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NOMA-enabled Optimization Framework for Next-generation
Small-cell IoV Networks under Imperfect SIC Decoding
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Abstract—To meet the demands of massive connections, diverse
quality of services (QoS), ultra-reliable and low latency in the
future sixth-generation (6G) Internet-of-vehicle (IoV) communi-
cations, we propose non-orthogonal multiple access (NOMA)-
enabled small-cell IoV network (SVNet). We aim to investigate the
trade-off between system capacity and energy efficiency through a
joint power optimization framework. In particular, we formulate
a nonlinear multi-objective optimization problem under imper-
fect successive interference cancellation (SIC) detecting. Thus,
the objective is to simultaneously maximize the sum-capacity
and minimize the total transmit power of NOMA-enabled SVNet
subject to individual IoV QoS, maximum transmit power and
efficient signal detecting. To solve the nonlinear problem, we
first exploit a weighted-sum method to handle the multi-objective
optimization and then adopt a new iterative Sequential Quadratic
Programming (SQP)-based approach to obtain the optimal so-
lution. The proposed optimization framework is compared with
Karush-Kuhn-Tucker (KKT)-based NOMA framework, average
power NOMA framework, and conventional OMA framework.
Monte Carlo simulation results unveil the validness of our
derivations. The presented results also show the superiority of
the proposed optimization framework over other benchmark
frameworks in terms of system sum-capacity and total energy
efficiency.

Index Terms—6G, energy efficiency, multi-objective optimiza-
tion, non-orthogonal multiple access, sum-capacity, sequential
quadratic programing.

I. INTRODUCTION

RECENT years have witnessed a great increase in the
applications of vehicular networks to improve traffic

efficiency, reliability, control, and passenger safety [1], [2].
Internet-of-vehicle (IoV) has emerged as a key enabler tech-
nology of the future intelligent transportation systems to
increase the existing capabilities of vehicular ad-hoc networks
with Internet-of-things [3], [4]. Communication of IoV in-
volves vehicle-to-roadside (V2R), vehicle-to-vehicle (V2V),
vehicle-to-pedestrians (V2P), vehicle-to-infrastructure (V2I),
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vehicle-to-bicycle (V2B), and vehicle-to-sensors (V2S) [5],
[6]. The sixth-generation (6G) and beyond IoV networks are
expected to support large-scale wireless connections with high
data rates and lower energy consumption [7]. Non-orthogonal
multiple access (NOMA) has been raised as a promising air
interface technology that allows multiple IoVs to communicate
over the same time/frequency resources, and thus can signifi-
cantly increase the number of served IoVs [8]. It is different
from the traditional orthogonal multiple access (OMA) where
one frequency resource can only accommodate one IoV at one
time. By using the superposition coding technique, NOMA
first superimposes the data of multiple IoVs over the same
frequency with different transmission power [9]. Then, IoVs
adopt successive interference cancellation (SIC) to decode
their received signals [10]. More specifically, IoV with the
larger value of channel gain is assigned less transmit power
compared to those IoVs with smaller values of channel gains
[11]. Thus, IoV with the larger value of channel gain can apply
SIC and subtract the interference of other IoVs with smaller
values of channel gains [12]. In the end, an IoV with the
lowest value of channel gain cannot subtract the interference
and treat it as noise [13]. Moreover, NOMA improves not only
the sum-capacity but also guarantees system fairness [14].

A. Related Work

NOMA-enabled vehicular communication has been studied
by both industry and academia in recent years. To maximize
the minimum rate of vehicles in vehicle-to-everything (V2X)
systems, Zheng et al. [15] provided a joint optimization
framework of user clustering, channel assignment, and power
loading to improve the fairness of the NOMA system, which
was also subjected to a minimum QoS requirement. The
efficient solutions were obtained using matching theory, perron
frobenius theorem, and kuhn munkres algorithm. Wang et al.
[16] presented a centralized resource management framework
to maximize the total capacity of device-to-device (D2D)-
aided V2X networks. The authors used a three-partite in-
terference hyper-graph-based greedy, iterative, and matching
algorithm for resource allocation to manage the complex
interference in the system. Reference [17] proposed a de-
centralized V2X network supporting full-duplex NOMA for
both crowded and urban scenarios. They derived approximate
closed-form solutions and their objective was to enhance the
system capacity with different QoS requirements. To reduce
the complexity and improve the achievable capacity of V2X
communication, Xiao et al. [18] provided the efficient vehicle
clustering and power control framework for NOMA-enabled
V2X networks under vehicle QoS constraint. The authors of
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[19] and [20] maximized the sum-capacity of D2D-aided V2X
communication using the centralized resource management
frameworks. They used the interference hyper-graph method to
efficiently manage the complex interference of the system. The
problem of joint optimization was investigated by Qian et al.
[21] to maximize the sum-rate of vehicle-to-small networks.
The problem of efficient cell association and power control
was first transformed and then solved using standard gradient
scheduling and hierarchical power control algorithms. The
work of [22] proposed a resource allocation framework to
optimize the spectral efficiency and received packet ratio of
multiple-input multiple-output V2V networks.

