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Abstract
Isotropic homogeneity does not hold in urban areas. Street networks exert a great influence on human mobility. As a result, city
structure is largely shaped by this network, especially the streets that carry a higher volume of traffic. In practice, small areas
along network edges often need to be grouped into regions for management purposes. This work formalizes the extension to the
P-regions problem that takes the network as the underlying constraint and proposes a heuristic-based approach to solve the
problem to near optimality. The network is subdivided into aggregator edges that attract regions and separator regions that divide
areas apart. Two types of regions emerge in the region formation process: regions that grow along a certain network edge
(network regions) and regions that grow from areas that are far away from all the network edges (planar regions). The heuristic
solution effectively uses pre-computed spatial contiguity and distance matrices. The global objective function consists of the
original heterogeneity factor and the discounted network proximity factor. This approach is elaborated with both a simulated and
a real-world dataset. The regionalization results help design, study, and service regions that explicitly consider the network
configuration with flexible parameter controls.
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Introduction

Network science has become an increasingly popular area of
research (Borgatti et al. 2009). Streets, which are one of the
most common types of physical networks, constrain various
human activities and are influenced by social and economic
forces (Wheeler 1973; Whitehand and Larkham 1992; Jiang
and Claramunt 2004; Parthasarathi et al. 2014; Huang et al.
2015, Zhao et al. 2017). The network space imposes physical
constraints on how people act and interact (Jiang and Jia 2011;

Porta et al. 2014). Many planar spatial analysis methods have
been introduced into the network space over the last decade
(Okabe and Yamada 2001; Yamada and Thill 2007; Okabe
et al. 2008; Xie and Yan 2008; Okabe et al. 2009; Yamada
and Thill 2010, Eckley and Curtin 2013; She et al. 2015).
Research shows that planar spatial analysis methods can pro-
duce false alarms regarding the clustering of points distributed
along a network (Yamada and Thill 2004). Regionalization is
the process of segmenting the planar areal units into several
spatially adjacent areas, given a set of constraints. Duque
et al. (2011b) proposed the P-regions problem, which aims to
aggregate small areas into P spatially contiguous regions while
optimizing certain criteria. Based on this work, recent efforts in
regionalization research include the max-P-regions problem
(Duque et al. 2012), the P-compact-regions problem (Li et al.
2014b), and the network-max-P-regions model (She et al.
2017). The max-P-regions problem finds the maximal number
of P regions, each satisfying a threshold variable, while simul-
taneously minimizing the heterogeneity. The P-compact-re-
gions problem explicitly takes into account the shape compact-
ness for each input region. The network-max-P-regions model
is a regionalizationmodel that aims to aggregate n areas into the
maximum number of regions (max-P) that satisfy a threshold
constraint and also minimizes the heterogeneity while taking
into account the influence of a street network.
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Regionalization serves the managing practice and research
needs in various disciplines. These include school districting,
political redistricting, and police patrol-area partitioning
(Lemberg and Church 2000; Barkan et al. 2006; Curtin
et al. 2010). Furthermore, the underlying socioeconomic pro-
cesses are greatly influenced by streets, especially in the ur-
ban space. Therefore, it would be theoretically interesting, as
well as practically relevant, to investigate street distribution
integration in the regionalization procedure. For example, in
some Chinese cities, the original administrative levels are
organized by streets. Therefore, the regionalization results
would be better if the regions also fit the administrative hier-
archies. In such a process, areas are grouped around a certain
street segment and grow into a network region. Areas far
away from the streets form a planar region. The final parti-
tions consist of a set of network regions and a set of planar
regions. In addition, there would be edges that separate areas
of its two sides, such as ring roads. A proper network-
constrained regionalization process could help researchers
define regions that focus on the street-related phenomenon.
This also helps practitioners design regions that are more
naturally suited to underlying human activities. In practice,
the street network contains either a large quantity of short
roads inside regions or carries relatively little traffic. For this
reason, only main roads are chosen for the partition. Thus, the
network is much sparser compared to the original road net-
work. While a region may belong to multiple edges, this work
considers the case that a region only has one edge. This is
common because practitioners would normally use major
roads to partition management regions.

