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Abstract—Active damping and harmonic compensation are 

two common challenges faced by LCL-filtered voltage source 
converters. To manage them holistically, this paper begins by 
proposing a virtual RC damper in parallel with the passive filter 
capacitor. The virtual damper is actively inserted by feeding back 
the passive capacitor current through a high-pass filter, which 
indirectly, furnishes two superior features. They are the 
mitigation of phase lag experienced by a conventional damper 
and the avoidance of instability caused by the negative resistance 
inserted unintentionally. Moreover, with the virtual RC damper, 
the frequency region, within which the harmonic compensation is 
effective, can be extended beyond the gain crossover frequency. 
This is of interest to some high-performance applications, but has 
presently not been achieved by existing schemes. Performance of 
the proposed scheme has been tested in the laboratory with 
results obtained for demonstrating stability and harmonic 
compensation. 
 

Index Terms—Active damping, stability, resonance, voltage 
source converters, harmonic compensation 
 

I. INTRODUCTION 

CL filters have widely been used with grid-connected 
voltage source converters due to their better switching 

ripple attenuation and smaller volumes when compared to L 
filters [1]. However, the presence of LCL resonance 
complicates the converter control and its sensitivity to 
harmonics [2], which can, at times, be worsened by other 
paralleled converters with their own resonances [3], [4]. This 
challenge cannot be ignored especially with more nonlinear 
and electronic loads connected to the grid. In addition, if the 
grid voltages are distorted, they tend to cause the grid 
converters to generate current harmonics, which often require 
the use of multiple resonant controllers for selective harmonic 
compensation [5]. Hence, it is necessary for the converters to 
be controlled such that they meet grid codes with effective 
harmonic disturbance rejection and resonance damping. 

The combined requirements of resonance damping and 
selective harmonic compensation are generally tough to 
achieve simultaneously for grid converters. The latter, in 
particular, demands for multiple resonant current controllers to 
be used [6]-[8], which in theory, are multiple control functions 
developed for selective harmonic compensation. They should 
hence not be confused with the oscillatory LCL resonance. 

Both concepts (selective harmonic compensation and LCL 
resonance damping) must however be considered together, 
before an optimized solution can be developed. 

Beginning with selective harmonic compensation, the 
design of resonant controllers for converters with L filters has 
presently been well documented, where it has been shown that 
harmonics up to the Nyquist frequency can be effectively 
compensated [9]-[11]. The same, however, does not apply to 
LCL-filtered converters, where the use of resonant controllers 
for compensating harmonics around the LCL resonance is 
particularly challenging [9]. To avoid unnecessary 
complications, resonant controllers for LCL-filtered converters 
are usually placed below the gain crossover frequency, defined 
by the proportional gain of the current control loop [12], [13]. 
The purpose is to decouple the stability of resonant controllers 
from the influence of the LCL resonance. Although effective, 
this approach has two restrictions. The first is the 
unintentional limitation of compensating frequency ranges of 
the LCL-filtered converters, as compared to the L-filtered 
converters, whose influence on high-performance applications 
are even more prominent [14], [15]. The second is a large 
safety margin needed for accounting grid impedance variation, 
which may shift the gain crossover frequency over a wide 
range. That shifting may cause Phase Margin (PM) of the 
overall control system to be reduced near the gain crossover 
frequency, leading to unstable harmonic compensation [13]. 

It is therefore of interest to extend the frequency 
compensation range of resonant controllers, which in theory, 
is possible only after damping the LCL resonance effectively. 
Damping of LCL resonance is particularly important for a 
weak grid, where grid impedance and hence LCL resonance 
frequency vary widely. These variations can more easily cause 
instability if external damping is not employed. It is therefore 
necessary to have external damping, where the simplest 
approach is to add a passive damping resistor to the LCL filter. 
Adding a physical resistor will however inevitably raise the 
total power loss [16], [17]. Active damping methods are 
therefore preferred, which can either be implemented by 
cascading digital filters in series with the current controllers 
[18] or feeding back additional filter variables [2], [19]-[28]. 
In [20] and [21], voltage across the filter capacitor has been 
fed back through a lead-lag filter, which upon considering the 
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relationship between capacitor voltage and current, is 
equivalent to the feedbacks of both filter capacitor voltage and 
current through low-pass filters. In [22], the capacitor voltage 
has been predicted and fed back through a high-pass filter for 
damping purposes. This method is equivalent to the feeding 
back of capacitor current through a low-pass filter, if the 
relationship between capacitor voltage and current is again 
considered. 

