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Abstract—Automatic speaker verification systems (ASVs) ver-
ify a person’s identity by his/her voice and have been widely de-
ployed for user authentication. However, existing ASVs are based
on traditional audio spectral features and hence perform poorly
in verifying pitch-changed utterances from speakers with cold
or sore throat. In this paper, we propose SOFTER (SOundField
TrackER), a soundfield-based speaker verification system that
can verify speakers regardless of the pitch changes. SOFTER
is based on the observation that soundfield features reflect the
speaker’s vocal tract, mouth, head, torso, etc., which are less
affected by the pitch changes in speech signals. SOFTER can be
integrated into off-the-shelf smartphones without any hardware
modifications. One major challenge is that the soundfield is
sensitive to the distance between the speaker and the phone. To
solve this problem, we propose a two-stage mechanism combining
distance sensing and soundfield reconstruction, which enables to
reconstruct the soundfield to a setting similar to the one in the
enrollment phase, thus the speaker can be verified from any
distance to the phone. We compare SOFTER with 6 state-of-
the-art academic and commercial ASVs on two datasets of 134
speakers and 31,000 speech samples. Results show that SOFTER
has an equal error rate (EER) of 2.18% and 1.61% on the
two datasets, respectively. Moreover, SOFTER outperforms other
ASVs by at least 24.67 % on average in verifying pitch-varying or
pathological speech samples, denoting an evidence of SOFTER’s
effectiveness in both normal and unhealthy user conditions.

Index Terms—Speaker Verification, Soundfield, Biometrics,
Pitch Variation, Pathological Speech.

I. INTRODUCTION

Automatic speaker verification systems (ASVs) authenti-
cate speakers based on their vocal characteristics [1] (i.e.,
voiceprint) such as pitch and timbre [2]. Compared to the
traditional passphrase-based authentication methods, ASV is
more convenient as a biometrics mechanism and has been
widely used due to its low cost and considerable efficiency
for IoT applications. ASVs facilitate people to access various
smart applications securely (e.g., APPs login, device unlock)
and keep them from malicious intruders while not requiring
physical contact. Moreover, taking into account the security
and privacy of the users and smart devices, almost off-the-shelf
smartphones and smart speakers are integrated with ASV [3]-
[5].

However, existing ASVs based on traditional audio spectral
features usually perform poorly in verifying pitch-changed
utterances, whose extracted voiceprints are different from the
registered speaker’s in the ASV, thus leading to its misjudg-
ment. Unfortunately, the pitch-variable challenge is inevitable,
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Fig. 1. When a user is in unhealthy conditions, such as suffering from
nasal congestion, sore throat, etc., existing automatic speaker verification
systems (ASVs) do not authenticate the user as well as they normally do,
falsely rejecting the valid user. Nevertheless, soundfield-based verification can
perform well regardless of the user’s physical condition.

especially since the nose and throat play essential roles in
speech production, which can be significantly affected by the
symptoms of a nasal sound or sore throat. Previous works [6],
[7] studied the difference between the ‘“cold-affected” and
healthy speech in speaker identification. They demonstrated
a significant effect of pathology (e.g., nasal congestion, sore
throat) on the pitch and found some noisy portions existing
when a speaker suffers from hoarseness and coughing. In
addition, pathological speech has been demonstrated to intro-
duce a mismatch between registered healthy speaker patterns,
resulting in performance degradation [8]. For the sake of
robustness in real-world scenarios, ASVs are usually trained
with data augmentation techniques. Nevertheless, these strate-
gies cannot tackle the significant performance degradation
for speaker identification caused by the pitch changes [9].
Moreover, the pitch modification can even be applied to voice
disguise against ASVs [10], [11].

Given the close link between pitch changes and pathological
speech, our goal is to implement a pitch-insensitive speaker
verification system. As shown in Fig. 1, we envision that such
a system can maintain relatively effective in verifying users
regardless of their pitch variation and generalize to mitigate
the ASVs’ performance degradation issue when users are
in unhealthy conditions. To achieve the goal, we propose a
“soundfield-based” approach, inspired by the fact that humans
and loudspeakers can be distinguished from the soundfield
created via acoustic propagation aspect [12]. Besides, we find
that soundfield features of the same speaker are consistent
across utterances and are at the same time distinctive between
different speakers, which we attribute to the fact that the
acoustic propagation forms a soundfield is mainly affected
by physiological features such as the speaker’s mouth, head,
torso, etc., which change little with pitch variation. Based
on the same principle, SFF features include multidimensional



soundfield information and thus can weaken the impact of
pitch changes. Our investigation demonstrates two critical
properties of soundfield features: /) Pitch-insensitive: sound-
field is more insensitive to pitch variation than monophonic
spectral features and can better distinguish speakers in the
case of pathological speech compared to the advanced deep
learning-based (DL-based) features. 2) Distance-sensitive: the
measurement of soundfield is sensitive to user-microphone
distance, i.e., the soundfield can differ greatly when the
microphone is placed close to the mouth or slightly far away.
Based on the above properties, we design a system termed
SOundField TrackER (hereafter SOFTER) that can mitigate
the speaker verification performance degradation regardless of
pitch variation and overcome the distance-sensitive challenge.
Without any dedicated hardware, it leverages the onboard
microphones, typically located at the bottom and top of smart-
phones, to capture the speaker’s speech signals propagating
in space. We overcome the distance sensitivity by a two-
stage soundfield reconstruction mechanism so that users do
not have to fix their smartphones in positions the same as
the enrollment. Firstly, we design a chirp signal that the
onboard loudspeaker of the smartphone can emit to measure
the device’s distance to the user’s mouth. Secondly, we adopt
the impulse response to perform the soundfield reconstruction
to avoid the performance degradation caused by distance
variation, which is regarded as a transfer function between
the sound source and microphone. By establishing a distance-
oriented impulse response database, we can gain the specific
transfer function depending on the measured distance, and the
soundfield will be rebuilt to a setting similar to the enrollment
stage. Thus users can be verified at different distances.
Unlike classical ASVs, SOFTER does not require training
with considerable data. It models SFF by the computation-
efficient GMM and only requires a few utterances for enroll-
ment to achieve reliable authentication. To comprehensively
evaluate its performance, we built two speech datasets named
Voice-1 & Voice-2 for pitch-variable and pathological speech
experiments, respectively. We also compare SOFTER with
6 state-of-the-art classical ASVs under the same experiment
settings. The Voice-1 simulates the pitch changes at five levels
of 110 speakers from the VCTK corpus and records their
speech samples in a two-channel microphones manner for
further soundfield features extraction. The experiments on
Voice-1 validate that our system can perform well even in
pitch-variable cases, with the EER of 2.18% and maintaining
relative EER performance improvements of at least 24.67%
than the average of other systems. In addition, we collected
Voice-2 containing both the healthy and pathological speech
(i.e., consisting of 3 kinds of symptoms: nasal sound, sore
throat, or both symptoms simultaneously) of 24 participants.
Results positively show that SOFTER presents pronounced
advantages over other models in real scenarios, with the EER
of 1.61% while the average EER of other ASVs up to 9.49%,
and keeps speaker discrimination capability with an EER of
5.04% even when the speakers suffer from severe symptoms.
Our main contributions can be summarized as follows:
e We propose new voice biometrics—soundfield that
can improve speaker verification performance in pitch-
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Fig. 2. Classical speaker recognition systems (SRS) consist of training,
enrollment, and recognition phase.