She et al. (2017) undertook a study to extend the max-P-
regions problem into the network space. The following are
the main differences between that study and the current
research: (1) the P-region problem is used in this research
instead of the max-P-regions problem; (2) in this research,
the network edges are categorized into aggregators and
separators. Aggregator edges attract areas around it to form
network regions, while separators act as barriers to the
areas around it. The areas intersected with separators are
barrier areas that are excluded from the partition process;
(3) this paper only allows one edge per network region; and
(4) the heuristic algorithms are much different because P is
fixed in the P-regions problem (this paper), but varies in
the max-P-regions problem in She et al. (2017). Due to the
differences in model assumptions and formulations, these
two models, as well as other extensions such as the max-P-
region problem and P-compact region problem, are not
directly comparable in terms of efficiency or effectiveness.
The main rationale for this work is to consider both
aggregator and separator edges in the network regionaliza-
tion process. Also, the edges in this work are assumed to be
main roads; therefore, a region is only allowed to have one
edge.

A challenge in network-constrained regionalization is the
issue of how to effectively generate better initial partitions. To
solve this, this paper adopted a heuristics-based approach in
the optimization process by first generating a set of initial
solutions relying on network constraints. After generating
these initial solutions, the next step was to improve these
solutions by using a local search algorithm. The TABU search
algorithm is commonly used in regionalization research due to
its capacity to lower the chances of getting stuck in local
optimums (Duque et al. 2012; She et al. 2017). Therefore, this
work also used the TABU search algorithm in the local search
stage. The global objective function for evaluating solutions
considers the number of regions, a heterogeneity factor, and a
network proximity factor. To efficiently solve the problem, the
spatial matrix structure that holds data for both area-area and
network-area contingency and distancematrices was pre-com-
puted. In the local search stage, a status update algorithm was
designed to efficiently update valid candidate moves for a
partition.

This work presents an instance of network-constrained re-
gionalization that extends the P-regions problem. The
network-constrained regionalization can assist researchers
and practitioners in designing homogeneous regions (Fischer
1980) that explicitly consider the network configuration with
flexible parameter controls. A BLiterature Review^ is given,
while the BMethodological Framework^ is established. The
section BHeuristic Solution Implementation^ describes the
heuristic framework in detail. The section BApplications^ il-
lustrates this solution through a simulated dataset and real-
world data for Wuhan, China. The final section discusses the
characteristics and future works of the proposed methods.

Literature Review

Regionalization has special kinds of clustering problems that
are constrained by spatial contiguity (Gordon 1996; Hansen
et al. 2003). Such contiguity generally makes the problem
harder to abstract and model (Tong and Murray 2012).
Sometimes, locally defined constraints may produce regions
of varying shapes which have less shape compactness. As a
spatial optimization problem, attributes of regions, such as
population or economic indicators, are considered in the re-
gionalization process. Depending on the problem specifica-
tion, these attributes and the shape compactness can all be
integrated into the global objective function. In practice,
researchers often do not know how many regions are
necessary. Instead, they have domain knowledge about the
local constraints on regions. Duque et al. (2012) made a spe-
cific contribution in this regard that makes the region growing
process adaptive and produces a maximum number of regions,
given that the constraints are satisfied. The assumption held in
this paper is that researchers also have difficulties integrating
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the physical street network into the region building process.
Intuitively, researchers often want the regions to follow the
street edge whenever possible, given that other constraints
satisfied. This trade-off can be reflected in a multi-objective
function design.

The street network can affect a spatial problem in multi-
ple ways. The most common perspective is to replace the
Euclidean distance measures with network distances (Miller
and Wentz 2003). Spatial optimization models often treat
network distances between locations either as a quantitative
measure such as in a point location model (Church and
Murray 2008b) or as a virtual link network that is trans-
formed from relationships between neighboring objects.
This is useful in cases such as siting a corridor using flow
constraints (Church and Murray 2008a). Network flow attri-
butes are also considered in research during the regionaliza-
tion process (Whiteaker et al. 2007). This work takes a dif-
ferent perspective by explicitly taking the geometric proper-
ties of a network into the objective function of the regional-
ization process. This specific component of the objective
function can be seen as minimizing the degree of spatial
adjacency (Tong and Murray 2012).