Moreover, the authors of [23] and [24] explored the resource
management problems of V2X networks. The objectives were
to reduce latency and improve the reliability of the systems.
They first performed source-destination selection and spec-
trum allocation using a centralized semi-persistent algorith-
m. Then, they employed an iterative distributed algorithm
for efficient power allocation. The works of [25] and [26]
proposed resource allocation problems for NOMA-enabled
vehicular heterogeneous networks. Their objective was to
improve the spectral efficiency and reliability of the system
through efficient spectrum allocation and power control. In
[27], Jaiswal et al. derived closed-form expressions of NOMA-
enabled vehicular communication networks to investigate out-
age probability, bit-error-rate and ergodic capacity. Reference
[28] considered full-duplex V2X communication to improve
the ergodic capacity through an efficient selection of road-
side units (RSUs). Abbasi et al. [29] presented a cooperative
V2X communication, where unmanned-aerial-vehicle acted as
an amplify-and-forward relay. The objective was to maximize
the sum-rate through efficient trajectory planning and power
control. The authors of [30] derived exact expressions for out-
age probability in cognitive-based V2X communications. They
adopted an efficient RSU selection scheme and considered the
constraint of transmit power. Khan et al. [31] investigated the
trade-off between sum-capacity and energy efficiency of V2I
networks. The problem of power allocation was solved through
Karush-Kuhn-Tucker (KKT) conditions and the QoS of vehi-
cles were satisfied. Besides, the work of [32] also maximized
the energy efficiency of V2X communication. They adopted
the Dinkelback method and dual theory to handle the non-
convex energy efficiency problem. Of late, the work of [33]
also investigated a joint optimization framework backscatter-
enabled NOMA V2X communication. Their objective was to
maximize the sum rate of the network subject to minimum rate
requirements. The optimization problem was first transformed
from non-convex to a convex one, and then solved through
KKT conditions, where Lagrangian multipliers are iteratively
computed using sub-gradient method.

B. Motivation and Contributions
Most of the above literature has considered the perfect SIC

decoding process at IoVs. However, an error can occur during
the decoding process of signal in practical NOMA systems.
In such a situation, the IoV with the larger value of channel
gain cannot subtract the interference of other IoVs with small-
er values of channel gains, causing significant performance

degradation in system performance. Besides, the focus of many
studies is on single-objective optimization frameworks either
maximize the sum-capacity or energy efficiency. To the best
of the author’s knowledge, an optimization framework that
jointly maximizes the sum-capacity and total energy efficiency
of IoVs under imperfect SIC decoding has not yet been
investigated. To bridge this gap, we aim to propose a joint
optimization framework to investigate a trade-off on sum-
capacity and total energy efficiency of NOMA-enabled small-
cell IoV network (SVNet) under imperfect SIC decoding.
An optimal solution is presented using a sequential quadratic
programming (SQP) approach, where the quality of services
(QoS) of IoVs are satisfied. Obtained results confirm the
superiority of the proposed optimization framework over the
benchmark optimization frameworks. The important contribu-
tions of our paper are summarized as follows.

• We propose a joint optimization framework for next-
generation NOMA-enabled SVNet to simultaneously
maximize the sum-capacity and total energy efficiency.
To improve the spectral efficiency, we assume that all
small-cell access points (SAPs) share the same spectrum
resources at a given time. Designing a more practical
system, we formulate a nonlinear multi-objective opti-
mization problem under the consideration of imperfect
SIC decoding. In particular, we jointly maximize the sum-
capacity and minimize the total transmit power of NOMA
SVNet while taking the constraints of minimum QoS,
maximum transmit power, and efficient signal decoding
into account.