variable cases, e.g., caused by pathological body condi-
tions. Our investigation validates the feasibility of SFF
for speaker verification on speakers having three symp-
toms (nasal sound, sore throat, or both of them).

o We design a speaker verification system called SOFTER,
which fully leverages soundfield and overcomes its
distance-sensitive challenge. Notably, SOFTER can fit in
off-the-shelf smartphones without requiring any hardware
modifications. Besides, SOFTER is training-free and can
function well with a few utterances to enroll.

« We conduct a comprehensive evaluation on SOFTER and
compare it with 6 state-of-the-art classical ASVs based
on two datasets we collected. Results demonstrate that
our system is effective in verifying speakers regardless
of their voice pitch or pathological conditions.

II. BACKGROUND
A. Speaker Recognition Systems (SRSs)

Speaker recognition can be classified into speaker iden-
tification/verification. Identification aims to determine from
which of the registered speakers a given utterance comes,
while verification corresponds to accepting or rejecting the
identity claimed by a speaker [13]. SRSs model humans’ vocal
tract characteristics, generally named “voiceprint”, to identify
different speakers [1]. As shown in Fig. 2, implementing
and utilizing an SRS is usually divided into three phases.
Many efforts were devoted to modeling the voiceprint better
in the early years. [14] proposed the GMM-UBM, including
several representative models named SVM [15] and joint
factor analysis [16]. Among the models, the GMM-UBM/I-
vectors frontend [17] with probabilistic linear discriminant
analysis (PLDA) backend [18], [19] provided state-of-the-art
performance for several years. Recently, motivated by the
powerful feature extraction capability of deep neural networks
(DNNs), many deep learning-based speaker recognition meth-
ods were proposed [20]-[22], boosting the better performance
of speaker recognition even in complex environments.

B. Speech Production and Sickness Effects

Similar to the fingerprint and face, the voice provides
substantial cues that can make listeners distinguish different
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Fig. 3. A sectional view of the human speech production-related apparatus.

speakers — the anatomy of each individual’s vocal apparatus is
distinct [23], as shown in Fig. 3. Specifically, differences in the
thickness of the vocal folds, the various shapes of a person’s
palate or nasal cavity, etc., and the habit of the tongue or vocal
tract moves can lead to differences in articulation, accent, and
other acoustic properties between speakers. When people are
in unhealthy physical conditions, the voice they utter can be
affected, named pathological speech. We divide these impacts
into two classes: semantic impact and voice impact. Semantic
impacts widely exist among those with Alzheimer’s disease
(AD) and Parkinson’s disease (PD). However, our work mainly
focuses on voice impacts because it is more common in ASV
problems. This kind of illness is usually accompanied by
symptoms of nasal congestion or sore throat, which affects
speech production, termed “pathological-affected speech”. In
particular, nasal speech is caused by irregular closure of the
soft palate during a cold, resulting in the abnormal resonance
of air in the nasal cavity due to too much or too little air
passing through the nose. Hoarse voice is caused by laryngitis,
an inflammation that leads the vocal cords to swell and
exceptionally slows their vibrations down [8].

C. Sound Fields

When the sound is produced and uttered from the mouth,
similar to physical phenomena such as the electric field and
magnetic field, the sound signal propagates over the air,
which forms a soundfield, describing the time-variant sound
pressure at each location. Although we envision sampling the
entire spatial soundfield to describe speech signals perfectly, it
requires multiple sophisticated distributed microphones, which
is impractical in most application scenarios. CaField [12]
proposed “fieldprint”, which utilized a simplified method of
acquiring soundfield with two microphones and formulated the
soundfield by calculating the logarithm of the ratio of sound
pressure between these two microphones:

S(plaf)
S(p27f)

where S(p, f) is the sound pressure at location p and of
frequency f by performing a Fast Fourier Transform (FFT)
on every frame of each-channel signal. By integrating each
frequency component, we obtain Eq. 2, which delivers a
reliable liveness detection.

Sr(p1, P2, f) = log M
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Fig. 4. Schematic of a user using SOFTER. (a): the phone placed horizontally
and at the same height as the mouth. (b): the loudspeaker at the bottom of
the smartphone returns the range via acoustic signal. The difference between
the black and gray color of the phone indicates that the user-phone location
can vary.

Inspired by fieldprint, we proposes the soundfield-based fea-
ture (SFF), which holds significant properties such as intra-
speaker consistency and inter-speaker distinctiveness to per-
form speaker verification. We augment it with long-time
average normalization, calculated as Eq. 3:

L
1
SFF(p1,p2) = Zzsi(p17p2) 3)
i=1

where L is the number of frames in the time domain, denoting
that SFF is downscaled from n x L to an n-dim vector. The
critical difference between the SFF and other traditional audio
spectral features is that the soundfield not only retains the
speaker’s voice information but also introduces the identity
information as the sound propagation is affected by the nature
of the person’s mouth, face, head, and torso.

III. SOUNDFIELD INVESTIGATION

In this section, we explore soundfield more in-depth with
three research questions:

RQ1: What is the correlation between soundfield and user-
phone distance?

RQ2: How robust is the soundfield to changes in pitch?
RQ3: Whether the soundfield can be generalized from pitch-
variable tasks to pathological speaker verification?

First of all, we define the application scenario, a typical
placement of a smartphone held horizontally in front of the
mouth [24], as shown in Fig. 4. In this way, we can derive
a more remarkable soundfield than other placements because
the two-channel signals captured by the top and bottom
microphones have the most enormous sound propagation path
difference. Moreover, much literature has demonstrated that
the higher the wave frequency, the more directional the wave
emitted from its source [12], [25], [26]. Thus our design also
enables avoiding the problem that cannot capture those weak
high-frequency components if their directions are away from
the central propagation path, ensuring that we get the effective
soundfield.
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Fig. 5. The SFF curves of 4 different distances between the same speaker
and microphone, showing the impact of distance.
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Fig. 6. The SFF curves of speech at five pitch levels with the same speaker-
phone locations. P1: Descend 1 semitone. P2: Descend 0.5 semitone. P3:
origin. P4: Ascend 0.5 semitone. P5: Ascend 1 semitone.