Street structure is often related to connectivity. As business
activities often occur on the street, areas can be grouped based
on the attraction from street edges. From this point of view, a
street edge can be seen as connecting a set of areas into a
network region. The connectivity of a network region is less
developed in regionalization research but appears more often
in research in transportation modeling (Li et al. 2014a). Shape
factors are considered extensively in the literature and are
often related to a specific application setting (Shirabe 2005;
Williams et al. 2004). Li et al. (2013) introduced the compact-
ness measure of a shape based on the moment of inertia and
presented the mathematical formalization. Shape compactness
affects the regionalization process by taking into account the
intrinsic geometric properties of a single shape. In contrast, the
network constraint poses a local constraint on the resulted
shape of a region.

Regionalization problems can often be formed as integer
programming problems. For example, Duque et al. (2011b)
presented three model formulations, a tree-based model, an
order-based model, and a network-flow-based model. These
models explicitly embed the spatial contiguity constraints into
the integer programming framework. The mixed-integer-
programming formulation can be difficult to construct and
are computationally intensive (Duque et al. 2012). One advan-
tage of using heuristic procedures is that the heuristic algo-
rithms themselves are relatively independent of constraints.
This allows contiguity testing procedures to be more flexible
in their construction and computation, therefore making them
relatively easy to integrate. Thus, this work avoids considering
the order of assignment or flow in our model formulation.

Rather, the contiguity is ensured by separate procedures in-
voked by the heuristic algorithms.

Heuristic solutions for regionalization problems typically
embed an existing heuristics algorithm for improving the par-
titions. Frequently used ones include simulated annealing
(D'Amico et al. 2002; Bergey et al. 2003; Ricca and
Simeone 2008), Greedy Randomized Adaptive Search
Procedure (Feo and Resende 1995; Brás et al. 2013), and
TABU (Tung and Chou 2002; Bozkaya et al. 2003).
Between the generation of initial partitions and improving
them, some heuristic solutions choose to store information in
an external data structure, which helps accelerate the local
search algorithms. For example, the MERGE algorithm in Li
et al. (2014b) memorizes the candidate plans for a given re-
gion and therefore allows the region-swapping procedure to
be more targeted and avoids repeated computation in the ob-
jective value function. This could be categorized as a special-
ized example of spatial memorization (Hardisty and Klippel
2010).

Methodological Framework

The network-constrained P-regions problem is based on the
P-regions problem from the planar space. The original P-re-
gions problem aims to minimize regional heterogeneity in the
final solution. The network-constrained P-regions problem
aims to integrate the distance factor into the heterogeneity
computations. In other words, the shapes of the created re-
gions will be influenced not only by the heterogeneity of its
areas but also the closeness to a certain aggregator edge.
Moreover, the final solution is constrained by the separator
edges, i.e., the created regions will be separated by these par-
ticular edges.

Basic Concepts

(1) Areas

Areas are the basic unit which consists of a set of attributes
that are grouped into regions in the final partition. This work
dealt with grids in the experimental section; thus, a set of grid
areas is used, denoted as G = {g1, g2,…, gn}.

(2) Network

The network in this work refers to an undirected and planar
network N = (V, E), formed by a set of nodes V and edges E.
The edges E consist of two parts: the aggregator edges Ea and
the separator edges Es. The network regions are grown around
aggregator edges, while the separator edges will separate re-
gions away. This work models separator edges as physical
barriers between regions. The areas crossing separator edges
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are called separator areas and are removed from the final par-
tition process.

(3) Regions

Regions are aggregated by areas. Since the urban space has
a comparatively sparse network, two types of regions natural-
ly emerge in terms of growth: regions that grow along a cer-
tain network aggregator edge (network regions RN) and re-
gions that grow from areas that are far away from all the
network aggregator edges (planar regions RP). The type of a
region is determined in the initialization stage. A condition
necessary for a network region is that it must intersect with
at least one network edge. An edge e is selected as the root
edge of the network region. The root edge might get changed
during the optimization process when regions are randomly
swapping areas.

