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Synopsis   - Introduce a free and open source program PTCLab for calculating phase 

transformation crystallography.  

Abstract PTCLab (Phase Transformation Crystallography Lab) is a free and open source software 

to calculate the crystallographic features formed during a phase transformation, such as orientation 

relationship, interface orientation, interfacial structures etc. This program covers the crystallographic 

theories of martensitic and diffusional transformation and allows users to represent the results in stereo 

graphic projection. The crystallographic models treated in PTCLab include classical phenomenal theory 

of  martensite crystallography (PTMC), double shear version of PTMC, invariant line model, O-lattice 

theory, O-line model, and recently developed 3-D NCS method,  Edge-to-Edge matching model, variant 

selection analysis etc. In addition, a number of basic crystallographic calculations for single or multiple 

crystal structures could be done with the calculation pad. High quality composite stereographic projection 

and electron diffraction patterns can be also obtained by present application. PTCLab is written in python, 

runnable on cross platform and is distributed at https://sourceforge.net/projects/tclab/.  
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1. Introduction 

Reproducible crystallographic features (such as morphologies, spatial distribution, orientation 

relationship (OR) etc.) are often observed during phase transformation and epitaxial growth. This 

preferred crystallography can often be rationalized with the help of geometry analysis, i.e. based on the 

fit/misfit analysis of lattice points or planes between two rigid lattices (Zhang & Weatherly, 2005; Zhang 

& Kelly, 2009). The geometry method is simple and takes lattice information sometimes orientation 

relationship as an input, and it can output rich information about crystallographic features (orientation 

relationship, interface orientation, interfacial structures etc.) and misfit strain distribution. As far as we 

know, there is no public integrated software for calculating phase transformation crystallography and 

illustrating the final results. Therefore, a free computer program named PTCLab (Phase Transformation 

Crystallography Lab) is developed.  

2. PTCLab 

PTCLab is a free and open-source software to calculate phase transformation crystallography for any 

crystal structures. It is developed with Python (Oliphant, 2007) with Matplotlib (Hunter, 2007) and 

Numpy (Van Der Walt et al., 2011) libraries for publication quality plotting and numerical calculation, 

respectively. PTCLab supports multiple operating systems, and it can be downloaded from 

https://sourceforge.net/projects/tclab/ with a user manual.  

2.1. Structure of PTCLab 

The structure of PTCLab is shown in Figure 1. First of all, one needs to input the information of 

crystal structures. The symmetry information is not necessary, but it can be useful in different parts of the 

program, for example to reduce the crystallographic equivalent solutions or generate variants for a given 

orientation relationship. PTCLab supports different crystal systems with conventional and unconventional 

setting of space group. There are three method to input a crystal structure, one is to create the crystal 

structure by using PTCLab, second method is to input the structure by CIF file, and the third method is to 

obtain the structure directly from web database, such as the Crystallography Open Database (COD) 

(Grazulis et al., 2009; Downs & Hall-Wallace, 2003), via the interface from PTCLab. For calculating 

phase transformation crystallography, minimum two crystal structures are needed. 

 After inputting crystal structures, one can plot pole figures, simulation diffraction patterns, and 

calculate transformation crystallography, etc. with PTCLab. The first two functions are useful for 

determining transformation crystallography associated with experimental data. Particularly, the function 

of diffraction pattern simulation can output not only overlapped diffraction patterns but also 2-D Kikuchi 

line/3-D Kikuchi line map for guiding conventional TEM operation.  



The main function of PTCLab is to calculate transformation crystallography between dissimilar 

crystals. The calculation method is well documented in literatures (Zhang & Weatherly, 2005; Zhang & 

Kelly, 2009). The supported crystallographic models treated in PTCLab include classical phenomenal 

theory of martensite crystallography (PTMC) (Mackenzie & Bowles, 1954; Wechsler et al., 1953), double 

shear version of PTMC (Ross & Crocker, 1970), O-lattice theory (Bollmann, 1982, 1970), invariant line 

model (Dahmen, 1982), O-line model (Zhang & Purdy, 1993; Qiu & Zhang, 2003; Gu & Zhang, 2014), 

near coincidence site (NCS) method (Liang & Reynolds, 1998) extended from structural ledge model 

(Rigsbee & Aaronson, 1979; Hall et al., 1972), Edge-to-Edge matching model (Kelly & Zhang, 1999; 

Zhang & Kelly, 2009), and recent developed Good Matching Site (GMS) method (Yang & Zhang, 2012; 

Zhang, 2013) etc. For large misfit system, the coincidence site lattice (CSL)/displacement shift complete 

lattice (DSCL) method ( Bollmann, 1982; Bonnet & Durand, 1975; Balluffi et al., 1982, Ye & Zhang, 

2002) is also included. Most methods except NCS method could output orientation relationship, interface 

normal, sometimes spacing and direction of interfacial defects. Although the NCS method needs OR as an 

input, it could be used to illustrate 3-D matching and find potential interfaces. PTCLab is developed for 

general application of transformation crystallography, and is not restricted to simple crystal structure such 

as FCC, BCC or HCP structure.  

