian beam in uniaxial crystals Zhou Mei-Ling, Chen Chi-Dao, Chen Bo, Peng Xi, Peng Yu-Lian and Deng Dong-Mei
- 124201 Propagation of rotating elliptical Gaussian beams from right-handed material to left-handed material Peng Xi, Chen Chi-Dao, Chen Bo and Deng Dong-Mei
- Increasing the range accuracy of three-dimensional ghost imaging ladar using optimum slicing number 124202 method

Yang Xu, Zhang Yong, Xu Lu, Yang Cheng-Hua, Wang Qiang, Liu Yue-Hao and Zhao Yuan

124203	Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO ₄ microchip laser	
	Zhang Shao-Hui, Zhang Shu-Lian, Tan Yi-Dong and Sun Li-Qun	
124204	Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited	
	Li Lu, Yan Pei-Guang, Wang Yong-Gang, Duan Li-Na, Sun Hang and Si Jin-Hai	
124205	Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod	
	having Gaussian pump profile	
	M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar and A Maleki	
124206	Effects of 946-nm thermal shift and broadening on Nd ³⁺ :YAG laser performance	
	Seyed Ebrahim Pourmand and Ghasem Rezaei	
124207	Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by	
	MOVPE	
	Lü Hai-Yan, Mu Qi, Zhang Lei, Lü Yuan-Jie, Ji Zi-Wu, Feng Zhi-Hong, Xu Xian-Gang and Guo Qi-Xin	
124208	Tunable negative-index photonic crystals using colloidal magnetic fluids	
	Geng Tao, Wang Xin, Wang Yan and Dong Xiang-Mei	
124209	Strictly non-blocking 4×4 silicon electro–optic switch matrix	
	Zhou Pei-Ji, Xing Jie-Jiang, Li Xian-Yao, Li Zhi-Yong, Yu Jin-Zhong and Yu Yu-De	
124301	Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer	
	damping	
	Yuan Li-Yun, Xiang Yu, Lu Jing and Jiang Hong-Hua	
124302	Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model	
	Yuan Yi and Li Xiao-Li	
124701	Application of Arnoldi method to boundary layer instability	
	Zhang Yong-Ming and Luo Ji-Sheng	
	PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES	
125201	Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma	
	H. Kakati and S. M. Borah	
125202	A computational modeling study on the helium atmospheric pressure plasma needle discharge	
	Qian Mu-Yang, Yang Cong-Ying, Liu San-Qiu, Wang Zhen-Dong, Lv Yan and Wang De-Zhen	
125203	A two-dimensional model of He/O ₂ atmospheric pressure plasma needle discharge	
	Qian Mu-Yang, Yang Cong-Ying, Chen Xiao-Chang, Liu San-Qiu, Yan Wen, Liu Fu-Cheng and Wang De-Zhen	
	CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES	
126102	Relationship between Voronoi entropy and the viscosity of Zr ₃₆ Cu ₆₄ alloy melt based on molecular dy-	
	namics	
	Gao Wei, Feng Shi-Dong, Zhang Shi-Liang, Qi Li and Liu Ri-Ping	
126103	Krypton ion irradiation-induced amorphization and nano-crystal formation in pyrochlore $Lu_2Ti_2O_7$ at	
	room temperature	
	Xie Qiu-Rong, Zhang Jian, Yin Dong-Min, Guo Qi-Xun and Li Ning	

126104	Effect of combined platinum and electron on the temperature dependence of forward voltage in fast	
	recovery diode	
	Jia Yun-Peng, Zhao Bao, Yang Fei, Wu Yu, Zhou Xuan, Li Zhe and Tan Jian	
126201	Electronic structures and magnetisms of the $\text{Co}_2\text{TiSb}_{1-x}\text{Sn}_x$ ($x = 0, 0.25, 0.5$) Heusler alloys: A theo-	
	retical study of the shape-memory behavior	
	Wang Li-Ying, Dai Xue-Fang, Wang Xiao-Tian, Lin Ting-Ting, Chen Lei, Liu Ran, Cui Yu-Ting and Liu	
	Guo-Dong	
126302	Material properties dependent on the thermal transport in a cylindrical nanowire	
	Zhang Yong, Xie Zhong-Xiang, Deng Yuan-Xiang, Yu Xia and Li Ke-Min	
126401	Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples:	
	Phase-field simulation	
	Li Yong-Sheng, Wu Xing-Chao, Liu Wei, Hou Zhi-Yuan and Mei Hao-Jie	
126403	Multiple patterns of diblock copolymer confined in irregular geometries with soft surface	
	Li Ying, Sun Min-Na, Zhang Jin-Jun, Pan Jun-Xing, Guo Yu-Qi, Wang Bao-Feng and Wu Hai-Shun	
126701	Interfacial and electrical characteristics of a HfO ₂ /n–InAlAs MOS-capacitor with different dielectric	
	thicknesses	
	Guan He, Lv Hong-Liang, Guo Hui, Zhang Yi-Men, Zhang Yu-Ming and Wu Li-Fan	
126801	Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H–SiC	
	Zhou Tian-Yu, Liu Xue-Chao, Huang Wei, Zhuo Shi-Yi, Zheng Yan-Qing and Shi Er-Wei	
	CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTI-	
	CAL PROPERTIES	
127101	First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties	
	of β -US $_2$	
	Li Shi-Chang, Zheng Yuan-Lei, Ma Sheng-Gui, Gao Tao and Ao Bing-Yun	
127301	Spin-valley quantum Hall phases in graphene	
	Tian Hong-Yu	
127302	Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the	
	terahertz regime	
	Wang Yue, Zhang Li-Ying, Mei Jin-Shuo, Zhang Wen-Chao and Tong Yi-Jing	
127303	Shape effects on the ground-state energy of a three-electron quantum dot	
	Z. D. Vatansever, S. Sakiroglu and İ. Sokmen	
127304	High- k gate dielectric GaAs MOS device with LaON as interlayer and NH $_3$ -plasma surface pretreatment	
	Liu Chao-Wen, Xu Jing-Ping, Liu Lu and Lu Han-Han	
127305	Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI)	
	of high-k/metal gate nMOSFETs with gate-last process	
	Qi Lu-Wei, Yang Hong, Ren Shang-Qing, Xu Ye-Feng, Luo Wei-Chun, Xu Hao, Wang Yan-Rong, Tang Bo,	
	Wang Wen-Wu, Yan Jiang, Zhu Hui-Long, Zhao Chao, Chen Da-Peng and Ye Tian-Chun	