(4) Attributes

The attributes used in the study consist of a set of
attributes Ah = { ah1, ah1,…, ahm} that are used in the hetero-
geneity calculation. All of these attributes are spatially
extensive.

The dissimilarity dij between two areas i and j is used in the
heuristic procedures when regions greedily choose candidate
areas or regions start to swap areas. To simplify the case, this
work only uses one attribute ah for the heterogeneity calcula-
tion in the experimental section and chooses the absolute dif-
ference |ahi − ahj| to represent dij.

The heterogeneity of a region ht(R) is reflected in the dis-
similarity of its areas. With the absolute difference
representing dissimilarity, it is written as follows:

ht Rð Þ ¼ ∑
i; j:gi∈R;g j∈R;i< j

ahi−ahj
�� �� ð1Þ

(5) Spatial matrices

The spatial matrices in the network-constrained P-regions
problem store information about area-area and area-edge rela-
tionships. There are two types of matrices: spatial contiguity
and spatial distance. The spatial contiguity matrices are com-
posed of two binary matricesC and L.C is constructed so that
it records area-area neighboring relationships; it is used to
ensure that all areas are connected in a region. The separator
areas are removed from C. L records the edge-area intersec-
tion information, whereas each element lij in L records wheth-
er an edge ei interests with an area gj. This paper uses only one
distance matrix D to store the area-edge distances. Each ele-
ment dij in D records the nearest distance of an edge ei to an
area gj. Since such information will stay unchanged during the
optimization procedures, pre-computations of this information

are beneficial in regard to execution speed. Both C and L
could be stored as sparse matrices. Although D is a dense
matrix, it is still of moderate size. This is because the number
of edges is considerably smaller than the number of areas.

(6) Network proximity

The network regions grow along a certain aggregator edge.
However, alongness itself is a vague spatial relationship for
RN. Therefore, a more appropriate interpretation would be that
areas in a network region are more proximal to its root edge
relative to neighboring regions, satisfying other constraints.

This work models the network proximity as a discounting
factor to the heterogeneity factor for network regions. In other
words, network regions get rewarded when they are growing
along a network edge. If the areas added are too far away from
the edge, the rewards may turn into penalties. The proximity
function is defined for a pair of areas with regard to a certain
aggregator edge:

d gi; g j;R
� �

¼ scale* 1−eDi; j;R−extent
� �

Di; j;R ¼ diR þ djR þ dijR
� �

=3

The function d(gi, gj, R) represents the discounting factor of
areas gi and gj in region R. The scale and extent are two
parameters that control the influence of network proximity.
As shown in Fig. 1, the extent factor represents the threshold
when the function turns from reward into penalty. The scale
factor controls the magnitude of influence. When Di, j, R is
smaller than extent, the reward is bigger with a larger scale
value. When Di, j, R is larger than extent, the penalty is also
bigger with a larger scale value.

The distance measureDi, j, R is the average of three distance
sub-measures that aims to quantify the alongness of areas to a
network edge. diR and djR are the closest distances between
areas gi and gj to the root edge of region R. dijR represents the
closest distance between a virtual edge eij, which links the
centroids of areas i and j to the root edge of region R. The
representation of Di, j, R is simple and easy to compute.

Model Objectives

A valid partition P is a set of valid regions that cover all the
input areas. Regions should be non-overlapped in terms of the
assigned areas. The goal is to find a valid P with a minimal
objective function value. The objective function O refines the
original objection function to minimize heterogeneity across
all regions that are discounted by the network proximity factor
in network regions.