A. Soundfield at Different Distances

We first investigate the relationship between the verification
distance and soundfield. As conveyed in black and grey in
Fig. 4, when people hold the smartphone, they keep it in the
front of their mouths well, yet hard to ensure the fixed user-
phone distance. Considering our authentication is specially
designed for the near-field application, [27] illustrates that the
relationship between pressure and distance is more complex
than far-field, implying the distance will significantly affect the
soundfield features. We also conduct a preliminary experiment
where a speaker utters the same content at 4 distances. Fig.5
shows that soundfield varies with distance, denoting it is sen-
sitive to distance. We analyze the specific reasons as follows:
in the near field, the sound energy is divided into 1) energy
that directly reaches the microphones after emitting from the
mouth, and 2) energy that circulates back and forth between
the mouth and the phone as well as escapes/losses out, both
vary with distance. Given the user-friendly requirements, we
need to devise a way to mitigate or even eliminate the non-
negligible effect of distance rather than forcing users to hold
their devices in a fixed manner, as discussed in Sec. IV.

B. Soundfield of Different Pitch

Since previous works [6]-[8] revealed the significant in-
fluence of pitch variation on ASVs, we would like to inves-
tigate soundfield’s robustness in this case. Specifically, We
selected a speaker from the VCTK corpus [28] and simulated
his soundfield (described in Sec. V). We refer to the pitch
modification methods in [9] by varying the original audio’s
pitch at 4 levels, within the range of 1 semitone down and
up. Then each speech signal propagating over space would
be captured by two virtual microphones, saved as stereo
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Fig. 7. The SFF curves of an identical utterance of six speakers, correspond-
ing to S1-S6.

(c) Nasal sound speech

(d) Healthy speech

Fig. 8. (a), (b) represent sore throat and healthy speech of a participant
uttering Chinese “Fa Duan Xin Gei Wo De Nan Peng You” (i.e., Text to my
boyfriend). (c), (d) represent another participant’s nasal sound and healthy
speech with the Chinese context “Jin Tian Tian Qi Zen Me Yang?” (i.e., How
is the weather today).

audio files, and further processed into SFF. We perform these
processing methods on several original and pitch-shift (+1
semitone) audio samples of different speakers. We utilize the
t-SNE toolkit for visualization, where the difference between
MEFCC, classical DL-based X-vectors, and SFF are depicted
in Fig. 20. We can observe that SFF outperforms others and
has a high discrimination ability between speakers even when
original and pitch-shift audio are mixed. We envision that
SOFTER can outperform the X-Vectors also because of its
unified model for all speakers. For instance, to achieve pitch
insensitivity for a classical ASV system, the speaker data needs
to be augmented when training the model, e.g., using both
normal and pitch-modified speech. It may cause features of
different speakers to overlap and make the model difficult to
converge. Nevertheless, GMM models trained for individual
users can still converge stably. We also compared a given
utterance’s SFF curves at five pitch levels, and found they
are significantly close to each other. However, the SFF curves
of six different speakers are distinct. We can conclude that
SFF is relatively insensitive to pitch variation while keeping
speaker discrimination ability.

C. Soundfield of Pathological Speech

As illustrated before, pathological speech can change pitch
or introduce noise during articulation. We focus on three
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common symptoms that affect vocalization, i.e., nasal sound,
sore throat (e.g., laryngitis), and both symptoms coincide.
We collected the pathological and healthy speech respectively
from each participant, who used to suffer nasal sound, sore
throat, or both of them. We conducted quantitative analysis by
comparing two audio’s pitch. We start with performing pitch
computation to obtain the pitch contours (i.e., fundamental
frequency estimation, F0), adopting the pYIN algorithm [1].
Notably, as fundamental frequency dose not exist in unvoiced
regions, thus those regions are automatically excluded from
being labeled with pitch contours (in orange). As comparing
two audio via irregular pitch contours is difficult, we average
the multiple pitch contours’ values of a given audio sample
thus derive its base frequency. Results illustrate that the
average base frequency of pathological speech differs from
that of healthy speech by about 0.5-2 semitones. Among
them, Fig. 8 shows two pairs of two participants’ speech
with different physical conditions. Moreover, we discover that
the impact of symptoms on tone varies among people. We
assume that the same symptoms originating from different
etiologies will lead to different changes in speakers’ vocal
tracts. Our subsequent experiments in Sec. V also indicate
that, when performing speaker authentication on pathological
speech (i.e., with pitch change, laryngitis-related noise), clas-
sical ASVs suffer more significant performance degradation
even if the enrolled and verified text are identical. Notably,
all those ASVs’ performances dropped a bit more when the
mismatch from enrolled utterances existed. In contrast, the
soundfield maintained acceptable performance regardless of
symptoms that affect vocalization. In Fig. 9(b), the SFFs of
12 participants are visually clustered after dimension reduction
with t-Distributed Stochastic Neighbor Embedding (t-SNE),
compared to the X-vectors in Fig. 9(a), presents a great
superiority.

D. Soundfield Observation

Based on SOFTER’s usability, practicality and discrimina-
tion of speakers, our investigation focused on three aspects,
conducted necessary experiments, and obtained the following
insights:

« Distance-sensitive. Due to the complexity of the near
field and the difficulty of fixing the position of the person
and the phone, the distance-sensitivity of soundfield must
be solved to achieve reliable speaker verification.

« Pitch & Pathology-insensitive. We revealed the similar-
ity of pitch and symptom impacts on articulation. We also
find that soundfield can still robustly represent speakers

in cases of pitch variation and pathological speech than
classical DL-based features.

IV. SYSTEM DESIGN
A. Design Goals and Challenges

We aim to design a robust speaker verification system
that can achieve two goals: 1) performing reliable speaker
verification regardless of the speakers’ physical conditions
with the advantages of pitch & pathology-robustness rendered
in Sec. III. 2) enabling distance-agnostic verification to achieve
user-friendliness and effectiveness. While there still are some
challenges to be overcome:

o The user-microphone distance can vary, resulting in the
mismatch of the enrolled and verified soundfield, thus
degrading the system performance.

e To ensure the practicality of SOFTER, we can only
utilize the off-the-shelf sensors on smartphones rather
than the complex setups used in prototype systems to
meet performance requirements.