• To obtain an optimal solution to the non-convex pow-
er allocation problem, we first exploit the weighted-
sum method to handle the multi-objective problem and
then adopt a new optimization approach based on se-
quential quadratic programming (SQP) for optimal pow-
er allocation. SQP is an iterative approach, where the
nonlinear/non-convex optimization problem is modeled
by adopting quadratic optimization subproblems. We also
provide the comparison of the proposed optimization
framework with the KKT approach, average power al-
location, and conventional OMA approach.

• The Monte Carlo simulation results provide an exten-
sive comparison of the proposed optimization framework
with benchmark NOMA SVNet, average power NOMA
SVNet, and conventional OMA SVNet, respectively. P-
resented results reveal the superiority of the proposed
NOMA-enabled SVNet approach over the other opti-
mization frameworks in terms of sum-capacity and total
energy efficiency. It is also found that the performance of
the proposed framework degrades as the value imperfect
SIC parameter increases.

The remainder of this paper can be organized as follow: Sec-
tion II provides the system model of NOMA-enabled SVNet
and discusses its different steps involved in the problem for-
mulation. Section III derives the optimal solution of NOMA-
enabled SVNet based on the SQP approach and suboptimal
solution based on the KKT approach. Section IV presents the
simulation results and discussion of the proposed optimization
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Fig. 1: System model of NOMA SVNet.

framework in comparison with other benchmark frameworks.
Finally, Section V concludes this work with some future
research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A downlink transmission of SVNet is considered as depicted
in Fig. 1. In each small-cell, and SAP serves multiple IoVs
using NOMA protocol while different SAPs are considered
to utilize OMA protocol. We denote the set of small-cells
as M = {m|1, 2, . . . ,M}, where m is the index of the
small-cell access point (SAP) m. Each SAP is located at the
roadside and serves a set of Internet-of-vehicles (IoVs) using
NOMA protocol. The set of IoVs serve by SAP m can be
denoted as N = {n|1, 2, . . . , N}, where n shows the index
of the IoV n1. We assume that: i) All the SAPs utilize the
same spectrum resources such that they produce co-channel
interference to each other; ii) All the devices in the network
are equipped with omnidirectional antenna; iii) The channel
state information (CSI) of all IOVs are available at SAPs [34];
vi) The channels between SAPs and IoVs are independent and
undergo Rayleigh fading [35].

During the communication process, each SAP needs to
transmit different pieces of information to its serving IoVs
over the same spectrum resource at the same time. To do so,
SAPs apply the NOMA protocol to transmit different signals
to their associated IoVs. Thus, IoVs associated with the same
SAP not only have interference due to NOMA, known as intra-
cell interference but also receive interference from neighboring
SAPs due to co-channel, also called inter-cell interference.
According to the NOMA principle, interference from IoV
with weak channel conditions can be successfully removed
at IoV with strong channel conditions using the SIC decoding

1In this work, we consider that the vehicle association with SAPs is accom-
plished before the joint optimization framework. Efficient vehicle association
can further enhance the performance of SVNet, however, is set aside for future
research work.

technique. The removal of this interference can be successful if
the channel to inter-cell interference plus noise ratio (CINR)
of the IoV with stronger channel conditions is greater than
the CINR of the IoV with weak channel conditions. With no
loss of generality, we assume that the CINR of different IoVs
associated with SAP m are sorted as

|gn,m|2

σ2 + |gn,m|2Θn,m
≤ |gn−1,m|2

σ2 + |gn−1,m|2Θn−1,m
, (1)

where |gn,m| =
√
hn,m, r

−ε
n,m denotes the channel coefficient

between IoV n and SAP m such that rn,m is the distance
between IoV n and SAP m, ε represents the path-loss ex-
ponent, and hn,m is the channel gain between IoV n and

SAP m, respectively. The term Θn,m =
M∑

m′=1

N∑
n′=1

pn′,m′ is

the interference power from neighboring SAPs and σ2 is the
variance of additive white Gaussian noise (AWGN). According
to the NOMA protocol, the power allocation at SAP m for
IoV n should be greater than the power of IoV n − 1 to
guarantees the successful SIC decoding at receivers. Since
SIC is very critical for NOMA performance, its successful
execution depends on the power levels of IoVs. The power of
IoVs associated with SAP m should satisfy as(

pn,m −
n−1∑
l=1

pl,m

)
|gn−1|2 ≥ ω, ∀m, (2)

where pn,m and pl,m are the transmit power of SAP m for IoV
n and IoV l, and ω denotes the ratio of power difference which
depends on hardware sensitivity and channel conditions. The
SAP m superimposed all the signals of its serving IoVs using
superposition coding approach. Thus, the transmitted signal
of SAP m can be written as xm =

