Xing-Xing Shen

Xing-Xing Shen
Zhejiang University | ZJU · Institute of Insect Sciences

PhD

About

65
Publications
20,271
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,839
Citations

Publications

Publications (65)
Article
Full-text available
Phylogenomic studies have resolved countless branches of the tree of life, but remain strongly contradictory on certain, contentious relationships. Here, we use a maximum likelihood framework to quantify the distribution of phylogenetic signal among genes and sites for 17 contentious branches and 6 well-established control branches in plant, animal...
Article
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-le...
Article
Full-text available
Phylogenetic trees are essential for studying biology, but their reproducibility under identical parameter settings remains unexplored. Here, we find that 3515 (18.11%) IQ-TREE-inferred and 1813 (9.34%) RAxML-NG-inferred maximum likelihood (ML) gene trees are topologically irreproducible when executing two replicates (Run1 and Run2) for each of 19,...
Article
Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse f...
Article
Full-text available
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct a...
Preprint
Full-text available
Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizonta...
Preprint
Full-text available
Ancient divergences within Opisthokonta—a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives— remain contentious, hindering investigations of the evolutionary processes that gave rise to two kingdoms and the repeated emergence of iconic phenotypes like multicellularity. Here, we use genome-scale a...
Preprint
Full-text available
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from...
Preprint
Full-text available
The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in...
Article
Full-text available
Ascochyta blight is a fungal disease affecting peas, causing significant damage to the plant and reducing crop yield. Host‒pathogen interactions can inform disease prevention and control strategies but remain poorly understood. Here, we generate a near-chromosome-level assembly for Didymella pinodella HNA18, a pathogenic fungus that causes pea asco...
Preprint
Full-text available
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Paradigms proposed to explain this variation either invoke trade-offs between performance efficiency and breadth or underlying intrinsic or extrinsic factors. We assembled genomic (1,154 yeast strains from 1,049 species), m...
Article
The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this subphylum are ecologically and metabolically diverse...
Article
Full-text available
As the most diverse group of animals on Earth, insects are key organisms in ecosystems. Horizontal gene transfer (HGT) refers to the transfer of genetic material between species by non‐reproductive means. HGT is a major evolutionary force in prokaryotic genome evolution, but its importance in different eukaryotic groups, such as insects, has only r...
Article
Full-text available
Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignore...
Article
Full-text available
The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Wh...
Article
Full-text available
Identifying our most distant animal relatives has emerged as one of the most challenging problems in phylogenetics. This debate has major implications for our understanding of the origin of multicellular animals and of the earliest events in animal evolution, including the origin of the nervous system. Some analyses identify sponges as our most dis...
Preprint
Full-text available
The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Wh...
Article
Full-text available
Topological conflict or incongruence is widespread in phylogenomic data. Concatenation- and coalescent-based approaches often result in incongruent topologies, but the causes of this conflict can be difficult to characterize. We examined incongruence stemming from conflict between likelihood-based signal (quantified by the difference in gene-wise l...
Article
Full-text available
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome...
Article
Full-text available
Motivation: Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes, and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this g...
Article
Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To...
Article
Full-text available
Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However...
Article
Full-text available
used the alignment-free feature frequency profile (FFP) method to reconstruct a broad sketch of the tree of life (ToL). The FFP tree reports many relationships that strongly contradict the current consensus view of the ToL, including sister group relationships for plants + animals, Bacteria + Archaea, and Mollusca (incorrectly referred to as cnidar...
Article
Full-text available
Ascomycota, the largest and most well-studied phylum of fungi, contains three subphyla: Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and Taphrinomycotina (fission yeasts). Despite its importance, we lack a comprehensive genome-scale phylogeny or understanding of the similarities and differences in the mode of genome evolut...
Preprint
Full-text available
Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome...
Article
Full-text available
Gene regulatory networks (GRNs) drive developmental and cellular differentiation, and variation in their architectures gives rise to morphological diversity. Pioneering studies in Aspergillus fungi, coupled with subsequent work in other filamentous fungi, have shown that the GRN governed by the BrlA, AbaA, and WetA proteins controls the development...
Article
Full-text available