« Noises and silence in speech signals should be removed
due to not reflecting the soundfield.

o How to accurately build the speaker models of each par-
ticipant with only several speech samples for enrollment?

B. Overview

To meet the above goals as well as tackle the challenges,
we introduce the design of SOFTER in Fig. 10. It consists
of the enrollment and verification stages, and there are four
critical parts of the system: 1) Distance Sensing: measure
the range between the user’s mouth area and smartphone. 2)
Soundfield Reconstruction: obtain the sound signal similar
to the enrollment stage. 3) Soundfield Extraction: derive
the soundfield representing the speaker’s identity. 4) Model
Training and Inference: gain the user-specific model and
verify the user at the inference stage.

C. Echo Distance Ranging

To address the issue that soundfield varies with user-
microphone distance, we envision recovering the current
soundfield to the enrolled one. Fig. 4 depicts the common user-
phone posture [24], in which the microphone and main speaker
at the bottom of the smartphone conduct distance ranging
via our designed acoustic signal. Acoustic ranging offers two
advantages: 1) it does not rely on additional hardware and
delivers a greater range than proximity sensors. 2) the echoes
are so sensitive to the relative distance between the user’s
mouth and phone, which can meet the precision requirement.

Acoustic Signal Design. The signal design needs to meet
several prerequisites. First, it allows the part of interest (i.e.
echoes from the mouth) to be easily isolated from interferences
from other transmission paths, such as some of the sound
waves will directly propagate to the microphone, as shown
in Fig. 4. Second, it should be imperceptible enough to
users to minimize disturbance, e.g., ideally over 20 kHz.
In contrast, some microphones on smartphones have poor
high-frequency responses and need the designed signal to be
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Fig. 10. Workflow of SOFTER. 1) Enrollment Stage: perform a series of processes on two-channel speech signals to obtain the enrolled soundfield features
(SFF.), gain the speaker model, and save the enrolled user-phone distance (d.). 2) Verification Stage: Sounfield Reconstruction ensures the soundfield

approximates the enrolled ones to achieve a distance-agnostic verification

separated from the human voice and noise bands to enable
noise removal (e.g., via band-pass filters). Third, it should
balance the short duration and robustness, as [29] adopts a
near instant pulse (i.e., 1ms). Nevertheless, a signal pulse is
so short that sometimes the hardware cannot respond, resulting
in an unsuccessful launch.

Considering the aforementioned facts, we craft a signal
consisting of 5 short 0.25ms-duration 12kHz single frequency
(a.k.a, chirp) and 10ms interval between each chirp as shown
in Fig.11 (a). Our design is based on several reasons: 1) The
user-phone distance is generally 5-35cm, and to ensure reliable
ranging, the chirp of the direct path cannot interfere with the
echo path. Hence we must ensure that the earliest echo from
the user’s mouth back to the microphone is still later than the
latest arrival time of the direct path. It is necessary to meet
the following inequality: 17" + % < %, where the echo-
path D, is at least Scm, the direct-path D, is usually less
than 1.5cm, thus it can be derived that the chirp duration T is
about 0.25ms. 2) We set the interval between each chirp, which
on the one hand, enables the hardware to respond in time and
emit all pulses stably. On the other hand, the interval of 10ms
is enough to separate different echoes, and the ranging results
of 5 chirps help to reduce errors. We also apply the Hanning
window to reshape the chirps’ envelop to increase its peak-to-
side lobe ratio as shown in Fig.11 (b), thus producing higher
SNR for echoes.

Signal calibration. The raw signal first goes through an
11-13kHz Butterworth band-pass filter to remove background
noises so that noises will not bury echoes from the human
mouth. Except for the desired echoes, the signal also contains
the direct-path component shown in Fig. 4. We cannot simply
assume that it can be located with a constant delay due to
the variable duration of hardware and software processing in
both signal emitting and recording. In order to focus only
on the echo path and exclude the direct path when sensing
the distance, we recorded the direct transmission signal as a
“template” in a quiet surrounding for future cross-correlation,
where no reflector is within a two-meter distance in front of
the bottom microphone. Notably, the difference between the
template direct-path signal shown in Fig.11 (c) and the ideal
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Fig. 11. Tllustration of (a) distance ranging signal sequence and (b) ideal

single chirp (c) calibrated single chirp is the ideal chirp’s playback.

chirp is apparent due to the hardware imperfection.

Echo Decision. The preprocessed signal consists of direct-
and echo-path components with energy only around 12kHz,
shown in Fig.12 (a). A straightforward way to locate the echo-
path part is to find the cross-correlation peak location [30]
after the direct-path peak location. To tackle the multiple
cross-correlation peaks challenge introduced by residual noise,
we perform a peaks identification strategy: we denote the
received signal after band-pass filtering as e(t) and calibrated
chirp signal as s(t). Thus, to determine the exact direct- and
echo-path signals’ starting points, firstly, the calibrated signal
s(t) slides across the e(t) sequence, and the correlation is
calculated as follows:

Frorr(®) = [ e(r)s(r — tydr @
Secondly, to capture the correlation trend changes of Fo.-(t),
we derive the envelope of F,,-(t) using the envelope detec-
tion strategy [31] and denote it as E(¢). The peaks within
envelope E(t) can be used as candidates to identify both
direct- and echo-path beginning points. Thirdly, we adopt
a local maximum identification method [32] that removes
interfering cross-correlation peaks brought by the residual
noise. It examines the envelope sequence E/(t) using a sliding
window with a hop length of one sampling point. If the
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extremum (i.e., peak) is less than the maximum value in the
current window, such a peak is considered an interfering item
and removed from the set of peaks. Therefore, as shown in
Fig.12 (b), this strategy facilities our system to locate the start
points of both direct and echo paths more precisely. Given
that the energy of echoes is much weaker than the direct-
path signal, we predefine the sliding window length for cross-
correlation as 6 samples. It involves only the central portion
with significant amplitudes during calculation, enhancing the
adaptation to residual noise. Finally, the distance between a
user and phone can be formalized as d = ¢ - tﬂgtd, where
t. —t4 denotes the time difference between the echo and direct
path.

D. Soundfield Reconstruction

We have learned about the performance degradation caused
by distance sensitivity of the soundfield (i.e., location mis-
match of enrollment and verification stage). Therefore, we aim
to reconstruct the verification signals close to the enrollment
phase. Specifically, we adopt the impulse response (IR), which
enables the acoustic characteristics of a location to be captured
and is considered a transfer function between the sound source
and microphone [33]. IRs are also widely applied in numerous
fields due to their ability to well characterize the physical
world, e.g., data augmentation in speech/speaker recognition
systems, speech enhancement, and physical adversarial at-
tacks [34], [35].