 

  

Figure 1 Structures of free software PTCLab. 

 



2.2. Main interface of PTCLab 

The main interface of PTCLab is shown in Figure 2, and it consists of menu (in Figure 2), tool bar 

(), item tree (), and displayed panel (). Different crystallographic models can be loaded from the 

“Calculation” menu. Tool bar offers system setting option and convenient operation of final results. All 

loaded the crystal structures are shown in item tree, and each item has three sub items for showing crystal 

structure, stereographic projection and electron diffraction pattern.  

 

Figure 2 Main interface of PTCLab 

 

3. Basic crystallography 

3.1. Setting of orthogonal coordinate system 

As shown in Figure 3a, a crystal coordinate system (e1 // a, e2 // b, e3 // c) is defined by six lattice 

parameters, and this coordinate system is not straight for calculating the angles between directions or the 

length of a direction in a general crystal structure. Usually, an orthogonal coordinate system (x, y, z) is set 

up for calculation so that the vectors in crystal coordinate could be manipulated with knowledge in 

Cartesian coordinate system. Figure 3b-c shows two common settings In Figure 3b, the x axis is set to be 

parallel to e1, and e3 is fixed in the xz plane, while in Figure 3c, the z axis is set to be parallel to e3, and e1 



is fixed in the xz plane. Though the selection of the different coordinate system conventions would not 

affect final results for angles and lengths, but cautions must be paid in some cases, especially when you 

apply Euler angle in Electron backscatter diffraction (EBSD) system, the alignment of the coordinate 

system is essential. When different coordinate system is selected, the Euler angle and the resulting 

orientation matrix would be different. In PTCLab, the convention of Figure 3b is adopted. The 

transformation of a vector in the crystal coordinate system vc to orthogonal coordinate system vo is related 

by  

 vo = Svc (1) 

where S is a structure matrix defined as   

 𝑺 =  
|
|

𝑎 𝑏 cos 𝛾 𝑐 cos 𝛽

0 𝑏 sin 𝛾
𝑐

sin 𝛾
(cos 𝛼 − cos 𝛽 cos 𝛾)

0 0
𝑉

𝑎𝑏 sin 𝛾

|
|
 (2a) 

as function of the lattice parameters, and V is the volume of the crystal given by 

 𝑽 = 𝑎𝑏𝑐√1 + 2 cos 𝛼 cos 𝛽 cos 𝛾 − (cos 𝛼)2 − (cos 𝛽)2 − (cos 𝛾)2 (2b) 

In addition, the transformation of plane normal from a crystal coordinate system gc to orthogonal 

coordinates system gc is: 

 go = S-1'gc (3) 

After setting of the orthogonal coordinate system, all calculation is carried out within this coordinate 

system, and final results of directions or plane normal are transformed to crystal coordinate system 

according to Equation (1) or (3), respectively. 

 

 

Figure 3 Coordinate system (a) Crystal defined by six lattice parameters (e1 // a, e2 // b, e3 // c), (b) Definition 

of orthogonal coordinate system with x // e1 and e3 lying in xz plane. (c) Definition of orthogonal coordinate 

system with z // e3 and e1 lying in xz plane. 



3.2. Orientation relationship and interface orientation 

   The orientation relationship describes the relative orientation between two crystals in 3D space. During 

phase transformations, reproducible ORs are often observed together with faceted/planar interfaces. The 

faceted interface could be described by a vector normal to the facet. The preferred interface usually 

corresponds to a local minimum of interfacial energy (Dai & Zhang, 2014). Therefore, the faceted 

interface is a key to understand the preferred crystallography during a phase transformation. A usual way 

to find the possible interfaces with minimum low energy or strain energy is to analyze the fit/misfit in all 

of the possible interfaces, and find the best matching interface as in various models showing in Figure 1.  