∑N
n=1

√
pn,mxn,m, where

xn,m is the unit-power data symbol of IoV n. Based on the
proposed system model and the above observations, a received
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signal at IoV n from SAP m can be given as

yn,m = gn,m
√
pn,mxn,m + gn,m

n−1∑
l=1

√
pl,mxl,m

+ β

n−1∑
l=1

√
pl,mxl,m +

M∑
m′=1

gm
′

n,m

N∑
n′=1

√
pn′,m′xn′,m′ + ωn,m,

(3)

where the first term is the unit-power desired signal of IoV
n from the SAP m, the second term denotes the intra-cell
interference at IoV n from n− 1 IoVs after the SIC decoding
process. The third term is interference due to imperfect SIC
decoding, where β shows the imperfect SIC parameter. The
fourth term is the inter-cell interference from the neighboring
SAPs duce to co-channel while the last term represents the
AWGN of IoV n having σ2 variance. Based on (3) of IoV n,
the instantaneous signal to interference plus noise ratio (SINR)
at IoV n from the SAP m can stated as

γn,m =
pn,m|gn,m|2

σ2 + |gn,m|2
n−1∑
l=1

pl,m + Φn,m + |gm′
n,m|2Θn,m

. (4)

where Φn,m = (|gn,m|2
N∑

j=n+1

pj,m)β is the interference due

to imperfect SIC decoding, where β = E[|xn,m − x̃n,m|2].
Note that xn,m−x̃n,m is the difference of actual and estimated
signals.

The main objective of this work is to investigate the trade-
off on the capacity and energy of NOMA SVNet. In particular,
we simultaneously maximize the total achievable capacity and
minimize the total energy consumption through joint optimiza-
tion of power allocation. It is achieved through multi-objective
optimization. A multi-objective problem is mathematically
formulated as

P1 max
pn,m

M∑
m=1

N∑
n=1

Cn,m (5)

min
pn,m

M∑
m=1

N∑
n=1

pm,n (6)

s.t.

M∑
m=1

Cn,m ≥ Cmin, ∀n ∈ N, (C′1)

M∑
m=1

pn,m ≤ Pm, ∀n ∈ N, (C′2)

M∑
m=1

(
pn,m −

n−1∑
l=1

pl,m

)
|gn−1|2 ≥ ω, ∀n ∈ N, (C′3)

pn,m ≥ 0, ∀n ∈ N, ∀m ∈M, (C′4)

where Cn,m = log2(1 + γn,m) in P1 is the instantaneous
achievable capacity of IoV n from SAP m. The term Pm
is the total power budget of SAP m and Cmin denotes the
minimum threshold of achievable capacity to guarantee the
QoS of each IoV. Moreover, (5) and (6) are the objectives
of total achievable capacity maximization and total power
consumption minimization. Constraint in (C′1) guarantees the

minimum achievable capacity of each IoV. Constraint in (C′2)
controls the power of each SAP. Constraint in (C′3) ensures
efficient signal decoding at IoVs. Constraint in (C′4) keeps the
power of each IoV non-negative.

III. PROPOSED OPTIMAL SOLUTION

The joint power allocation problem P1 is nonlinear due
to the interference terms in (5) and (C′1) [36]. Thus, we
first transform the multi-objective optimization problem by
adopting the weighted-sum method and then exploit the SQP
method to obtain the optimal solutions. The weighted-sum
method is considered to be one of the powerful approaches
for handling multi-objective problems [37], [38]. With the help
of this method, any problem with multiple objectives can be
linearly converted into a single-objective optimization prob-
lem. Then, a weighted coefficient that investigates a trade-off
among various objectives is applied. Following this method,
the formulated optimization problem P1 can be transformed
as P2

P2 max
pn,m

`

M∑
m=1

N∑
n=1

Cn,m − (1− `)
M∑
m=1

N∑
n=1

pn,m (7)

s.t. (C′1), (C′2).
M∑
m=1

( n−1∑
l=1

pl,m +
ω

|gn−1|2
≤ pn,m

)
, ∀n ∈ N, (C′5)

where ` is the weighted coefficient and its values lie between
zero and one such as 0 ≤ ` ≤ 1. It is important to note
that the higher values of ` help the total achievable capacity
and its lower values support the energy efficiency of SVNet.
Thus, depends on the nature of different applications and their
requirements, it is the network’s responsibility to select the
desired values. For example, if achievable capacity is the
requirement of the application, higher values of ` will be
chosen. On the other side, if the energy consumption is crucial
to application, then lower values of ` will be selected. Besides,
constraint (C′5) is obtained from (C′3).