Therefore, instead of the capacitor voltage, the capacitor 
current can be measured explicitly for damping purposes, 
where the most common is through a proportional gain [2], 
[23]-[28]. This feedback method has subsequently been 
proven to be equivalent to the addition of a virtual resistor 
across the filter capacitor [24]. That equivalence changes to a 
virtual impedance when digital sampling, computational and 
modulation delays are considered [25]. Identified effects of the 
virtual impedance include a shifting of filter resonance 
frequency caused by its imaginary term, and the creation of a 
real term which may be negative depending on the ratio of the 
filter resonance to control frequency [26]. 

The negative resistance, if introduced accidentally, will add 
open-loop Right-Half-Plane (RHP) poles to the control loop 
[25], of which the closed-loop response will then have a non-
minimum phase characteristic. To mitigate the non-minimum 
phase behaviour, a straightforward method is to reduce the 
computational delay by shifting the sampling instant of the 
capacitor current [26]. Although simple, its implementation is 
susceptible to aliasing error when measuring the capacitor 
current. Another method is to predict the capacitor current 
with an observer [27] or a discrete-time derivative controller 
[28]. These methods provide satisfactory resonance damping 
even with grid impedance variation, but they do not address 
the interaction between active damping and harmonic 
compensation, which can be critical around the LCL resonance 
frequency. 

The challenges identified from the literature can therefore 
be summarized, as follows. 
 Unnecessarily constraining of harmonic compensation 

range by merely using the resonant controllers below 
the gain crossover frequency. The compensation range 
can in practice be extended, but the new upper limit has 
presently not been identified. 

 Proportional active damping that may not function well 
when implemented digitally. This is caused by the 
negative resistance unintentionally introduced by the 
system delays. This complication and its consequent 
non-minimum phase characteristic of the closed-loop 
response have presently not been resolved fully. 

 Interaction between the active damper and resonant 
harmonic controllers has presently not been addressed 
thoroughly. Most research works have focused on 
either of them, rather than both of them in coordination. 

To address these issues holistically, this paper proposes first 
a virtual RC damper for damping LCL resonance robustly even 
with a wide grid inductance variation. Realizing the damper is 
relatively easy, involving only a high-pass filter added to the 
capacitor current feedback loop for mitigating delays. Upon 

damped appropriately, the effective harmonic compensation 
range of the LCL-filtered converters can then be extended 
beyond the traditional gain crossover frequency through 
coordinated design with the RC damper. Related findings have 
been verified experimentally with results presented in a later 
section. 

II. SYSTEM DESCRIPTION 

Fig. 1 shows a three-phase grid-connected voltage source 
converter with an LCL-filter, whose parameters used for 
design are summarized in Table I. For simplicity, the DC-link 
voltage Vdc of the converter can be treated as constant, while 
its grid synchronization bandwidth can be assumed as smaller 
than the grid fundamental frequency to avoid unintentional 
low-frequency instability [29]. This structure has earlier been 
shown by [23] to have an inherent damping effect even when 
only a single control loop is used for regulating the grid 
current i2. The only condition demanded is for the LCL 
resonance frequency to be placed above one-sixth of the 
system control frequency fs/6, which in [23], is named as the 
critical frequency. This region is however not attractive 
because of its poorer switching harmonic filtering, which in 
general, compromises the purpose of having a LCL filter [23]. 
Moreover, the wide variation of grid impedance in weak grids 
may shift the LCL resonance frequency in a wide spectrum 
across fs/6, giving rise to instability if no external active 
damping is employed.  