   The OR between two crystals could be described by several methods, such as miller indices, Euler angle, 

and axis/angle pairs. The straight way is to express the OR in miller indices. For example, the Nishiyama-

Wassermann OR in FCC/BCC system is expressed as parallelism of low indexed planes (111)fcc // (011)bcc 

and parallelism of low indexed directions [11̅0]fcc // [100]bcc. In some low symmetry system, such an 

expression would cause some misleading (Du et al., 2016). The strictest way is to express the OR with the 

3 by 3 orientation matrix M as used in PTCLab. The orientation matrix transforms a vector from one 

orthogonal coordinate system in one crystal or mechanical coordinate system (Section 3.1) to that in 

another crystal, such as from orthogonal coordinate system in matrix crystal vm to that in product phase vp,  

 vp = Mvm (4) 

Therefore the orientation matrix is a rotation matrix with the determination equals to 1. The conversion of 

orientation matrix to three Euler angles is derived by G. Nolze with a sequence of rotation axes as ZXZ 

(Nolze, 2015). Systematic investigation of the ORs could be achieved by continuously varying Euler 

angles. In addition, the rotation axis/angle pair can be derived from orientation matrix as shown by 

Bollmann (Bollmann, 1982), where the rotation axis is expressed as 

 u // [m21-m12, m02 – m20, m10-m01], (5a) 

and corresponding rotation angle can be expressed as: 

 
𝜃 =  

𝑚11 + 𝑚22 + 𝑚33 − 1

2
 

(5b) 

where mij is the element of orientation matrix. Table 1 shows the examples of the common ORs in 

FCC/BCC system, such as Nishiyama-Wassermann (N-W) OR, Kurdjumov-Sachs (K-S) OR, Pitsch OR, 

with different expressions. The conversion between different expressions could be done by PTCLab, but 

the orientation matrix is a default input or output in various functions in PTCLab. 

Table 1. Expressions of common orientation relationships in FCC/BCC systems. 

OR Miller indices Euler angles Rotational axis/angle pair 



N-W 
(111)fcc // (011)bcc 

[11̅0]fcc // [100]bcc 
(135.0,  9.7, 180.0 ) [0.201 0.083̅̅ ̅̅ ̅̅ ̅  0.976] / 46.0 

K-S 
(111)fcc // (011)bcc 

[101̅]fcc // [111̅]bcc 
(114.2, 10.5, 204.2) [0.178 0.178̅̅ ̅̅ ̅̅ ̅  0.968 ] / 42.8 

Pitsch 
(100)fcc // (11̅0)bcc 

[011]fcc // [111]bcc 
(0.0, 9.7, 45.0) [0.201̅̅ ̅̅ ̅̅ ̅  0.083 0.976̅̅ ̅̅ ̅̅ ̅  ] / 46.0 

 

4. Application examples 

In the following sections, only four examples are presented. As for the detailed examples and 

functions, please refer to the user manual.  

4.1. Simulation of diffraction patterns 

The OR between two crystals is usually determined by diffraction techniques such as transmission 

electron microscopy, EBSD etc. Therefore, the simulation or index the diffraction pattern is essential for 

studying phase transformation crystallography. PTCLab supports these functions. Figure 4 shows a 

simulated diffraction at N-W OR. Figure 4a and 4b are the electron diffraction pattern along [11̅0]fcc and 

[100]bcc zone axis, respectively, and Figure 4c is the superimposed diffraction pattern at N-W OR. 

PTCLab is capable of simulating the diffraction patterns of arbitrary crystals, i.e. not only in the high 

symmetry system as shown in Figure 4, but also in low symmetry system. Figure 5a shows another 

example of diffraction pattern from low symmetry crystal, i.e. monoclinic zirconia, together with Kikuchi 

lines. Recently, EBSD plays an important role in studying transformation crystallography (Miyamoto et 

al., 2010; Miyamoto et al., 2009; Humbert et al. 2011; Cayron et al., 2006; Patapy et al., 2013), thus the 

simulation of EBSD Kikuchi lines is performed in PTCLab. An example is shown in Figure 5b for the 

monoclinic zirconia as in Figure 5a (Patapy et al., 2013). In addition to simulation of diffraction patterns 

and Kikuchi lines, PTCLab also offers a basic function to index diffraction pattern/Kikuchi line or EBSD 

Kikuchi line. The indexed OR is expressed in Euler angles which is convenient for further calculation.   