O ¼ ∑i∑ jj j>idijtij−∑i∑ jj j>idij d gi; g j;R
� �

∑n
R¼0n

R
ij ð2Þ
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tij is the decision variable that decides whether areas i and j
belong to the same region R. To integrate the network prox-
imity factor, two new decision variables oR and nRij are con-

structed as follows:

oR ¼ 1; if region R is a network region;
0; otherwise

�

nRij ¼
1; if areas i and j belong to the same network region k;with i < j;
0; otherwise

�

The function is subject to the same set of constraints of the
original P-regions problem. This work adds three more
conditions:

(1) A region Rmay become a valid network region if at least
one of its areas intersects an edge of the network. In other
words:

∑
i∈R

∑
e∈Ea

li;e > 0

li, e is an element in the edge-area intersection matrix L.

(2) For a valid network region R, the root edge of R is the
edge that interacts with the most number of areas in R,
among all edges that intersect with R.

eR ¼ argmin
e

∑
i∈R

li;e

(3) A valid network region R is counted as a true network
region only if the network proximity factor is positive.
Otherwise, it will remain as a planar region.

∑i∑ jj j>idij d gi; g j;R
� �

∑n
R¼0n

R
ij > 0

The problem is clearly highly nonlinear and would need a
heuristic algorithm to solve it in a reasonable amount of time.
The following section introduces the implementation of the
heuristic solution.

Heuristic Solution Implementation

Solving a regionalization problem based on the heuristic so-
lution generally consists of three steps:

(1) Data input and transformation: this stage involves con-
structing a proper data structure to hold the attribute and
spatial data. Typically, a set of area objects are initialized.
The spatial contiguitymatrix is static; thus, it is often pre-
computed at this stage to avoid repeated computation at a
later phase. Model developers often choose a specific
contiguity type to construct the contiguity matrix. The
two most common contiguity types are queen and rook.
Queen defines an area’s neighbor with either shared bor-
ders or vertices, while rook defines contiguity as an
area’s neighbor with only shared borders.

(2) Initial partition generation: this stage constructs a large
number of initial partitions with the randomized greedy
strategy. Li et al. (2014b) described this process as
dealing since it resembles the strategy of a card dealer
assigning cards. The initial partitions largely constrain
the final partition, given that local search algorithms still
have limits in terms of speed and power. Thus, better and
more diversified initial partitions will likely produce a
final partition with lower objective values, speeding up
the local search phase.

(3) Local search: as a general algorithmic technique, a local
search algorithm is fairly independent of the

Fig. 1 Examples of different
parameter combinations: (scale,
extent)
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regionalization algorithm that invokes it. Three proce-
dures are provided from specific regionalization algo-
rithms to the local search algorithm: candidate move se-
lection, partition validation and update, and objective
value calculation.

In a sense, an object-oriented paradigm is adopted in the
optimization procedure design. Areas and spatial contiguity
matrices are immutable. A region Ri is mutable in its contain-
ing areas GRi and neighboring areas NGRi for candidate local
search moves. Whenever an area is added to Ri, NGRi is also
updated by taking this area’s neighbors in the spatial contigu-
ity matrixC. A partition Pi is mutable in its containing regions
RPi and area-region pairs ARPi. Each pair in ARPi consists of
an area and a neighboring region to it that represent a valid
move. These moves are then randomly selected at the local
search phases. A new partition is then formed through object
cloning and status updates from the old partition.

Specifically, the adapted three-stage process of solving the
network-constrained P-regions problem is illustrated in Fig. 2.
In the data reading stage, additional information about the
network structure is put in a similar structure to accelerate later
computations. The spatial contiguity and distance matrices
discussed in the section BBasic Concepts^ are used both in
the initial partition generation and local search. In terms of
internal data updates, this work chooses to store decomposed
parts of the objective function and neighboring areas in indi-
vidual regions. This memorization serves the purpose of ac-
celerating the local search stage. After generating a set of
initial partitions, each partition will pre-compute the status
regarding area-region pairs for valid moves. This work chose
the TABU search as the local search algorithm that limited the

Fig. 2 Flowchart of solving the network-constrained P-regions problem

Table 1 Initial partition
generation procedure 1 P = initialize a partition P with areas G

2 SU = all areas in G; unsigned areas

3 E = all aggregator edges

4 Separator areas filtering:

5 Remove all separator areas from SU
6 Region seeding:

7 For i from 1 to p:

8 e = randomly choose and remove an edge from E

9 g=chooseAreaFromMatrixL(edge)

