About
17
Publications
23,305
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,857
Citations
Introduction
Current institution
Additional affiliations
February 2015 - present
November 2008 - present
July 2002 - November 2008
Publications
Publications (17)
The idea that memory is stored in the brain as physical alterations goes back at least as far as Plato, but further conceptualization of this idea had to wait until the 20(th) century when two guiding theories were presented: the "engram theory" of Richard Semon and Donald Hebb's "synaptic plasticity theory." While a large number of studies have be...
Stress is considered a potent environmental risk factor for many behavioural abnormalities, including anxiety and mood disorders. Animal models can exhibit limited but quantifiable behavioural impairments resulting from chronic stress, including deficits in motivation, abnormal responses to behavioural challenges, and anhedonia. The hippocampus is...
How memories are formed and stored in the brain remains a fascinating question in neuroscience. Here we discuss the memory engram theory, our recent attempt to identify and manipulate memory engram cells in the brain with optogenetics, and how these methods are used to address questions such as how false memory is formed and how the valence of a me...
The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying...
Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear con...
Can You Trust Your Memory?
Being highly imaginative animals, humans constantly recall past experiences. These internally generated stimuli sometimes get associated with concurrent external stimuli, which can lead to the formation of false memories. Ramirez et al. (p. 387 ; see the cover) identified a population of cells in the dentate gyrus of the...
With the accumulation of our knowledge about how memories are formed, consolidated, retrieved, and updated, neuroscience is now reaching a point where discrete memories can be identified and manipulated at rapid timescales. Here, we start with historical studies that lead to the modern memory engram theory. Then, we will review recent advances in m...
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is...
Optogenetic methods use light to modulate the activities of target cells in vivo. By improving inter- and intracellular trafficking of light-sensitive switch proteins called opsins, Gradinaru et al. (2010) have developed a new generation of optogenetic tools capable of regulating the activity of targeted neurons with exquisite precision and efficie...
Assigning a gene's function to specific pathways used for classical conditioning, such as conditioned stimulus (CS) and unconditioned stimulus (US) pathway, is important for understanding the fundamental molecular and cellular mechanisms underlying memory formation. Prior studies have shown that the GABA receptor RDL inhibits aversive olfactory lea...
Daily sleep cycles in humans are driven by a complex circuit within which GABAergic sleep-promoting neurons oppose arousal. Drosophila sleep has recently been shown to be controlled by GABA, which acts on unknown cells expressing the Rdl GABAA receptor. We identify here the relevant Rdl-containing cells as PDF-expressing small and large ventral lat...
GABAergic neurotransmitter systems are important for many cognitive processes, including learning and memory. We identified a single neuron in each hemisphere of the Drosophila brain, the anterior paired lateral (APL) neuron, as a GABAergic neuron that broadly innervated the mushroom bodies. Reducing GABA synthesis in the APL neuron enhanced olfact...
In both mammals and insects, neurons involved in learning are strongly modulated by the inhibitory neurotransmitter GABA. The GABAA receptor, resistance to dieldrin (Rdl), is highly expressed in the Drosophila mushroom bodies (MBs), a group of neurons playing essential roles in insect olfactory learning. Flies with increased or decreased expression...
Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in an...