The optimization problem (7) is still nonlinear, thus, we
exploit the SQP approach which is one of the powerful tools
for solving the nonlinear power allocation problems [39].
This is the iterative approach where the nonlinear optimiza-
tion problem can be modeled by quadratic optimization sub-
problems [40]. By employing the SQP method, the first step
is to define a Jacobian matrix such as

A =


[
∂Cmin(p)

∂p

]T
N×N

[
∂Pm(p)
∂p

]T
N×N[[

∂ω1(p)
∂p

]T
N×1

[
∂ωo(p)
∂p

]T
N×(N−1)

]T
N×N


T

,∀m, (8)

where

Cmin(p) =[Cmin − C1,m, Cmin − C2,m,

. . . , Cmin − Cn,m, . . . , Cmin − CN,m]T , (9)
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TABLE I: Values of (21) and (22)

Dn,m |gn,m|2
n−1∑
l=1

pl,m + σ2 + pn,m|gn,m|2 + Φn,m + |gm′
n,m|2Θn,m

El,m 2pl,m|gl,m|4(2(|gl,m|2
l−1∑
r=1

pr,m + gm
′

l,mΘl,m)(2|gl,m|2) + 2pl,m|gl,m|4 + Φl,m)

Fl′,m′ pl′,m′ |gl′,m′ |4(2(|gl′,m′ |2
l′−1∑
r′=1

pr′,m′ + |gm′′
r′,m′ |2Θr′,m′ )(|gr′,m′ |2) + pr′,m′ |gr′,m′ |2 + Φl′,m′ )

Gk,m

(
|gk,m|2

k−1∑
u=1

pu,m + Φk,m + |gm′
k,m|2Θk,m

)2(
|gk,m|2

k−1∑
u=1

pu,m + Φk,m + |gm′
k,m|2Θk,m

)
pk,m|gk,m|2

Hk′,m′

(
|gk′,m′ |2

k′−1∑
u′=1

pu′,m′ + Φk′,m′ + |gm′′
u′,m′ |2Θk′,m′

)2
+
(
|gk′,m′ |2

k′−1∑
u′=1

pu′,m′ + Φk′,m′ + |gm′′
k′,m′ |2Θk′,m′

)
pk′,m|gk′,m′ |2

ω(p) =

[
0, p1,m +

ω

|h1,m|2
− p2,m,

. . . ,

n−1∑
l=1

pl,m +
ω

|gn−1|2
≤ pn,m

]T
, (10)

Pm(p) = [p1,m − Pm, p2,m − Pm, . . . , pN,m − Pm]T , (11)

After calculating the partial derivations of (9), it can be written
as

∂Cmin(p)

∂pn,m
=


Υ1, if f=z,

Υ2, if f >z,

0, if f <z,

, (12)

where f and z represents the columns and rows of matrix (12).
Moreover, the values of Υ1 and Υ2 are stated as

Υ1 =
−|gn,m|2

Λn,m + pn,m|gn,m|2 + Φn,m + |gm′
n,m|2Θn,m

, (13)

Υ2 =
pi,m|gi,m|4

Λi,m(Λi,m + pi,m|gi,m|2) + Φi,m + |gm′
i,m|2Θi,m

,

(14)

where Λn,m = σ2 + |gn,m|2
n−1∑
l=1

pl,m. Similar to the (9), the

values of (10) and (11) can be written as

∂Pm(p)

∂pn,m
=


0, if f >z,

1, if f=z,

0, if f <z,

, (15)

∂ω1(p)

∂pn,m
= [0, 0, . . . , 0]T , ∀n ∈ N, (16)

and ∀o > 1, it can be stated as

∂ωo(p)

∂pn,m
=


1, if f >z,

−1, if f=z,

0, if f <z,

. (17)

Now we define the Lagrange function of (7) such as

L(pn,m, λn,m, υn,m, πn,m) = `

M∑
m=1

N∑
n=1

Cn,m

− (1− `)
M∑
m=1

N∑
n=1

pn,m +

M∑
m=1

N∑
n=1

λn,m(Cmin − Cn,m)

+

M∑
m=1

υn,m

( n−1∑
l=1

pl,m +
ω

|gn−1|2
− pn,m

)
+

M∑
m=1

N∑
n=1

πn,m(pn,m − Pm), (18)

where λn,m, υn,m and πn,m are the Lagrange multipliers. Next
we derive a Hessian matrix such that its i row and j column
can be formulated as

B =


∂2L(.)
∂2p1,m

∂2L(.)
∂p1,m∂p2,m

· · · ∂2L(.)
∂p1,m∂pN,m

∂2L(.)
∂p2,m∂p1,m

∂2L(.)
∂2p2,m

· · · ∂2L(.)
∂p2,m∂pN,m

...
...