Build IR Database. There are many approaches to deriv-
ing microphones’ IRs, among which those near-instantaneous
sounds are commonly adopted as the sound source for existing
IR datasets [36], [37], e.g., hand clapping and gunshots,
because of their convenience and effectiveness. However,
keeping the impulse pattern generated by clapping hands al-
ways consistent is almost impossible. In contrast, the impulses
generated by a stable sound source are more constant, such
as high-fidelity loudspeakers. We employ an exponential sine
sweep signal with aperiodic deconvolution formalized as Eq. 5,
which also removes the artifacts caused by noise, nonlinear
behavior of the speakers and time-variance [38].

w1 - T
ln(%ﬁ)
where s(t) denotes a sweep that starts and ends at angular
frequency w1, wo, respectively, taking T' seconds. Specifically,

we emit the sweep signal (i.e., from 0-24kHz, lasting 4
seconds) via JBL while the top and bottom microphones on

w2

s(t) = sin] (eT!"(ED) 1)) (5)
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Fig. 14. The workflow of signal reconstruction.

smartphones record at different user-phone distances (i.e., lcm
intervals). Given h;(d,t),i € [1,2] as the impulse response
of respective top and bottom microphones and s;(d, t) as
the recorded sweep signals, at difference distances, we have
s;(d,t) = hy(d,t) = s(t). Hence we obtain multiple IRs
h;(d,t) of each user-phone location, using the deconvolution
technology, i.e., s;(d, t) deconvolutes the time-reversal mirror
of s(t) [39]. Fig. 13 depicts an IR at a specific distance,
which involves three parts: direct sound, early reflection,
and reverberant tail. In order to ensure our system operate
effectively in environments with varying sizes and shapes, e.g.,
office, lounge, balcony, we intercept the initial 3ms of IRs
(i.e., direct sound part) to exclude multiple sound reflections
and reverberation patterns.

In addition, we preset the IR database configured as a built-
in library of application by the smartphone manufacturers, and
users are also flexible to establish their own database following
the above instructions. We establish respective IR databases for
distinct smartphones instead of a unified database due to their
microphone models and layout differences. Notably, SOFTER
can maintain effective on varying smartphones, which is given
in Sec. V. This may attribute to that embedded microphones
are calibrated to comply with the PTSN (Public Switched
Telephone Network) standard, therefore audible speech shares
similar patterns on different devices [40]. Besides, unlike
classical monophonic spectral features, SFF is intrinsically
unaffected by microphones’ gain and speaker’s volume due
to Eq. 1.

Adjacent IR Search. When users register their soundfield,
user-phone distance d is given by echo sensing. Thus the ad-
jacent IR hi(d,,t) and ho(d.,t) corresponding to the top and
bottom microphones, i.e., the closet IR to the current location,
can be derived by querying the IR database. Similarly, in the
verification stage, we obtain the distance d,, and IRs hq(d,,t)
and ho(d,,t).

Signal Reconstruction. Fig. 14 shows the signal reconstruc-
tion workflow. The verification speech signal recorded by the
top and bottom microphones, shown in Fig. 15 (a), are denoted
as x;(t),4 € [1,2]. We derive the rebuilt signal in Fig. 15 (c),
by sequentially convolving the received signal with inverse
verification-stage and enrollment-stage transfer function [41]
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Fig. 15. The diagram of the effect of soundfield reconstruction. The reconstructed signal (c) obtained from a verification signal (a) at uncertain position, is
very close to the actual enrolled signal (b), and the soundfield (d) is reconstructed almost identically to the enrolled one.

as follows:

’

€Z;

(t) = zi(t) * h; ' (du, t) * hy(de, t) (6)
Fig. 15 (d) clearly denotes the rebuilt signal’s soundfield
almost identical to the enrolled signal in Fig. 15 (b), suggesting

the signal reconstruction is valid.

E. Soundfield Extraction

Noise & Silence Removal. Noise can result in our ac-
quisition of audio data in a low signal-to-noise ratio (SNR),
impairing soundfield patterns and leading to poor speaker veri-
fication performance. Existing speech denoising algorithms are
usually designed to improve audio audibility and intelligibility,
where multi-channel solutions combine rich temporal and spa-
tial information to eventually output denoised single-channel
audio. To conduct denoising but not impair the intrinsic spatio-
temporal information of audio, we propose a respective chan-
nel denoising method by making both microphones “sense”
their environments for 0.5 seconds before the user speaks up,
i.e., sampling the ambient noise so as to represent the real-
time noise situation. When the user’s voice is detected, we
utilize the NoiseReduce toolbox [42], [43] to perform fast
denoising via spectral gating. We also adopt voice activity
detection (VAD) [44] to eliminate the influence of unvoiced
portions (silent pauses and breaks within the utterance), which
do not reflect the speaker’s soundfield.

Profiling the Soundfield. Combined with the modeling
approach for the soundfield proposed in Sec. III, we start
with a temporal and frequency processing of the two-channel
signals, respectively, i.e., using the short-time Fourier trans-
form (STFT), where each frame is 25ms duration, the overlap
between consecutive frames is 12.5ms (smoothing out the
frequency variation between phonemes), and we reduce the
spectral leakage by applying Hanning window to each frame.
Then we calculate the logarithm of the two-channel ratio
according to Eq. 1. Notably, it reduces the influence of the
user’s loudness, especially considering that a person may
not speak as loudly as he usually does when in unhealthy
state. Finally, we obtain the n-dim SFF vector by performing
long-time average normalization according to Eq. 3. In our
experiments, the frequency resolution is 24kHz/512=46.8Hz.
Given the typical applications such as online chatting and
phone call with a sample rate not over 16kHz, we select the
first 171 dimensions out of 512 if not stated otherwise.

F. Speaker Model

Compared to traditional spectral features such as Fbank
and MFCC, SFF has the advantages of consistency and
distinctiveness in characterizing identities. We believe that
applying effective modeling can help authenticate users more
reliably. The Gaussian mixture speaker model (GMM) can
well fit the user’s soundfield vectors to form the corresponding
speaker model. Specifically, the distribution of feature vectors
(i.e., soundfield) extracted from a person’s speech signals is
modelled by a Gaussian mixture density. For a n-dimensional
soundfield vector, the mixture density for speaker s is defined
as

M
p(SFF | X)) = > wip;(SFF) (7)
i=1
where M is the number of Gaussian components, and w;
denotes the mixing weight of the 4;;, Gaussian component
p;(SFF) that parameterized by an n x 1 mean vector p; and
an n X n covariance Aj.