10 If g ! =∅ then:

11 R= Initialize a new network region in P with e as its root edge;

12 Add g to R, remove g from SU;

13 Else:

14 g=randomly choose an area from SU
15 R= Initialize a new planar region in P

16 Add g to R; remove g from SU;

17 Region formation:

18 While SU ≠∅ :

19 For each Ri in P regions:

20 If Ri do not have neighbor areas:

21 Break;

22 g = Ri.popMinNeighborCandidate();

23 Add g to Ri, remove g from SU;
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moves to area swapping between regions. The moves are gen-
erated using a randomized approach.

Initial Partition Generation

The initial partition generation stage is illustrated in Table 1,
consisting of three steps.

(1) Separator areas filtering: this stage removes all areas that
intersect with the aggregator edges E.

(2) Region seeding: this stage randomly generates P regions.
Because the aggregator network E is sparsely distributed
the space, the seeding process will favor regions that start
as a network region. In detail, for each edge e in E, the

chooseAreaFromMatrixLwill randomly choose an unas-
signed area g from the edge-area intersection matrixL. g,
with smaller distance to the centroid of e, is selected first.
Then, a network region will be created with e as its root
edge. If there are nomore edges to select from or nomore
candidate areas that intersected with the remaining edges
in E, g will be randomly selected from SU and a planar
region will be created from it.

(3) Region formation: the region then grows by taking its
neighboring areas NGR through a greedy function
popMinNeighborArea. This function will greedily
choose a neighboring area with a minimum combined
score of heterogeneity and distance to this newly con-
structed region. This function will use a greedy strategy
that protects network regions from growing too far away
from their root edge. For a network region, the
popMinNeighborAreawill favor areas in NGR that inter-
sect with the root edge of R first. If there are no such
areas, the whole NGR set is used in the greedy selection
process. For a planar region, a similar process is done,
but the popMinNeighborArea will favor areas in NGR
that do not intersect with any aggregator edges.

Local Search

The local search stage follows the TABU search process, sim-
ilar to the one used in solving the max-P-regions problem
(Duque et al. 2012). A partition is considered to be improved
if it has a smaller objective function value than a previous
partition. The status of a partition contains the objective func-
tion value, the area-region pairs (ARP), and a mapping be-
tween all areas and regions (MAR) used in the region swap-
ping process. Specifically, ARP contains all moves that will
not break the spatial contiguity of either of the regions when
they are swapping areas.

Table 2 Partition status update procedure

1 ARP = empty list;

2 MAR = empty map;

3 GIB = empty set;

4 For each R in P do:

5 GR= areas in R;

6 For each g in GR do:

7 Update MAR with R and g;

8 NGg=neighboring areas of g fromMAA;

9 NGgR =NGg∩GR;

10 If ∣NGgR ∣ = ∣NGg∣:
11 Continue;

12 Connected = True; default to True

13 For each g′ in NGgR do:

14 NGg0 ¼ Neighboring areas of g′ fromMAA;

15 NGg0 ¼ NGg0∩GR;

16 Remove(g);

17 If jNGg0 j ¼ 0 :

18 Connected = False; break;

19 InnerConnected = False;

20 For each g′′ in NGgR and g′′ ≠ g do:

21 NGg0 0 ¼ neighboring areas of g′ fromMAA;

22 NGg0 0 ¼ NGg0 0∩NGg0∩GR;

23 NGg0 0 .remove(g);

24 If NGg0 0

��� ��� > 0:

25 InnerConnected = True; break;

26 If innerConnected = False:

27 Connected = False; break;

28 If connected:

29 Add g to GIB

30 For each R in P do:

31 NGR=neighboring areas in R;

32 For each g in NGR do:

33 If g in GIB:

34 Add the pair of (g, R) to ARP;

35 updateObjectiveFunctionValue();
Fig. 3 Simulated dataset with areas (n = 1024) and network
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When a move is applied, two regions will swap areas with
each other. Because of the third condition described in the
section BModel Objectives,^ a region might change types be-
cause the objective value of its current type might become
bigger than the value of it being the other type. In other words,
a planar region may become a network region, and a network
region can revert back to a planar region. When a planar re-
gion becomes a network region, the root edge will be selected
based on condition 2 in the section BModel Objectives.^ The
swapping takes place by cloning regions and constructing a
new partition P′ from P. The status of P′ is then updated and
returned to the local search algorithm.

