Xonia Carvajal-Vergara

Xonia Carvajal-Vergara
Universidad de Navarra | UNAV · Division of Gene Therapy and Hepatology

About

34
Publications
2,807
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,690
Citations
Citations since 2017
12 Research Items
536 Citations
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100

Publications

Publications (34)
Article
Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo’s epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced P...
Preprint
Full-text available
The generation of organs from stem cells by blastocyst complementation is a promising approach to cover the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here we used a lineage-specific cell...
Article
Full-text available
Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For th...
Preprint
Full-text available
Little is known about the heterogeneity existent in human naïve pluripotent stem cell (hPSC) cultures. In this study, we applied single-cell RNA sequencing to define heterogeneous cell populations present in human naïve 5iLAF cultures. While Epiblastlike cells represented the main cell population, noteworthily we detected a population with a trophe...
Article
Full-text available
Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the de...
Article
Full-text available
The success of cell therapy for the treatment of myocardial infarction depends on finding novel approaches that can substantially implement the engraftment of the transplanted cells. In order to enhance cell engraftment, most studies have focused on the pretreatment of transplantable cells. Here we have considered an alternative approach that invol...
Article
Full-text available
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at leas...
Article
Full-text available
We have generated two human induced pluripotent stem cell (iPSC) lines from CD133 ⁺ cells isolated from umbilical cord blood (CB) of a female child using non-integrative Sendai virus. Here we describe the complete characterization of these iPSC lines: PRYDi-CB5 and PRYDi-CB40.
Article
Full-text available
Islet-1 (Isl1) is a transcription factor essential for life expressed in specific cells with different developmental origins. We have generated iPSC lines from fibroblasts of the transgenic Ai6 x Isl1-Cre (Ai6IslCre) mouse. Here we describe the complete characterization of four iPSC lines: ATCi-Ai6IslCre10, ATCi-Ai6IslCre35, ATCi-Ai6IslCre74 and AT...
Chapter
The field of regenerative medicine has made great progress with the development of cell reprogramming and gene editing techniques. The option to derive pluripotent cells from somatic cells by overexpression of pluripotent factors or specific molecules, and even more the possibility to reprogram one somatic cell type to another somatic cell type in...
Article
Full-text available
We generated ATCi-MF1 induced pluripotent stem (iPS) cell line from Macaca fascicularis adult skin fibroblasts using non-integrative Sendai viruses carrying OCT3/4, KLF4, SOX2 and c-MYC. Once established, ATCi-MF1 cells present a normal karyotype, is Sendai virus-free and express pluripotency associated markers. Microsatellite markers analysis conf...
Article
Full-text available
Heart disease remains one of the leading causes of mortality. In contrast to adult teleost fish and amphibians, in adult mammals the resident cardiac cells are not able to regenerate heart tissue and restore efficiently the cardiac function after heart failure, being hypertrophy the most relevant compensation for the loss of cardiomyocytes. Since t...
Article
Full-text available
Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC...
Article
Full-text available
Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC...
Data
Document S1. Supplemental Experimental Procedures, Figures S1–S3, and Tables S1–S3
Article
Full-text available
Mef2c Anterior Heart Field (AHF) enhancer is activated during embryonic heart development and it is expressed in multipotent cardiovascular progenitors (CVP) giving rise to endothelial and myocardial components of the outflow tract, right ventricle and ventricular septum. Here we have generated iPSC from transgenic Mef2c-AHF-Cre x Ai6(RCLZsGreen) m...
Article
Full-text available
j.stemcr.2014.10.008 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). SUMMARY Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors an...
Article
Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a sho...
Article
Full-text available
A variety of human inherited heart diseases affect the normal functions of cardiomyocytes (CMs), endothelial cells (ECs), or smooth muscle cells (SMCs). To study human heart disease and generate cardiac cells for basic and translational research, an efficient strategy is needed for production of cardiac lineages from human stem cells. In the presen...
Article
The development of induced pluripotent stem cell (iPSC) technology has led to many advances in the areas of directed cell differentiation and characterization. New methods for generating iPSC-derived cardiomyocytes provide an invaluable resource for the study of certain cardiovascular disorders. This review highlights the current technology in this...
Article
Full-text available
The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym for...
Article
Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility...
Article
Full-text available
Multiple myeloma represents an incurable disease, for which development of new therapies is required. Here, we report the effect on myeloma cells of LBH589, a new hydroxamic acid-derived histone deacetylase inhibitor. LBH589 was a potent antimyeloma agent (IC(50) < 40 nmol/L) on both cell lines and fresh cells from multiple myeloma patients, includ...
Article
Full-text available
We explored the ability of the proteasome inhibitor bortezomib, which prevents nuclear factor kappaB (NF-kappaB) activation, to block T-cell activation, proliferation, and survival within alloreactive compared with resting T cells. For this purpose, T cells were stimulated with PHA, alphaCD3/alphaCD28, or allogeneic dendritic cells or through mixed...
Article
Full-text available
Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour c...
Article
The NF-kB family has emerged as a key transducer of inflammatory signals involved in dendritic cell maturation and T lymphocyte activation. Accordingly, the diverse signaling pathways downstream of TCR/CD3 converge on several transcription factors including NFAT, AP-1 and NF-kB. We explored the ability of the proteosome inhibitor bortezomib, which...
Article
Full-text available
Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway,...
Article
The development of novel targeted therapies in Multiple Myeloma (MM) has opened promising expectations for the treatment of this incurable hematological malignancy. However, the molecular mechanisms of both novel biologically based therapies and conventional treatments are still unclear. The purpose of the present study was to evaluate the changes...
Article
c-Kit has been shown to be mutated in several types of tumours, and its activity has been correlated with increased proliferation rates in a subset of multiple myeloma (MM) patients. We have investigated the effect of imatinib mesylate (STI571), an inhibitor of c-Kit, on MM cells. STI571 inhibited the proliferation of MM cells by arresting cell cyc...

Network

Cited By