To illustrate where the external active damping can be 
inserted, Fig. 2 shows the per-phase block diagram of a typical 
double-loop current control scheme for the converter shown in 
Fig. 1. The inner filter capacitor current feedback loop is 
mainly for active LCL resonance damping, whose effect can 
be tuned by the active damping function Ga(s). The outer grid 
current control loop with controller Gc(s) is, on the other hand, 
for regulation purposes, in synchronism with the voltage at the  

 
TABLE I 

MAIN PARAMETERS OF GRID-CONNECTED CONVERTER 

Symbol Meaning Value 

Vg Grid voltage  400V 
f1 Grid frequency 50 Hz 
fsw Switching frequency 10 kHz  
fs Sampling frequency 10 kHz 
Ts Sampling period 100 μs 
Vdc DC-link voltage  800 V 
L1 Converter-side filter inductor 3.6 mH 
L2 Grid-side filter inductor 1 mH 
Cf Filter capacitor 4.7 μF 

 
 

 

Fig. 1.  A three-phase grid-connected voltage source converter with an LCL 
filter. 



 

 

Fig. 2.  Per-phase diagram of grid current control loop with external capacitor-
current active damping. 
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(b) (c) 
 

Fig. 3.  Equivalent representation of capacitor-current active damping. (a) 
Block diagram representation. (b) Equivalent circuit with delays considered. 
(c) Equivalent circuit of proportional controller without considering delays. 

 
Point of Common Coupling (PCC). Both control loops are 
affected by control delays, which have collectively been 
represented by Gd(s) in (1), in terms of sampling time Ts [30]. 
 

1.5( ) sT s
dG s e  (1) 

 
To better understand the illustrated active damping, Fig. 2 

has been redrawn as Fig. 3(a), which in circuit notation, 
represents an impedance Zad(s) appearing across the filter 
capacitor Cf. This notation has been drawn in Fig. 3(b), which 
for the proportional Ga(s) expressed in (2), leads to the 
resistive damper shown in Fig. 3(c), if delays are ignored 
(Zad(s) = Rad). 
 

( )a adG s K  (2) 

 
With delays included, impedance Zad(s) cannot be simplified, 
and is represented by (3) [26]. 
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ad f

L
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The imaginary term in (3) can, in principle, cause the LCL 
resonance frequency to vary, while its real term can become 
negative if the LCL resonance frequency is located between 
fs/6 and the Nyquist frequency fs/2. The latter implies an 
ineffective active damping with the non-minimum phase grid 
current behavior expected, owing to the presence of open-loop 

RHP poles. Proportional active damping expressed in (2) is 
therefore not a robust solution, as compared to the proposed 
RC damper to be discussed in the following. 

III. PROPOSED VIRTUAL RC DAMPER 

A. Basic Principle 

Fig. 4 shows the proposed active RC damper, which unlike 
(2), has an additional first-order high-pass filter included. The 
resulting transfer function can thus be expressed as (4), where 
Krc and ωrc represent its gain and cut-off frequency. 
 

( ) rc
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rc
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s ω
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Corresponding equivalent circuits representing the proposed 
scheme can also be drawn as in Fig. 5, where a virtual series 
RC damper can clearly be seen if delays are ignored. 
Expressions for the damper without considering delays can 
specifically be derived as (5). 
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These expressions change to (6) after incorporating delays. 
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Unlike (3) for proportional capacitor-current feedback, the 

real and imaginary terms of (6) include a second expression, 
which can be tuned by Crc. This is helpful since the likelihood  
 

 

Fig. 4.  Block diagram of proposed virtual RC damper. 

 

  

(a) (b) 
 

Fig. 5.  Equivalent circuit of proposed virtual RC damper (a) with and (b) 
without delays considered.  



 

 

Fig. 6.  Relationship between ωnr and ωrc.   

 
of Re{Zrc} being negative can now be lessened by tuning. To 
illustrate, the frequency ωnr, above which Re{Zrc} becomes 
negative, can be tabulated in terms of the filter cutoff 
frequency ωrc, as shown in Fig. 6. At ωrc = 0, Fig. 6 also gives 
ωnr for the proportional capacitor-current feedback scheme, 
which as earlier mentioned, is ωnr = s/6 = 2fs/6. Above ωrc = 
0, ωnr increases, which to a great extent, has demonstrated that 
the delay-induced phase lag has been compensated by the 
added high-pass filter. Re{Zrc} is thus less likely to be 
negative. The improvement is however not limitless, which 
according to Fig. 6, saturates around ωnr = s/3. A system with 
LCL resonance frequency located between s/3 and s/2 
(Nyquist frequency) is therefore always burdened by the non-
minimum-phase response, even with the proposed active RC 
damper included. It is thus a limitation of the proposed RC 
damper. 