 



Figure 4 Simulated diffraction patterns in FCC/BCC systems by PTCLab. (a) Diffraction pattern along 

[11̅0] in FCC lattice, (b) Diffraction pattern along [100] in BCC lattice, (c) Superimposed diffraction 

patterns at N-W OR. Red dots are spots from FCC crystal, while blue dots are from BCC crystal. 

 

 

Figure 5 Simulated diffraction patterns for monoclinic zirconia crystal. (a) Diffraction pattern and 

Kikuchi lines along [002] direction, (b) EBSD Kikuchi pattern for the sample with orientation of (0,0,0) 

at 20 KV with sample tilt angle of 70, where the labelled indices are the direction of plane intersections 

and ‘pc’ stands for pattern centre. 

 

4.2. Misfit analysis and misfit dislocation 

As mentioned before, the basis of the geometrical models for transformation crystallography is based 

on fit/misfit analysis of the atoms from two crystals. Suppose two crystals are interpenetrated with each 

other, the closest distance between two atoms from two crystals are defined as misfit value. The 

geometrical model requires the misfit value to reach their minimum at the interface or growth direction, 

for example, if the misfit value along one direction is zero, then this direction is an invariant line 

(Dahmen, 1982). The NCS method is based on the misfit distribution, and the atoms with misfit smaller 

than certain value ( 15%|b|, b is Burgers vector) is defined as NCS point (Liang & Reynolds, 1998) or 

GMS point (Yang & Zhang, 2012; Zhang, 2013). Figure 6a shows the NCS distribution in (111)f//(011)b at 

N-W orientation relationship (OR). The advantage of NCS method is easy to use and without input of 

lattice correspondence (Liang & Reynolds, 1998; Furuhara et al., 2002), but the disadvantage is that it is 

unable to quantitatively analyse the match/mismatch between two crystals. In contrast, the quantitative 

method is O-lattice theory, though it is not straight as NCS method.  These two complementary methods 



are all included in PTCLab.  As for the case in Figure 6a, the O-lattice and O-cell wall are plotted in 

Figure 6b by inputting the Burgers vectors <11̅0>/2 on (111)f plane. The O-cell wall is the worst matching 

place thus it is the location of the dislocations. The solution of the O-cell wall is based on the solution of 

Bollmann’s equation (Zhang, 2005). Apparently, O-lattice is the center of the NCS points or GMS points. 

When the OR varies, the dislocation structure and the distribution of good matching atoms change 

accordingly. For example, when the OR deviates 3 from N-W OR around plane (111)f//(011)b, the O-

lattice distribution and dislocation structure is shown in Figure 6c. The quantitative result of the 

dislocation line direction and spacing can be output from PTCLab. In some singular cases, the O-lattice 

does not exist, but the GMS point can also be defined and the dislocation structure can be also defined by 

GMS method (Zhang, 2013). PTCLab supports the treatment of these special cases.  

4.3. Martensite crystallography 

Phenomenal theory of martensite crystallography (PTMC) (Mackenzie & Bowles, 1954; Wechsler et 

al., 1953) is recognized as the milestone in studying phase transformation crystallography (Wayman, 

1964). The development of precipitation crystallography, such as O-line solution (Qiu & Zhang, 2003; Gu 

& Zhang, 2010), is benefit from its matrix solution. The developed double shear version of PTMC (Ross 

& Crocker, 1970) and a special solution proposed by Kelly (Kelly, 1992) are also included in PTCLab in 

addition to PTMC. Here, we take the classical PTMC theory as an example. The inputted crystal 

structures in PTCLab are the same as in the book (Bhadeshia, 2001), i.e FCC structure and BCC structure 

with lattice parameters as af = 3.56Å  ab = 2.8598 Å, respectively. The calculated result by PTCLab is 

partly shown in Table 2. The solutions are consistent with previous results (Bhadeshia, 2001). There are 

four solutions in total. For each solution, the calculated crystal directions or planes are expressed in both 

FCC and BCC crystals so that one can distinguish between different solutions. The habit plane (HP) in 

FCC are crystallographic equivalent for four solutions are located on an eclipse curve as shown in Figure 

7 (Gu & Zhang, 2011), however, the expression in BCC lattice is different. Therefore, four solutions can 

be divided into two categories, i.e.  solution 1 and solution 4 are crystallographically equivalent while 

solution 2 and 3 are crystallographically equivalent solution. For a twining martensite, the martensite 

consists of the variants of these two categories. The volume fraction of the twining could be calculated 

from the magnitude of lattice invariant shear m1 (Bhadeshia, 2001), and the twin ratio is 0.401/0.265 = 

1.513 : 1, i.e. the volume fraction of  smaller m1 is around 60%. In summary, PTCLab could output 

complete crystallographic data for both martensite crystallography and precipitation crystallography, 

which is ready for comparison with the experimental data.  