1 o~ 5 (SFF—p13) (A7)~ (SFF—p;)

Pi(SFF) = ————
(2m)= [A7]

®)

The mixing weight w; have the property of Zf\il w! =1, and
the speaker model is A\, = {wi, uf, Af},i=1,---, M.

In the enrollment stage, given several user utterances, the
speaker model parameters are estimated and converged using
the iterative Expectation-Maximization (EM) algorithm. In the
verification stage, the claimed identity’s speaker model serves
as a likelihood function to obtain a similarity score with input
soundfield vectors compared with the predefined threshold.
If the score exceeds the threshold, the speaker’s identity is
verified. Otherwise, it is rejected.

V. EVALUATION

In this section, we evaluate the performance of SOFTER
on speaker verification, i.e., how well it can distinguish a
valid speaker from a stranger’s voice while meeting distance-
, pitch & pathology-agnostic requirements. To conduct a
comprehensive evaluation, we first collect two speech datasets
as listed in Sec. V-A. Second, we compare SOFTER with 6
state-of-the-art classical ASVs, i.e., DeepSpeaker [45], Pyan-
note [46], SpeakerNet [47], X-vectors [22], I-vectors [17],
and commercial IFlytek [48] APIs under the same experiment
settings. We implement and evaluate SOFTER on a server with
Intel Xeon(R) Gold 5117 CPU, NVIDIA GeForce RTX3090
GPU, and 64-bit Ubuntu 18.04 LTS operating system.



A. Experiment Setup

Data Collection. As previous work and our background
(Sec. II-B) & investigation (Sec. III) have shown, symptoms
affect vocalization is strongly related to pitch. We first evaluate
SOFTER’s pitch-insensitivity on a simulated English speaker
recognition dataset (Voice-1). Since we foresee the robustness
to pitch of the speaker verification system is the key to reli-
able verification in pathological speakers. Thus we collected
a real pathology dataset (Voice-2) accessing each speaker’s
pathological and healthy speech, covering three cases that
impact the voice (nasal sound, sore throat, and both symptoms
simultaneously).

Voice-1: We find the VCTK corpus [28] well suited for
our simulation, which is widely used in voice conversion
and speech synthesis thanks to its high recording quality and
sample rate (48kHz). Compared to most speaker recognition
datasets sampled at 16kHz, VCTK retains the maximum prop-
erty of the speakers’ original speech signals and includes ad-
equate native speakers of English (110 participants), therefore
also commonly used for speaker-related tasks. We leverage
the pyroomacoustic toolkit [49] that facilitates simulating the
propagation between sound sources and microphones in 2D or
3D rooms, matching the idea of soundfield well. Specifically,
We constructed an 8 x 6 x 3 (meter) room where speakers
stood on one side of the room and restricted each speaker to
nearly the same position, with their height randomly set from
1.5 to 2m. Two microphones placed horizontally and 15cm
(typical phone length) apart in the front of the virtual speaker’s
mouth were used to imitate a user holding the phone, as
shown in Fig. 4. The user-phone distance for each speaker was
randomly chosen between 5 and 35cm, considering different
people’s habits in practice. Furthermore, we filtered out 52
representative samples with almost the same content, out of
400 sentences of each speaker in VCTK, according to four
types of word numbers (i.e., less than 5 words, 6 to 8 words,
9 to 11 words, and 12 words or more). Besides, we also modify
each speaker’s uttering pitch at 4 different levels to simulate
the pathological speech. In sum, we obtained 28,600 simulated
two-channel audio samples from 110 speakers.

Voice-2: In order to examine the effectiveness of SOFTER
in real-world scenarios, we first gathered the utterances from
24 individuals in pathological conditions (i.e., nasal sound,
sore throat, and both of them) by crowdsourcing, including 15
females and 9 males aged from 12 to 75!. Second, we kept in
touch with them and performed additional utterance recordings
when the subjects recovered vocalizing normally. Their voices
were recorded by the participants’ smartphones, while each
held it horizontally in front of their mouth, within a range of
5 to 35cm, depending on their habits. Each participant was
informed about uttering 50 Chinese commands under healthy
conditions, 10 of which were used for registration, as well as
these 50 identical commands under voice-affected conditions
for verification. Specifically, the given utterances list for each
participant is randomly selected from a translated version of
ok-google.io, containing common interaction commands. We

'We followed the Institutional Review Board (IRB) regulations to protect
the rights of human participants.
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totally obtained 2,400 samples. The recording was performed
in offices/dorms with slight background noises such as key-
board striking, talking, walking, and HVAC noises.

Evaluation Metrics. In our evaluation, we choose some
classical metrics in speaker recognition, i.e., false acceptance
rate (FAR), false rejection rate (FRR), equal error rate (EER),
and accuracy. FAR: it characterizes the rate at which a cheater
is wrongly accepted by the system and considered a registered
user. FRR: it characterizes the rate at which the system falsely
rejects a registered user. EER: it shows a balanced view of the
FAR and FRR and is defined as the rate at which the FAR
equals the FRR. AUC is widely applied in machine learning
due to its insensitivity to data imbalance. A higher AUC score
indicates that the system has more consistent performance even
with changes in physical conditions. Of all these metrics, we
are more concerned about the FRR because we hope that
SOFTER can correctly authenticate registered users even if
their voices are influenced by pathology.

B. Overall Performance

We use Voice-1 & Voice-2 to evaluate the performance of
6 aforementioned ASVs and ours. Note that SOFTER does
not rely on a large amount of training data as classical ASVs
do, it only requires 10 utterances per speaker in healthy
conditions for enrolling, and the rest are used for verification.
As for 5 local ASVs, we also reproduced them with two
large speech datasets. To eliminate performance errors due to
language differences, we train these models with Voxceleb2
when evaluating the English dataset Voice-1, and for the
Chinese dataset Vocie-2, we train these ASVs with Aishell-
1. For the commercial IFlytek system, we directly call the
API to perform the same operation.

Voice-1 Results: The AUCs and EERs demonstrate that
SOFTER is slightly inferior to the state-of-the-art SpeakerNet
and X-Vectors in cases where the utterances’ pitch is con-
sistent with the registered, shown in Tab. I (the row noted
as “original”). Nevertheless, it still surpasses the widely used
DeepSpeaker, Pyannote, I-vectors and IFlytek, indicating the
effectiveness of soundfield. Moreover, the EERs under all
5 pitch levels show that SOFTER is more insensitive to
pitch changes than the well-trained DL-based ASVs, even
if the pitch of VCTK speakers was changed by ascending
1 semitones, SOFTER still keeps the EER below 6.4%. In
contrast, the best EER of other models already exceeds 9.23%.