B. Robustness Evaluation and Parameter Tuning 

For evaluating robustness subject to wide grid inductance 
variation, z-domain root locus analysis is performed on the 
scheme shown in Fig. 4. Two transfer functions of the “plant” 
(converter and LCL filter) are necessary, and are hence 
derived accordingly. The first is obtained by applying Zero-
Order-Hold (ZOH) discretization to Gvc(s) in (7) for relating 
the converter output voltage and filter capacitor current. The 
second is obtained by applying impulse invariant 
transformation to Gcg(s) in (7) for relating the filter capacitor 
current and grid current [23]. The resulting transfer functions 
obtained are given in (8) and (9), where ωres represents the 
LCL resonance frequency. 
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The high-pass filter used for the virtual RC damper can next 
be discretized by Tustin transformation, which is expressed in 
(10).  
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Combining (8) to (10), Fig. 7 shows the closed-loop pole 

trajectory of grid current control scheme, where Gc(s) in Fig. 4 
is assumed to be a simple proportional gain designed with 
(L1+L2) considered and for a PM of 45 [19]. The pole 
movement caused by the high-pass filter gain Krc is plotted 
when its cut-off frequency ωrc is swept from 0 to 2ωs with a 
step of 0.2ωs. In total, three grid inductance values are 
evaluated with the LCL filter parameters listed in Table I, 
which give three resonance frequencies centered around the 
critical frequency of fs/6 = 1.67 kHz. 

Beginning with Fig. 7(a) for a resonance frequency of 2.6 
kHz and Lg = 0 mH, it can clearly be seen that the poles 
mostly stay within the dashed unit circle. This is due to the 
inherent resonance damping effect brought by placing the 
resonance frequency above the critical frequency. In contrast, 
Fig. 7(b) and (c) show the poles initially out of the unit circle, 
since their resonance frequencies are smaller than fs/6, and 
hence do not exhibit inherent damping. The poles will 
however track back within the unit circle as Krc increases, 
implying stability. In addition, Fig. 7 shows that with ωrc = 0 
or the proportional capacitor-current damping, the upper limit 
of Krc is much reduced since ωnr (see Fig. 6) is much smaller, 
and hence closer to the LCL resonance frequency. Where 
necessary, ωrc should hence be increased to raise ωnr, before 
the upper limit of Krc can be increased. 

In conclusion, the design of the virtual RC damper should 
proceed by selecting an appropriate ωrc that will give an 
appropriate margin between the LCL resonance frequency and 
ωnr according to Fig. 6. Root locus plots shown in Fig. 7 can 
then be drawn for choosing the appropriate gain Krc for the 
high-pass filter. 

C. Frequency-Domain Comparison 

To further strengthen attractiveness of the proposed virtual 
RC damper, comparison among the three representative cases 
is performed in the frequency domain. As mentioned in 
Subsection III (B), Gc(s) in Fig. 2 for all three cases has been 
simplified to a proportional gain designed with (L1+L2) and a 
PM of 45 considered [19]. Beginning with the first case 
having no external active damping (Ga(s) = 0 in Fig. 2), Fig. 8 
shows its frequency responses when its open-loop transfer 
function i2/(i2ref i2) is plotted. The plots clearly show a 
reduction of LCL resonance frequency as the grid inductance 
increases, which will eventually lead to instability when the 
resonance frequency falls below fs/6. 