 



 

Figure 6 Dislocation on the interface, (a) N-W OR ( (111)f//(011)b, [11̅0]f//[100]b ), (b) O-lattice and O-

cell wall calculated by O-lattice theory for N-W OR. Three principal O-lattice vectors xO
i ( i = 1, 2, 3 ) 

correspond to the Burgers vector <11̅0>/2, <101̅>/2 and <011̅>/2, respectively. (c) O-lattice and O-cell 

wall for the OR between two lattices deviates 3 from N-W OR. 



Table 2. Transformation crystallography for martensite calculated by PTCLab, IL is invariant line direction, IL* is invariant normal direction, 

RB is the transformation matrix, HP is the habit plane, m1 is the magnitude of lattice invariant shear and m2 is the magnitude of macroscopic shape 

change. OR is expressed in miller index in the last two columns. 

Solution 1 Solution 2 Solution 3 Solution 4 

IL(fcc) -0.671 IL(bcc) -0.792 IL(fcc) -0.671 IL(bcc) -0.286 IL(fcc) -0.671 IL(bcc) -0.792 IL(fcc) -0.671 IL(bcc) -0.286 

 0.315  -0.286  -0.315  -0.792  0.315  -0.286  -0.315  -0.792 

 0.671  0.539  0.671  0.539  0.671  0.539  0.671  0.539 

                

IL*(fcc) 0.539 IL*(bcc) -0.067 IL*(fcc) 0.539 IL*(bcc) -0.067 IL*(fcc) 0.539 IL*(bcc) 0.738 IL*(fcc) 0.539 IL*(bcc) 0.738 

 0.647  0.738  0.647  0.738  -0.647  -0.067  -0.647  -0.067 

 0.539  0.671  0.539  0.671  0.539  0.671  0.539  0.671 

                

RB 1.107 -0.116 0.161 RB 1.125 -0.040 0.107 RB 1.125 0.040 0.107 RB 1.107 0.116 0.161 

 0.105 1.129 0.044  0.024 1.129 0.085  -0.024 1.129 -0.085  -0.105 1.129 -0.044 

 -0.233 -0.040 0.786  -0.154 -0.116 0.792  -0.154 0.116 0.792  -0.233 0.040 0.786 

                

HP(fcc) -0.571 HP(bcc) 0.097 HP(fcc) -0.197 HP(bcc) 0.419 HP(fcc) -0.197 HP(bcc) -0.609 HP(fcc) -0.571 HP(bcc) -0.931 

 -0.797  -0.931  -0.797  -0.609  0.797  0.419  0.797  0.097 

 -0.197  -0.351  -0.571  -0.673  -0.571  -0.673  -0.197  -0.351 

                

m1 0.401 m2 0.223 m1 0.265 m2 -0.223 m1 0.265 m2 -0.223 m1 0.401 m2 0.223 

                

OR fcc bcc Angle OR fcc bccc Angle OR fcc bcc Angle OR fcc bcc Angle 

Plane 1 1 1  0.  1.  1. 0.436 Plane 1 1 1  0.  1.  1. 0.436 Plane  1 -1  1  1.  0.  1. 0.4364 Plane  1 -1  1  1.  0.  1. 0.436 

Dir.  1  0 -1  1.  1. -1. 3.285 Dir.  1 -1  0  2.  0.  0. 2.039 Dir. 1 1 0  0.  2.  0. 2.039 Dir.  1  0 -1  1.  1. -1. 3.285 

 

 

 

  



 

Figure 7 Stereographic projection of the habit normal for the solutions in Table 1. 

 

4.4. Variants due to crystal symmetry 

Due to the symmetry of the matrix, the transformed products may have crystallographically equivalent 

solutions which are called variants. The boundaries between variants could be served as an effective 

boundary to strengthen the material. The number of variants depend on the symmetry of matrix and 

product phase and OR (Humbert et al. 1992). PTCLab supports most conventional or unconventional 

setting of the space group, the symmetry operation can be generated by PTCLab, and thus the variant 

number and crystallography feature of each variant can be outputted by PTCLab. Furthermore, the 

variants could be classified by PTCLab according to different criterion, such as Bain group, Close Packed 

direction group, Close Packed plane group etc.  The distribution of the variants could be shown in a 

stereographic projection by PTCLab as Figure 8. Figure 8 shows 24 BCC variants at K-S OR in 

FCC/BCC system, and it could be seen from the figure that the distribution of the variants reflects the 

symmetry of the parent FCC crystal. Such a variant distribution can be manipulated by changing OR via 

Euler angles, thus it could be applied in fitting OR from experimental results (Nolze, 2006).  