TABLE I
THE OVERALL PERFORMANCE OF SOFTER AND OTHER SIX ASV MODELS ON VOICE-1 AND VOICE-2 DATASETS.
Dataset & Model DeepSpeaker Pyannote SpeakerNet X-vectors I-vectors IFlytek SOFTER
AUC EER | AUC EER | AUC EER | AUC EER | AUC EER | AUC EER | AUC EER
original 99.63 245 | 99.57 2.61 9976 1.86 | 99.76 192 | 9945 3.13 | 99.43 320 | 99.65 2.18
-0.5 semitones | 98.06  7.66 | 98.57  6.07 | 99.10 439 | 99.05 453 | 9853 6.19 | 9852 630 | 99.12 4.34
Voice-1 -1 semitones 96.62 11.15 | 9726 979 | 9746 933 | 97.17 999 | 97.03 1033 | 9749 9.23 | 9849 6.37
+0.5 semitones | 98.15  7.34 | 9848 634 | 9885 523 | 98.89 5.05 | 98.78 544 | 9839  6.62 | 99.13 4.22
+1 semitones 96.69 10.99 | 97.82 840 | 98.00 7.84 | 9587 1232 | 9510 1326 | 97.58 9.03 | 98.69 5.70
health 9932 4.17 | 9799 723 | 98.82 555 | 9258 16.16 | 93.04 15.18 | 97.09 8.65 | 99.82 1.61
Voice-2 nasal sound 97.85 748 | 9554 1095 | 96.50 9.55 | 91.09 18.61 | 90.63 19.12 | 9542 11.09 | 9942 3.82
sore throat 9635 977 | 96.61 936 | 9628 9.88 | 88.46 20.63 | 89.06 20.30 | 9522 11.41 | 9931 4.16
both symptoms | 96.08 10.16 | 94.06 13.26 | 94.33 1277 | 8551 23.37 | 8532 23.58 | 9423 1297 | 99.03 5.04

Furthermore, we also compare the relative performance im-
provement of SOFTER compared to the other 6 models on
average. We obtain the EERs improved by 12.11%, 24.67%,
28.50%, 35.19%, 43.92% respectively for these 5 settings,
shown in Fig. 16 (a). Overall, the advantages of SOFTER over
the other models are pronounced.

Voice-2 Results: On the recorded data of pathological
speakers, SOFTER shows a clear superiority in real scenarios
compared to other systems. First of all, the EER of our
system verified in healthy conditions at 1.61% is close to the
result of Voice-1 experiment, despite language and content
differences between the two datasets, suggesting the system is
language- & content-agnostic. At the same time, it remarkably
outperforms the rest classical models with an average EER of
up to 9.49%. Notably, we find that SOFTER has significantly
weaker performance degradation than other models in three
symptoms, regardless of nasal sound, sore throat, or both,
with only 10 utterances registered in health. Specifically,
the average EERs of 6 classical ASVs are 9.49%, 12.80%,
13.46%, and 16.02% in 4 physical conditions, shown in Fig. 16
(b), where ours achieve at least 68.53% improvements. On the
one hand, we consider it related to the habit of people holding
their phones away from their mouths. On the other hand, the
actual soundfield is more complex, except for the direct-path
sound waves, components affected by the head and torso, etc.,
also introduce the individual’s distinct information. Therefore
the adverse effects caused by the affected voice source are
weakened.

C. Impact Factors on Performance

In this section, we concentrate on evaluating the robustness
of SOFTER as a speaker verification system against the
influence factors in common scenarios. We conduct the sample
rate and content length experiments based on Voice-1, and we
evaluated SOFTER based on Voice-2 considering the impacts
of real-world noise, location, and recording devices.

Impact of Sample Rate. When we record or transmit
the audio, those with high sample rates can always retain
more information than the audio with low sample rates. The
missing information in the recording process may influence
speaker verification. Therefore, we experimented with four
typical sample rates (8kHz, 16kHz, 44.1kHz and 48kHz) to
explore the effect of sampling rate on SOFTER. We enroll
and evaluate speaker models using audio samples with the

same content and four different sampling rates. As Fig. 17 (a)
shows, our system can keep high performance at audios with
all sample rates, where the EER of 8kHz (2.51%) is slightly
higher. We assume that a low sample rate may result in a
loss of high-frequency information and lead to performance
degradation. However, when the sample rate increases above
16kHz, SOFTER maintains stable performance regardless of
the sample rate variation. The results verify that SOFTER
can distinguish speakers well under the standard sample rate
settings.

Impact of Content Length. We should validate whether
SOFTER is content-agnostic compared to multiple text-
independent ASV models. A reasonable intuition is that the
performance correlates with the content length. Therefore, we
divided our audio into four parts according to the content
length. Each group contains sentences of 0-7, 8-11, 12-19, and
over 20 words. Fig. 17 (b) depicts that our system maintains
performance well in all four groups. Even though the FARs
of relative short utterances are slightly higher at 2.29% and
2.26% than long utterances, the FRRs and EERs still keep in
an acceptable range at about 2.26%. The results imply that
SOFTER has the capability of distinguishing users regardless
of their command length.

Impact of Noise. When users speak commands for ver-
ification in practical scenarios, noise is an inevitable and
essential factor we should take into account. We experimented
with 4 representative noises in daily scenarios to quantify our
system’s robustness to resist noise’s impact, including office
(keyboard striking, 60dB), home (frying food, 65dB), cafeteria
(people whispering, 70dB), white noise (75dB). As Fig. 17 (¢)
shows, the performance of three groups with typical noises
of keyboard striking, frying food, and people whispering, is
nearly the same as the original group. This result shows that
SOFTER can resist the natural noises well with the EERs of
1.65%, 1.78%, and 1.79%, respectively. As for the random
noise, our system suffers a slight impact while the performance
is still acceptable with an EER of 2.37%. We assume that the
randomly generated noise will cause some unnatural changes
to soundfield. The results verify that our system is robust
enough to resist the impact of noise.