With proportional capacitor-current damping Kad = 15 
added, Fig. 9 shows the redrawn Bode plots, whose different 
phase characteristics indicate the presence of non-minimum 
phase behavior. This behavior is, as explained, caused by the 



 

   

(a) (b) (c) 
 

Fig. 7.  Root loci of the grid current control loop obtained with different grid inductances. (a) Lg = 0 mH, fres = 2.6 kHz. (b) Lg = 4.5 mH, fres = 1.57 kHz. (c) Lg = 
9 mH, fres = 1.42 kHz. 
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Fig. 8.  Bode plots showing open-loop responses of the grid current control 
scheme without external active damping. 

 
inserted negative virtual resistance. Apart from that, the 
resonance peaks have been reduced with their frequencies 
shifted slightly by the imaginary virtual term derived in (3). 
The studied Bode plots have again been redrawn in Fig. 10 
after introducing the proposed virtual RC damper with Krc = 
15 and rc = 0.2s. The figure clearly shows that non-
minimum phase behavior has been mitigated by the added 
virtual capacitor. Moreover, the resonant peaks have been well 
dampened for Lg = 4.5 mH and Lg = 9 mH, whereas for Lg = 0 
mH, the resonance frequency is shifted much higher than the 
critical frequency of fs/6. Collectively, these observations 
prove the effectiveness of the proposed virtual RC damper. 

D. Synchronous-Frame Implementation 

The active RC damper in (4) can equivalently be realized in 
the synchronous frame after applying the necessary frequency- 
shifting transformation according to the first expression in 
(11) [6], [8]. Transfer function of the resulting RC damper in 
the synchronous frame is thus given by the second expression 
in (11), whose implementation involves cross-coupling, and is   
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Fig. 9.  Bode plots showing open-loop responses of the grid current control 
scheme with the conventional proportional capacitor-current active damping. 
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Fig. 10.  Bode plots showing open-loop responses of the grid current control 
scheme with the proposed virtual RC damper. 
 

hence more complex like shown in Fig. 11. Realizing and



 

 
 

Fig. 11.  Block diagram of proposed virtual RC damper in the synchronous frame. 

 
analyzing the damper in the stationary frame is thus generally 
recommended because of simplicity. 
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IV. SELECTIVE HARMONIC COMPENSATION 

Selective harmonic compensation is performed by placing 
resonant peaks at frequencies identified for compensation. It 
can be performed in the synchronous or stationary frame. For 
the latter, multiple resonant controllers are commonly used, 
which for L-filtered converters, have been proved to 
compensate for harmonics up to the Nyquist frequency [9]-
[11], after introducing the necessary discretization and phase 
compensation. The resulting discretized resonant controllers 
are described next, before discussing how their harmonic 
compensation frequency range should be chosen for LCL-
filtered converters. 

A. Discretized Resonant Controllers 

Fig. 12 shows two discretized resonant controllers used for 
selective harmonic compensation. In common, they consist of 
a forward Euler and a backward Euler integrator, which for the 
basic structure shown in Fig. 12(a), can be expressed as (12), 
where Kih is the resonant gain, h is the compensation phase 
lead, h is the harmonic order, and 1 is the grid angular 
frequency. 
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Equation (12) is, in fact, an approximation of the more 
precise resonant controller expressed in (13) [10]. The 
approximation helps to speed up computation, but is generally 
less accurate because of a reorientation of resonant poles and 
zeros from their intended positions. This discrepancy leads to 
frequency errors of the resonant peaks, which will further  

(a) 
 

 
(b) 

 

Fig. 12.  Block diagrams showing (a) basic and (b) improved discretized 
resonant controllers with two integrators. 

 
exacerbate as Ts and hω1 increase [11]. 
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Fig. 12(b) therefore shows an improved resonant controller 

[8] with two added features for gaining better accuracy. The 
first is to replace cos(hω1Ts) in the denominator of (13) with a 
higher sixth-order Taylor series to strengthen the resonant pole 
accuracy. The second is to modify the phase lead input θh so 



 

that more accurate zeros can be obtained. The improved 
resonant controller generally functions well with a L-filtered 
converter, for which the required phase lead θh is readily 
determined. The determination of θh for a LCL-filtered 
converter is however not straightforward because of possible 
phase change around the LCL resonance frequency. This is 
further complicated by the non-minimum phase behavior of 
the proportional capacitor-current damper, which in principle, 
will restrict the compensation of higher harmonic frequency. 

Fortunately, the non-minimum phase behavior can be 
removed by the proposed virtual RC damper, where the 
frequency range for harmonic compensation can hence be 
extended. The next subsection is thus used to identify this 
range, within which θh can be determined easily for harmonic 
compensation. 