127306 Investigation of trap states in Al₂O₃ InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors

Zhang Peng, Zhao Sheng-Lei, Xue Jun-Shuai, Zhu Jie-Jie, Ma Xiao-Hua, Zhang Jin-Cheng and Hao Yue

- 127307 Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes Yu Xiao-Xia, Zhou Yan, Liu Jia, Jin Hai-Bo, Fang Xiao-Yong and Cao Mao-Sheng
- **127309** Multi-step shot noise spectrum induced by a local large spin Niu Peng-Bin, Shi Yun-Long, Sun Zhu and Nie Yi-Hang
- **127401** First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa Liu Lei, Lv Chao-Jia, Zhuang Chun-Qiang, Yi Li, Liu Hong and Du Jian-Guo
- **127402** Study of Nb/Nb_xSi_{1-x}/Nb Josephson junction arrays Cao Wen-Hui, Li Jin-Jin, Zhong Yuan and He Qing
- 127501 Observation of spin glass transition in spinel LiCoMnO₄ Chen Hong, Yang Xu, Zhang Pei-Song, Liang Lei, Hong Yuan-Ze, Wei Ying-Jin, Chen Gang, Du Fei and Wang Chun-Zhong
- 127502 Structure, morphology, and magnetic properties of high-performance NiCuZn ferriteHe Xue-Min, Yan Shi-Ming, Li Zhi-Wen, Zhang Xing, Song Xue-Yin, Qiao Wen, Zhong Wei and Du You-Wei
- 127503 Fabrication and magnetic properties of 4SC(NH₂)₂-Ni_{0.97}Cu_{0.03}Cl₂ single crystals Chen Li-Min, Guo Ying, Liu Xu-Guang, Xie Qi-Yun, Tao Zhi-Kuo, Chen Jing, Zhou Ling-Ling and Liu Chun-Sheng
- 127507 Al-doping-induced magnetocapacitance in the multiferroic AgCrS₂ Liu Rong-Deng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Liu Yun-Tao, Chen Dong-Feng, Zhang Sen, Zhao Yong-Gang and Wang Fang-Wei
- 127508 Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca₃CoNb₂O₉ Dai Jia, Zhou Ping, Wang Peng-Shuai, Pang Fei, Tim J. Munsie, Graeme M. Luke, Zhang Jin-Shan and Yu Wei-Qiang

DRS

- Multifold polar states in Zn-doped Sr_{0.9}Ba_{0.1}TiO₃ ceramicsGuo Yan-Yan, Guo Yun-Jun, Wei Tong and Liu Jun-Ming
- **127702** First-principles study of the relaxor ferroelectricity of Ba(Zr, Ti)O₃ Yang Li-Juan, Wu Ling-Zhi and Dong Shuai
- 127703 Comparative research on the optical properties of three surface patterning ZnO ordered arrays Hou Kai, Zhu Ya-Bin and Qiao Lu
- 127704 Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST Du Hong-Lei, Xue Qian, Gao Xiao-Yang, Yao Feng-Rui, Lu Shi-Yang, Wang Ye-Long, Liu Chun-Heng, Zhang Yong-Cheng, Lü Yue-Guang and Li Shan-Dong
- 127801 Variation of efficiency droop with quantum well thickness in InGaN/GaN green light-emitting diode Liu Wei, Zhao De-Gang, Jiang De-Sheng, Chen Ping, Liu Zong-Shun, Zhu Jian-Jun, Li Xiang, Liang Feng, Liu Jian-Ping and Yang Hui

127802 Optical properties of F- and H-terminated armchair silicon nanoribbons

Lu Dao-Bang, Pu Chun-Ying, Song Yu-Ling, Pan Qun-Na, Zhou Da-Wei and Xu Hai-Ru

127803 Dielectric and magnetic properties of (Zn, Co) co-doped SnO₂ nanoparticles Rajwali Khan and Fang Ming-Hu

INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

- **128101** Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors Ma Liu-Hong, Han Wei-Hua, Wang Hao, Yang Xiang and Yang Fu-Hua
- **128401 Optimal satisfaction degree in energy harvesting cognitive radio networks** Li Zan, Liu Bo-Yang, Si Jiang-Bo and Zhou Fu-Hui
- **128706** Al-doping influence on crystal growth of Ni–Al alloy: Experimental testing of a theoretical model Rong Xi-Ming, Chen Jun, Li Jing-Tian, Zhuang Jun and Ning Xi-Jing
- **128710** Energy dependence on the electric activities of a neuron Song Xin-Lin, Jin Wu-Yin and Ma Jun
- 128711 Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T_2^* -w magnetic resonance imaging

Yu Shao-De, Wu Shi-Bin, Wang Hao-Yu, Wei Xin-Hua, Chen Xin, Pan Wan-Long, Hu Jiani and Xie Yao-Qin

GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS

129501 Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models

Xia Wei, Dai Xiao-Xia and Feng Yuan