. . .
...

∂2L(.)
∂pN,m∂p1,m

∂2L(.)
∂pN,m∂p2,m

· · · ∂2L(.)
∂2pN,m


N×N

, (19)

The entries of (19) after partial derivations can be stated as

B =

{
Υ3, if f≥z,
Υ4, if f <z,

, (20)

where the values of Υ3 and Υ4 (20) are defined as

Υ3 =
|gn,m|4

D2
n,m

−
n−1∑
l=1

El,m
G2
l,m

−
M∑
m=1

N∑
n′=1

Fn′,m′

H2
n′,m′

, (21)

Υ4 =
Ek,m
G2
k,m

−
l−1∑
k=1

Ek,m
G2
k,m

−
M∑

m′=1

N∑
k′=1

Fk′,m′

H2
k′,m′

. (22)

and Dn,m, El,m, Fl′,m′ , Gk,m, Hk′,m′ , are stated in TABLE I
at the top of the page. Finally, we define matrix C such that

C =

[ [
B
]
N×N

[
A
]T
N×3N[

A
]
3N×N

[
0
]
3N×3N

]
4N×4N

, (23)

We improve the estimate of (pn,m, λn,m, υn,m, πn,m) itera-
tively such as

φt+1 = φt + αψt, (24)

where α is the step-size and φ can be derived as φ =
[pt+1, λt+1, υt+1, πt+1]T . Moreover, the ψ is the correction
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vector as ψ = [(ψtp)
T , (ψtλ)T , (ψtυ)T , (ψtπ)T ]T and can be

calculated as

ψ = [ζL(p)T , ζL(λ)T , ζL(υ)T , ζL(π)T ]T ×−C−1, (25)

where ζL(p), ζL(λ), ζL(υ), and ζL(π) are the Gradient ob-
tained from the Lagrangian function and can be expressed as
[41]

ζL(pn,m) = −(1 + λn,m)Υ5 +

n−1∑
l=1

λl,mΥ6 − υn,m + πn,m,

(26)

ζL(λn,m) =

M∑
m=1

(Cmin − Cn,m), ∀n, (27)

ζL(υn,m) =

M∑
m=1

( n−1∑
l=1

pl,m +
ω

|gn−1|2
− pn,m

)
, ∀n, (28)

ζL(πn,m) =

M∑
m=1

(pn,m − Pm), ∀n, (29)

where the values of Υ5 and Υ6 can be written as

Υ5 =
|gn,m|2

Λn,m + pn,m|gn,m|2 + Φn,m + |gm′
n,m|2Θn,m

, (30)

Υ6 =
pj,m|gj,m|4

Λj,m(Λj,m + pj,m|gj,m|2) + Φj,m + |gm′
j,m|2Θj,m

.

(31)

The complexity to solve the proposed SVNet framework using
the SQP method in terms of iteration depends on M and N .
If the number of iterations required for convergence is T , the
total computational complexity of the proposed framework can
be computed as O(TMN2). The complete steps of the joint
power optimization method are also discussed in Algorithm 1.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the simulation results
of our proposed NOMA SVNet approach. We obtain the aver-
age results from 104 trials using Monte Carlo simulations. We
compare the proposed optimization approach with benchmark
NOMA SVNet, average power NOMA SVNet and conven-
tional OMA SVNet. The benchmark NOMA SVNet refers to
a traditional optimization approach using KKT conditions, av-
erage power NOMA approach uses the arithmetic progression
technique such that the power of IoVs in each cell should
satisfy as pn,m = 2n

N(1+N)Pm, and the conventional OMA
approach accommodates only one IoV with each SAP at any
given time. Unless otherwise mentioned, the simulation param-
eters are set as: The number of SAPs is M = 6, the number
of IoVs associated with each SAP at any given time is N = 2,
the maximum power budget of SAP is set as Pm = 35 dBm,
the values of weighted coefficient ` to calculate the trade-off
between energy efficiency and sum-capacity are set as ` =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, the values of impSIC