B. Effective Compensation Range 

Figs. 8 to 10 have earlier shown the prominent reduction of 
gain crossover frequency, as the grid inductance increases. 
Consequently, the harmonic compensation range chosen must 
be reduced significantly, if the traditional guideline of 
designing resonant controllers below the gain crossover 
frequency is followed. More correctly, resonant controllers 
should be able to compensate well as long as their frequencies 
are below the LCL resonance, at which a rapid transition in 
phase occurs. The resonance frequency is therefore the true 
upper limit, below which, the phase lead θh needed for each 
resonant controller can be approximated as [8]: 
 

11.5
2h shω T


   (14) 

 
Despite that, there is a concern to note when high cutoff 

frequency ωrc is chosen for the high-pass-filtered RC damper. 
The issue can be understood from Fig. 13, which is an 
extension of Fig. 10 for the case of Lg = 9 mH with different 
Krc and rc values chosen for the RC damper (like Fig. 10, Fig. 
13 assumes a proportional grid current controller Gc(s)). The 
diagrams in Fig. 13 clearly show that to arrive at the same 
magnitude damping, Krc needed by the larger rc is much 
higher, which in turn, leads to a larger phase lag around the 
LCL resonance frequency.  

The larger phase lag has fortunately not destabilized those 
plots drawn in Fig. 13(b) for a larger rc, because of the 
proportional grid current controller Gc(s) assumed. This is 
however not always true when multiple resonant controllers 
have been added to Gc(s) for realizing selective harmonic 
compensation. To demonstrate, Fig. 14 re-plots Fig. 13 for two 
sets of Krc and rc, and with the resonant transfer functions 
included. Both sets of values give the same damping, but with 
a higher rc and hence phase lag, the zoomed-in view in Fig. 
14(b) shows a reduced PM for the 23rd and 25th resonant 
controllers placed near the LCL resonance. The reduced PM 
has, in fact, caused the phase of the 25th resonant controller to 
fall below 180, which indicates an unstable 25th harmonic 
compensation [10], [18].  

In terms of harmonic compensation stability, it is therefore 
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Fig. 13.  Effects of (a) low (ωrc = 0.2ωs) and (b) high (ωrc = 3ωs) cut-off 
frequencies of the virtual RC damper around LCL resonance. 

 
important to keep rc low. This is however in contrast to 
Subsection II (B), where a higher rc is recommended for a 
better damping robustness even when the grid inductance Lg 
varies widely. A compromised range might hence be 0.2s  
rc < 0.5s, where the upper limit denotes the Nyquist angular 
frequency. Generally, the Nyquist frequency should not be 
exceeded because of possible noise amplification associated 
with the high-pass filter when in a noisy environment or 
sampling effects found in a digitally controlled system. It is 
thus a critical limit that should preferably be observed in 
practice, even though not strictly necessary. 

V. EXPERIMENTAL RESULTS 

To verify the analysis presented, the LCL-filtered converter 
shown in Fig. 1 is implemented and connected to a California 
Instruments MX-series AC power supply for emulating the 
grid. Parameters chosen for the converter were listed in Table 
I, from which parameters summarized in Table II are designed 
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Fig. 14.  Phase-lag effects introduced by high cutoff frequency of the virtual 
RC damper. (a) Full view. (b) Zoomed-in view around 23rd and 25th 
harmonics. 

 
TABLE II 

CONTROLLER PARAMETERS 

Symbol Meaning Value 

Kp Proportional gain 20 
Ki1 Fundamental resonant controller gain  800 
Kih Harmonic resonant controller gain 800  
Krc High-pass filter gain 15 
ωrc High-pass filter cut-off frequency  0.2ωs 

 
for the RC damper and resonant current controllers, following 
the discussion presented in the paper. The resulting control 
scheme is realized with a dSPACE DS1006 system, whose 
produced results are explained as follows. 

A. Active Damping 

Fig. 15 shows the measured PCC voltage and grid current 
for one phase of the LCL-filtered converter with no active 
damping added. As the grid inductance Lg increases from Fig.  