The status update process is shown in Table 2, which is
invoked explicitly after the initial partitions are generated, as
well as when new partitions are transformed from old ones in
the local search stage. This process uses the pre-computed
spatial contiguity matrices to efficiently construct all inner
border areas GIB across all regions in the partition, and then
uses GIB to update ARP. Essentially, GIB is updated by
checking whether neighbors of an area inside a region are all
adjacent to each other or not.

Applications

This section studies the effectiveness and performance of the
proposedmethod through a simulated dataset and a case study.
First, a simulation experiment is given to show the partitions
generated from different parameter combinations which
shows the usage of the extent and scale factors in the model.
The case study demonstrates the feasibility of the proposed
model for real-world data. To quantify the performance, the
time consumption (in seconds) of different stages was mea-
sured, including the overall running time tall, time spent on the
data preparation stage tdp, initialization stage ti, and local
search stage tls. The decompositions of the objective function
were also considered, including the final objective value O,
and the heterogeneity factor H, and discounted network prox-
imity factor PR. Afterwards, a practical experiment is con-
ducted to show its scalability. In this section, the maximum

number of initial solutions was chosen to be 100, and the
TABU length was set to 85. The algorithm was implemented
in Java and tested on an i7-4710HQ Intel CPU, with 8GB
DDR3 memory, and a Windows 8.1 64-bit operating system.

Simulations

The simulated dataset is from the ClusterPy library (Duque
et al. 2011a) and consists of 1024 areas. The heterogeneity
attribute is generated under a spatial autoregressive process
where ρ = 0.9.1 A network dataset of 16 edges is constructed
which is distributed randomly over the grid areas. Figure 3
displays the network overplayed on the dataset where n =
1024. The thick solid lines represent the aggregator edges,
while the dashed line represents the separator edges. Areas
intersected with the separator edges are removed from the
computations and final visualizations.

The partitions are compared through three combinations of
parameters (scale, extent) on the dataset. The number of re-
gions is set to 30. Table 3 gives the numerical results, and
Fig. 4 visualizes the partitions generated from these three pa-
rameter combinations. The dark grey regions mark the net-
work regions, while the light grey regions are planar regions.
The visualization clearly shows how the degree of attachment
varies for network regions to edges. The time elapsed between
different stages is relatively stable across different parameter
combinations. The local search phase takes the most time, and
it is proportional to both the extent and scale factors. The
extent factor clearly influences the formation of network re-
gions, with a bigger extent value producing more and larger
network regions. The scale factor is more about controlling
the compactness of the regions rather the number of network
regions. A larger scale value means regions will grow more
freely while maintaining the benefits of being a network re-
gion. Thus, the network regions with a smaller scale factor are
more compact.

1 https://code.google.com/p/clusterpy/

Table 3 Comparing different
weight combinations O H PR tall tdp ti tls

(0.5, 8) 26,262.04 29,010.02 2747.98 80.888 1.438 8.931 70.519

(1.0, 8) 23,917.05 31,991.35 8074.30 78.411 1.446 7.705 69.26

(1.5, 8) 19,272.93 33,139.19 13,866.26 90.626 0.251 10.251 80.124

(0.5, 12) 22,286.18 27,265.10 4978.92 87.236 0.128 8.681 78.427

(1, 12) 17,607.31 31,081.68 13,474.37 89.303 0.096 7.481 81.726

(1.5, 12) 7915.58 33,453.24 25,537.66 97.85 0.105 8.483 89.262

(0.5, 15) 21,928.65 27,832.18 5903.53 103.325 0.146 10.694 92.485

(1, 15) 16,651.25 33,776.74 17,125.49 115.6 0.209 7.268 108.123

(1.5, 15) 341.5 42,907.32 42,565.82 136.837 0.103 9.487 127.247
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A Practical Experiment on Wuhan, China