Algorithm 1: Joint power optimization algorithm
Step 1: Parameter initialization
Initialize the sets of M, N , the Pm of each SAP, the
minimum achievable capacity Cmin, the values of
weighted coefficient `, the minimum power gap between
IoVs power ω, the step size α, the gradient ζL, and the
iteration number as t = 0.
Step 2: Parameter optimization
while not converge do

Compute the correction vector ψ using Equation (25);
Update the transmit power of IoVs at it serving SAP
using Equation (24);
if the power of IoVs Converges then

Stop the simulation;
else

Derive the C as Equation (23) until the power
convergence;
Set t = t+ 1, and go to step 2;

end
end
Step 3: Programing termination
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Fig. 2: Sum-capacity of SVNet versus increase in the transmit power
of each SAP for M = 6, ` = 1, Φ = 0.1 and Cmin = 1.5 bps/Hz.

parameter are Φn,m = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 the
variance is set as φ = 0.1, the ratio of power different for ef-
ficient SIC decoding is set as 2 dBm, the circuit power pc is set
as pc = 10 dBm, and the wireless channels undergo Rayleigh
fading. In addition, the pathloss is ε = 128.1 + 37.6 log(d)
[32], and the minimum capacity threshold of each IoV is set
as: 1.5 bps/Hz when ξ = 1, 0.9, 0.8, 0.7, 0.6, 0.5, and 1 bps/Hz
when ξ = 0.4, 0.3, 0.2, respectively.

First, we show the impact of SAP’s transmit power on
the sum-capacity and total energy efficiency of SVNet in
Figs. 2 and 3 which depict the sum-capacity and total en-
ergy efficiency against the transmit power of SAPs. In both
figures, the transmit power of each SAP varies from 5 to 35
dBm. Moreover, the total energy efficiency of the SVNet is
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Fig. 3: Energy efficiency of SVNet versus increase in the transmit
power of each SAP for M = 6, pc = 10 dBm, ` = 0.3, Φ = 0.1
and Cmin = 1 bps/Hz..

calculated as

EE =

M∑
m=1

N∑
n

log2(1 + γn,m)

Pn,m + pc
, bpj/Hz. (32)

Fig. 2 plots the sum-capacity versus the transmit power
of each SAP. We can see that the sum-capacity of the pro-
posed NOMA SVNet, and other approaches increases with
the increasing transmit power of SAP. It can also be evident
that the proposed SVNet approach performs significantly bet-
ter than the other baseline SVNet approaches. For instance,
when the transmit power of each SAP is 31 dBm, the sum-
capacity of the proposed SVNet is 38.64 bps/Hz compared to
other approaches which only achieve 33.18, 29.20, and 16.69
bps/Hz, respectively. Moreover, it is worth mentioning that
the gap of sum-capacity between the proposed approach and
other approaches increases when the transmit power of SAP
increases. It is because the proposed approach is more efficient
when SAPs are transmitting at high power.

Fig. 3 discusses the importance of transmit power on the
total energy efficiency of SVNet. It is demonstrated that the
energy efficiency of all SVNet approaches decreases with
the increasing transmit power of SAP. We can also observe
that the energy efficiency of the proposed approach and other
approaches follows a bell-shaped curve where it first increases
as the transmit power per SAP increases until saturating point
and then it falls decreasing with further increase in transmit
power. However, the proposed NOMA SVNet approach per-
forms better compared to other approaches. For example, when
the system operates over 10 dBm transmit power of each SAP,
the energy efficiency of the proposed NOMA SVNet approach
is 12.21 bpj/Hz, whereas benchmark NOMA SVNet, average
power NOMA SVNet and conventional OMA SVNet achieve
only 10.90, 10.10, and 7.3 bpj/Hz. It can also be noted that the
performance gap between NOMA approaches and the OMA
approach is large, which shows its poor performance.

Then, we describe the importance of the number of SAPs
on the sum-capacity and total energy efficiency of SVNet. In
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Fig. 4: Sum-capacity of SVNet versus the number of small-cell for
Pm = 35 dBm, ` = 1, Φ = 0.1 and Cmin = 1.5 bps/Hz.
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Fig. 5: Energy efficiency of SVNet versus the number of small-cell
for Pm = 35 dBm, pc = 10 dBm, ` = 0.3, Φ = 0.1 and Cmin = 1
bps/Hz..

this regard, Figs. 4 and 5 plot the sum-capacity and energy
efficiency against the increasing number of SAPs in the system
which varies from 1 to 6.