(a) 
 

 

(b) 
 

[4 ms/div]i2: [5A/div]  

Vpcc: [250 V/div]  

 

(c) 
 

Fig. 15.  Measured per phase PCC voltage and grid current without external 
active damping. (a) Lg = 0 mH. (b) Lg = 4.5 mH. (c) Lg = 9 mH. 

 
15(a) to (c), the converter obviously becomes unstable as the 
LCL resonance frequency moves below the critical value of 
fs/6 = 1.67 kHz. This matches the expectation deduced from 
Fig. 8.  

Fig. 16 next shows the waveforms obtained with the 
proportional capacitor-current active damping added. The step 
response of the grid current is not effectively damped with 
visible oscillatory ripple noted. The oscillatory response in 
Fig. 16(b) is particularly more prominent, because with Lg = 
4.5 mH, its LCL resonance frequency is the closest to ωnr read 
from Fig. 6 at ωrc = 0. Above ωnr, negative virtual resistance 
will be inserted unintentionally to destabilize the converter. 

Fig. 17 proceeds to show the measured results with the 
proposed virtual RC damper added. It is clear that the system 
remains stable and well damped for all three tested Lg values. 
This is certainly in agreement with theoretical analysis. 
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Fig. 16.  Measured per phase PCC voltage and grid current with conventional 
proportional capacitor-current active damping. (a) Lg = 0 mH. (b) Lg = 4.5 
mH. (c) Lg = 9 mH. 

 

B. Selective Harmonic Compensation 

For evaluating harmonic mitigation, a square PCC voltage 
with sizable low-order harmonics was created by the AC 
power supply. With an improperly controlled converter, its 
injected grid current will usually be non-sinusoidal with 
significant low-order current harmonics anticipated. These 
low-order current harmonics can however be eliminated by 
selective harmonic compensation to obtain a sinusoidal grid 
current even with the square PCC voltage. The purpose of the 
results presented in this subsection is thus to simultaneously 
verify harmonic compensation up to the LCL resonance (and 
not gain cross-over) frequency and frequency-domain analyses 
presented in Fig. 14, after applying the necessary RC damping 
proved in Fig. 17.  
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Fig. 17.  Measured per phase PCC voltage and grid current with proposed 
virtual RC damper. (a) Lg = 0 mH. (b) Lg = 4.5 mH. (c) Lg = 9 mH. 
 

Resonant controllers for the three tested grid inductances 
are thus placed up to the highest of 43rd harmonic for Lg = 0, 
highest of 29th harmonic for Lg = 4.5 mH, and highest of 25th 
harmonic for Lg = 9 mH. These highest resonant terms are all 
very close to their respective LCL resonance frequencies, 
hence allowing the objectives of the paper to be tested. The 
experiments are repeated twice for the two chosen cutoff 
frequencies of ωrc = 0.2ωs and 3ωs, similar to those used in 
Fig. 14.  

Results obtained are shown in Figs. 18 and 19, respectively, 
where the latter shows more oscillatory response caused by the 
phase lag effect discussed in Subsection IV (B). It is therefore 
appropriate to tune rc within the range of 0.2s  rc < 0.5s 
to ensure the effective harmonic compensation up to the LCL 
resonance frequency, while preserving robustness even when 
Lg varies. 
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Fig. 18.  Measured per phase PCC voltage and grid current with low cut-off frequency for the virtual RC damper (ωrc = 0.2ωs). (a) Lg = 0 mH. (b) Lg = 4.5 mH. 
(c) Lg = 9 mH. 

 
VI. CONCLUSIONS 

This paper presents a holistic analysis of active damping 
and selective harmonic compensation for LCL-filtered, grid-
connected converters. Experimental results obtained show that 
the proposed virtual RC damper dampens LCL resonance well 
with the instability influences, caused by the system delays, 
mitigated promptly. The damped system, in turn, allows the 
harmonic compensation to be extended until LCL resonance, 
rather than the gain crossover frequency. This expectation has 
been verified by three experimental cases, in which the highest 
resonant terms have been placed close to their respective LCL 
resonance frequencies. Appropriate design guidelines are also 
given, which upon followed, results in converters with a better 
robustness and the less harmonics even if the grid inductance 
varies widely. 
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