With the crystallographic data of each variant, PTCLab offers a calculation of variant selection based 

on the model proposed by Furuhara et al (Furuhara et al., 2008). The variant selection rules executed in 



PTCLab include (1) minimization the angle between the shape strain direction or slip direction and 

specific plane, (2) minimization the angle between specific planes. These rules are also applicable to 

variant selection along grain boundary as in original work (Furuhara et al., 2008).  

 

 

Figure 8  [111]f stereographic projection of  <001>b of 24 BCC variants at K-S OR ( (111)f//(011)b, 

[101̅]f//[111̅]b ). Different colour shows different Bain group, and filled circles are from bcc lattices, while 

filled squares are from FCC lattice. The number indicates different BCC variants.  

 

5. Future developments 

Further version will cover following aspects. Firstly, function to fit crystallographic feature from 

EBSD data and to analyse the variant distribution of product phases. Secondly, function to search crystal 

structures fulfilling certain crystallographic criterion (such as small misfit) from COD database, which 

could be useful for alloy development by crystallography engineering. 

6. Conclusion 

A free and open-source software PTCLab for calculating phase transformation crystallography in 

arbitrary alloy system is released at https://sourceforge.net/projects/tclab/.  The software is written in 

python, runnable on cross platform. It supports most geometrical models for transformation 

crystallography with quantitative outputs (orientation relationship, dislocation spacing, growth direction 



etc.). In addition, the simulation of diffraction patterns/Kikuchi lines and quality plot of stereo-graphic 

projection are also included. Although our understanding of transformation crystallography is still in 

many ways imperfect, the development of the transformation crystallography is impressive. PTCLab 

could be helpful in the research of transformation crystallography. 

 

 

Figure 1 Structures of free software PTCLab. 

Figure 2 Main interface of PTCLab. 

Figure 3 Coordinate system (a) Crystal defined by six lattice parameters (e1 // a, e2 // b, e3 // c), (b) Definition of 

orthogonal coordinate system with x // e1 and e3 lying in xz plane. (c) Definition of orthogonal coordinate system with z // e3 

and e1 lying in xz plane. 

Figure 4 Simulated diffraction patterns in FCC/BCC systems by PTCLab. (a) Diffraction pattern along [11̅0] in 

FCC lattice, (b) Diffraction pattern along [100] in BCC lattice, (c) Superimposed diffraction patterns at N-W OR. 

Red dots are spots from FCC crystal, while blue dots are from BCC crystal. 

Figure 5 Simulated diffraction patterns for monoclinic zirconia crystal. (a) Diffraction pattern and Kikuchi lines 

along [002] direction, (b) EBSD Kikuchi pattern for the sample with orientation of (0,0,0) at 20 KV with sample tilt 

angle of 70, where the labelled indices are the direction of plane intersections and ‘pc’ stands for pattern centre. 

Figure 6 Dislocation on the interface, (a) N-W OR ( (111)f//(011)b, [11̅0]f//[100]b ), (b) O-lattice and O-cell wall 

calculated by O-lattice theory for N-W OR. Three principal O-lattice vectors xO
i ( i = 1, 2, 3 ) correspond to the 

Burgers vector <11̅0>/2, <101̅>/2 and <011̅>/2, respectively. (c) O-lattice and O-cell wall for 3 from N-W OR. 

Figure 7 Stereographic projection of the habit normal for the solutions in Table 1. 

Figure 8 [111]f stereographic projection of  <001>b of 24 BCC variants at K-S OR ( (111)f//(011)b, 

[101̅]f//[111̅]b ). Different colour shows different Bain group. Different colour shows different Bain group, and filled 

circles are from bcc lattices, while filled squares are from FCC lattice. 

 

Table 1 Expressions of common orientation relationships in FCC/BCC systems. 

Table 2 Transformation crystallography for martensite calculated by PTCLab, IL is invariant line 

direction, IL* is invariant normal direction, RB is the transformation matrix, HP is the habit plane, m1 is 

the magnitude of lattice invariant shear and m2 is the magnitude of macroscopic shape change. OR is 

expressed in miller index in the last two columns. 
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