Angiosperms represent one of the most spectacular terrestrial radiations on the planet¹, but their early diversification and phylogenetic relationships remain uncertain2–5. A key reason for this impasse is the paucity of complete genomes representing early-diverging angiosperms. Here, we present high-quality, chromosomal-level genome assemblies of...
Article
Full-text available
Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placen...
Article
Full-text available
Cell type in budding yeasts is determined by the genotype at the mating-type (MAT) locus, but yeast species differ widely in their mating compatibility systems and life cycles. Among sexual yeasts, heterothallic species are those in which haploid strains fall into two distinct and stable mating types (MATa and MATα), whereas homothallic species are...
Article
Full-text available
The tangerine pathotype of the ascomycete fungus Alternaria alternata is the causal agent of citrus brown spot, which can result in significant losses of both yield and marketability for tangerines worldwide. A conditionally dispensable chromosome (CDC), which harbours the host‐selective ACT toxin gene cluster, is required for tangerine pathogenici...
Article
Full-text available
The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium. Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicilliu...
Article
Full-text available
Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine–Cytosine (GC) content, small genome sizes, and lower gene numbers. T...
Article
Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from...
Article
Full-text available
Significance Evolutionary and comparative genomics, combined with reverse genetics, have the power to identify and characterize new biology. Here, we use these approaches in several nontraditional model species of budding yeasts to characterize a budding yeast secondary metabolite gene cluster, a set of genes responsible for production and reutiliz...
Article
Full-text available
DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl‐DNA glycosylases AlkC and AlkD adopt a unique structure based on α‐helical HEAT repeats. Both enzymes identify and excise their substrates without a base‐flipping mechanism used by other glycosylases and nucleic acid pro...
Article
Full-text available
The genetic code used in nuclear genes is almost universal, but here we report that it changed three times in parallel during the evolution of budding yeasts. All three changes were reassignments of the codon CUG, which is translated as serine (in 2 yeast clades), alanine (1 clade), or the 'universal' leucine (2 clades). The newly discovered Ser2 c...
Data
Accession numbers or coordinates for the proteins used to construct the species phylogeny.
Data
AI results for W/S species, C. infanticola, B. adeninivorans, and Su. lignohabitans.
Data
Data used to construct the plots is presented in Figure 1.
Data
tBLASTx results for glycolytic proteins in the W/S clade.
Data
KEGG, Interpro and GO annotations of genes of bacterial origin in the W/S clade.
Data
Primers and strategies used to construct the deletion mutants.
Article
Full-text available
Fructophily is a rare trait that consists of the preference for fructose over other carbon sources. Here, we show that in a yeast lineage (the Wickerhamiella/Starmerella, W/S clade) comprised of fructophilic species thriving in the high-sugar floral niche, the acquisition of fructophily is concurrent with a wider remodeling of central carbon metabo...
Article
Full-text available
The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree...
Preprint
Full-text available
The tangerine pathotype of the ascomycete fungus Alternaria alternata is the causal agent of citrus brown spot, which can result in significant losses of both yield and marketability for tangerines and tangerine hybrids worldwide. A conditionally dispensable chromosome (CDC), which harbors the host-selective ACT toxin gene cluster, is required for...
Article
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repea...
Preprint
Full-text available
Phylogenetics has witnessed dramatic increases in the sizes of data matrices assembled to resolve branches of the tree of life, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-...
Article
Full-text available
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multi-locus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationship...
Preprint
Full-text available
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multi-locus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationship...
Article
Full-text available
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the...
Article
Full-text available
Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, usi...
Article
Full-text available
Resolving difficult nodes for any part of the vertebrate tree of life often requires analyzing a large number of loci. Developing molecular markers that are workable for the groups of interest is often a bottleneck in phylogenetic research. Here, based on a nested PCR strategy, we present a universal toolkit including 102 NPCL (nuclear protein-codi...
Article
Full-text available
The only currently unresolved portion of the backbone phylogeny of the vertebrates involves the relationships among coelacanths, lungfishes, and tetrapods. Despite active research on this question over the past three decades, it is still difficult to determine statistically whether lungfishes alone or both lungfishes and coelacanths together are cl...
Article
Full-text available
Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However,...
Article
Full-text available
In recent years, the increasing availability of genomic resources has provided an opportunity to develop phylogenetic markers for phylogenomics. Efficient methods to search for candidate markers from the huge number of genes within genomic data are particularly needed in the era of phylogenomics. Here, rather than using the traditional approach of...

Network

Cited By