Fig. 4 illustrates the sum-capacity versus the number of S-
APs. We can see that the sum-capacity of all SVNet approach-
es increases as the number of SAPs increases. It is because
more IoVs can be accommodated by the same frequency and
time resources. As expected, the proposed NOMA SVNet ap-
proach outperforms the other SVNet approaches. For instance,
if the number of SAP is 6, the proposed SVNet achieves
40.10 bps/Hz. However, for the same point, the other SVNet
approaches obtain 34.39, 30.24, and 17.88 bps/Hz. Moreover,
the performance between the proposed approach and other
approaches increases as the number of SAPs increases which
indicates that the proposed approach is more suitable for large-
scale IoVs.

Fig. 5 describes the system’s total energy efficiency versus
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Fig. 6: The impact of weighting coefficient sum-capacity and energy
efficiency for M = 6, Pm = 35 dBm, Φ = 0.1, pc = 10 dBm, and
Cmin = 1.5 bps/Hz.
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Fig. 7: Increase in the impSIC parameter versus the sum-capacity of
SVNet for M = 6, Pm = 35 dBm, ` = 1, and Cmin = 1 bps/Hz.

the number of SAPs. It can be observed that the energy
efficiency of all approaches increases as the number of SAPs
increases. However, the proposed NOMA SVNet approach
achieves more energy efficiency compared to other SVNet
approaches. For example, the energy efficiency of the proposed
approaches is 11.85 when the number of SAPs reaches 6.
At the same point, the energy efficiency of the other SVNet
approaches is respectively, 10.29, 9.35, and 6.86 bpj/Hz. Fur-
thermore, one can also be noted that the energy efficiency gap
between the proposed approach and other SVNet approaches
increases when the number of SAPs increases which shows
the effectiveness of our approach for large-scale networks.

Next, it is important to study the trade-off between sum-
capacity and energy efficiency. Fig. 6 analyses the sum-
capacity and energy efficiency versus the varying values
of weighting coefficient for the proposed NOMA SVNet
approach and other NOMA approaches. As expected, the

sum-rate increases and energy efficiency decreases with the
increasing values of the weighting coefficient. The proposed
NOMA SVNet approach outperforms the other approaches in
both sum-capacity and energy efficiency. It is important to
mention here that the high values of the weighting coefficient
help sum-capacity and its lower values support energy effi-
ciency. Thus, depends on the nature of different applications
and their requirements, it is the network’s responsibility to
select the desired values. For example, if high sum-capacity
is the requirement of the application, the high value of the
weighting coefficient will be chosen. On the contrary, if energy
consumption is crucial to application, then lower values of the
weighting coefficient will be selected.

Now we study the impact of impSIC parameters on the
performance of different SVNet approaches. Fig. 7 shows the
sum-capacity versus increase in the impSIC parameter which
varies from 0.1 to 0.8. It is evident that the sum capacity of all
approaches decreases when the values of impSIC parameter
increase. It shows the importance of perfect SIC decoding
in practical systems. The proposed SVNet approach still ob-
tains high sum-capacity than the other benchmark approaches.
Moreover, we can see no changes in the performance of the
conventional SVNet approach. It is because the optimization
of the OMA system is independent of the values of impSIC
parameter.

Finally, Fig. 8 discusses the effects of circuit power on
the system performance by plotting the energy efficiency
against the increasing values of circuit power for all the
considered approaches. We can note that the energy efficiency
of SVNet decreases as the circuit power increases. Apparently,
the conventional OMA SVNet approach consumes high power
for efficient transmission rapidly reducing energy efficiency
compared to the NOMA SVNet approaches. The proposed
NOMA SVNet approach achieves high energy efficiency for
a large-scale of energy-constrained IoVs.

V. CONCLUSIONS

NOMA and IoVs are the key enablers for low-powered
large-scale 6G intelligent transportation systems. This paper
has provided a multi-objective optimization framework for
NOMA SVNet under imperfect SIC. In particular, the sum-
capacity and energy efficiency of SVNet have been simulta-
neously maximized through joint power optimization. A new
iterative approach based on SQP has been exploited to solve
the nonlinear power allocation problem. Presented results show
that the proposed NOMA SVNet performs better than the
other benchmark approaches in system sum-capacity and total
energy efficiency. The proposed optimization framework can
be extended in several ways. For example, we can extend
it by incorporating the channel estimation errors. Afterward,
we also aim to extend them by incorporating backscatter
communication in the considered system model which can
further increase total energy efficiency. These interesting open
issues will be addressed in our future studies.
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