The moderation process has been fast in China in recent de-
cades. Wuhan is a fast-growing, large city in central China.
The network-constrained regionalization process described in
this work would help government agencies and researchers
better understand and model the spatial layout under the con-
straints of a street network (Wang et al. 2011). The seven
central districts are selected as the experiment areas. The area
of urban land use is selected as the heterogeneity variable. The
network is constructed from the major roads in Wuhan. Parts
of the 3rd ring road are modeled as the separator edges in this
experiment. There are 889 grids and 49 aggregator edges. The
parameters are set to scale = 1, extent = 8000, and the number
of regions = 30. The results are displayed in Table 4 and
Fig. 5. The local search stage takes a lot more time than the
initialization time. It also shows that the algorithm is fairly
stable for a moderate-size dataset. As shown in Fig. 5, the
network regions are formed based on the balance of the het-
erogeneity factor and the discounted network proximity factor.
The separator border indeed separates most of the areas apart,

but it also shows that regions could grow by extending from
the end of a separator edge. Other ways of manipulating sepa-
rator edge forms could be incorporated to deal with constraints
in practice. It is important to recognize that urban dynamics is a
complex process. This case study only serves as a demonstra-
tion to test the proposed model in this work. The detailed
analysis of the created regions deserves a more thorough anal-
ysis and will be the focus of our future directions.

Discussion and Conclusion

There has been a growing interest in implementing planar
spatial analysis methods into the network context. This work
aims to partition the planar areas that are constrained by the
network space. This work contributes to the extension of re-
gionalization problems into the network space.

A city is a large and complex system (Ye and He 2016).
The presence of streets and roads could have different types of
influence over the nearby areas; a ring road would produce a
clear cut between rural and urban areas, while an urban street

Fig. 4 Result of regionalization
comparing the different parameter
combinations of scale and extent.
a (0.5, 8), b (1.0, 8), c (1.5, 8),
d (0.5, 12), e (1.0, 12), f (1.5, 12),
g (0.5, 15), h (1.0, 15), i (1.5, 15)

Table 4 Regionalization result
and performance measures for the
Wuhan grid data

O H PR tall tdp ti tls

1.525566E7 4.382687E7 2.857122E7 4631.997 3.366 1827.174 2801.457
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would attract areas on both sides. This work formalizes the
network as two sets of edges, the aggregator edges and the
separator edges, and integrates them into the regionalization
problem. This gives practitioners flexible control over how
regions grow around network edges.

The discounted network proximity factor quantifies the
edge-area relationships in the objective function. The two pa-
rameters scale and extent have clear physical meanings. The
measures are surprisingly simple but perform reasonably well.
More formally, the network compactness criteria could be
further developed to rigorously define the compactness of an
edge-surrounding shape. This work chose grid areas in the
problem formulation. In practice, areas could have varying
shapes. When dealing with such issues, a rigorous shape com-
pactness measure of network regions becomes more
important.

The construction of spatial contiguity and distance matri-
ces, as well as the partition status, accelerates both initial
partition generation and local search stages. These data
structures can also be stored and used in later executions
with different parameter settings. The network structure in
this work is considered to be homogeneous and relatively
sparse. In practice, researchers might want to reverse this
assumption when the network is dense. A region would
belong to a set of connected edges. In addition, the street
hierarchy could affect the proximity factor. For example, a
small road may attract fewer areas, and the big road may
attract more areas. Such rules can be integrated into the
region generation process and thus foster an adaptive way
of generating regions.

In conclusion, this paper proposes an efficient way for the
regionalization problem extended into the network space. The
regionalization process results can help researchers and prac-
titioners in designing network-constrained service regions
with a fixed number of regions. In addition, it explicitly inte-
grates the network structure into the modeling process in a
flexible way. Other types of optimization problems can also

be expanded into the network space following such a heuristic
framework.
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