Impact of Position. Sec IV discusses and validates that
SOFTER can achieve distance-agnostic by reconstructing the
speech signals of different locations. Through our recon-
struction, the soundfields of various distances will be rebuilt
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Fig. 17. Result of experiments of three impact factors. (a): impact of sample
rate. (b): impact of content length. I, II, III, and IV respectively represent the
sentences with 0-7, 8-11, 12-19, and over 20 words. (c): impact of noise. A,
B, and C are noises of keyboard striking, frying food, and people whispering.
D denotes the white noise.

highly similar to the registered soundfield. We first gather
the participants to enroll their voices at a distance of Scm.
Then we record their voice at a distance from Scm to 30cm
for ASV. SOFTER will reconstruct this audio and then take
the reconstructed audio as input. To better represent our
system’s performance, we also conduct an experiment with
the original soundfield without reconstruction. Fig. 18 shows
that traditional soundfield will be affected by the distance, and
the EER of the distance at 30cm reaches up to about 20%. In
comparison, SOFTER can perform well at different distances
with stable and reasonable EERs of 2.82%, 2.89%, 2.96% and
2.42% at 4 locations respectively. As the distance increases,
the gap between reconstructed and original soundfields will
be more pronounced. It verifies that SOFTER is a distance-
insensitive ASV system.

Impact of Recording Devices. There is a concern about
whether SOFTER can keep high performance in different
recording devices because the generalization of devices also
matters a lot. Therefore, we further evaluate on five main-
stream smartphones, including Redmi K40, Google Nexus,
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Fig. 18. Results of four different verification distance between original and
reconstructed soundfield.

Huawei P30, Google Pixel, and OPPO Reno5. We fixed
the same position of these phones and collect 15 speakers’
speech samples. The EERs of these five additional devices
are 1.38%, 1.64%, 1.42%, 1.79% and 1.25%, respectively.
This result illustrates that SOFTER can maintain comparable
performance even in different recording devices, indicating the
generalization and utility of our system in further applications.

D. Runtime Overhead

As a service for handheld devices, the structure of SOFTER
is similar to other voice assistants such as Siri. We split and
deploy it on the smartphone (device-side) and server (server-
side), respectively. The device-side conducts location sensing
and captures speech signals (i.e., soundfield). Moreover, the
server-side executes signal reconstruction, soundfield extrac-
tion, and speaker model inference. The runtime overhead of
our system is mainly divided into the energy overhead brought
by the device-side APP operating, the latency overhead from
audio file transferring between client and server, server-side
processing & inference, and result returning.

Energy Overhead: We loop the application for echo
sensing and recording with each lasting 3s, running on five
different smartphones (i.e., Google Pixel, Google Nexus3,
Redmi K40, Huawei P30, and OPPO Reno5) for an hour.
Thus, we obtain the average power consumption from these
devices at 9.6e-3 mAh/s (mAh per second). By comparison,
the power consumption of navigation APPs, i.e., Amap [50],
on these devices is significantly higher in Fig. 19(a), around
49.4e-3 mAh/s. Notably, SOFTER only consumes power when
invoked. Combined with its low consumption, the impact on
users’ daily experience is negligible.

Latency Overhead: We also compare the overall latency
of SOFTER with other ASVs by performing the same number
of test samples and obtaining the average latency. Fig. 19(b)
shows that SOFTER’s latency of 225.7ms, meeting the latency
requirements of commercial voice assistant APIs (480ms [51]),
of which the audio uploading delay, server-side processing &
inference delay, and result feedback delay are 77.8, 142.1,
and 5.8 ms, respectively. There are only Pyannote & IFlytek
slightly outperforms ours, and SOFTER is significantly faster
than X-vectors & I-vectors. We envision deploying all the
functions on the device-side can reduce the latency efficiently.

VI. DISCUSSION

In this section, we discuss SOFTER from three aspects: ap-
plication scenario, potential improvements, and comprehensive



x10” x10

@

Ours =7 Classical ASVs
1 Amap Ours

H

0
Pyannote X-Vec. Spk.Net I|-Vec. DeepSpk. IFlytek Ours
Automatic Speaker Verification Systems

w IS

Latency Overhead (ms)
~

Energy Consumption (mAh/s)
o 4 N o w & o o N ®

Pixel Nexus5 K40 P30 Renos
Smartphone Model

(a) Energy Overhead (b) Latency Overhead
Fig. 19. Runtime overhead comparison of SOFTER and counterparts.

datasets in this area.

Application scenario. Our system focuses on handheld
device scenarios, especially for users who speak with a smart-
phone held. While our systems may not perform well in several
corner cases, such as the user being far from the smartphone or
speaking in a narrow space. Specifically, the nature of acoustic
propagation theoretically makes measuring the soundfield at
an extreme distance difficult. As the distance increases, the
sound waves change more faintly, and the sound pressure is
closer at different locations. It is too challenging to profile
the soundfield based on only two microphones. Besides, in a
narrow space, acoustic propagation becomes very complex, in
which multiple reflections make the soundfield subject to many
interfering factors and difficult to measure. Apart from the
handheld devices, we envision that SOFTER can be extended
to more scenarios in the future.

More microphones for authentication. After investigating
various manufacturers and their prototypes of smartphones,
we discovered that most smartphones had been equipped with
three or even four microphones. These extra microphones
are usually installed on the back of the phone and used
for recording when taking videos. However, most existing
smartphone recording applications only support exporting a
two-channel audio file, which limits the capability of collecting
and profiling the soundfield. We believe that in the future, with
the opening of the APIs, we can use more microphones to
improve the accuracy of our system.

Comprehensive datasets. The evaluation on our system
requires both healthy and pathological speech samples of the
subjects, making it difficult to collect data due to the more
extended period and smaller patient samples than traditional
ASV tasks. To the best of our knowledge, existing research
on pathological speech mainly focuses on detecting whether
a given utterance is pathological or not. There is still no
comprehensive or authoritative dataset for such a goal. To
evaluate SOFTER as well as the classical ASVs on more
participants, we believe that in the future, a larger corpus could
help and accelerate the related research in this area.

Intervals of IR database. To balance the database’s effec-
tiveness and the manufacturers’ burden, we investigate when
the number of different distances is enough for constructing
such a database. As described in Sec. IV-D, we initially
collected IRs from 5cm 35cm at lcm intervals (31 distances
involved), taking around 6~8 minutes per device. Besides,
we constructed IR databases in 3cm (11 distances involved)

TABLE I
EUCLIDEAN DISTANCES OF ENROLLED AND RECONSTRUCTED SIGNALS

Group Euclidean Distance | Euclidean Distance
(12.5 cm) (21.5 cm)
lcm-interval 13.84 18.14
3cm-interval 14.96 21.24
Scm-interval 25.69 29.10

and 5cm intervals (7 distances involved). We assume the
user enrolls the soundfield at Scm and verifies at uncertain
positions. We also select two distances: 12.5cm is selected
for the Scm-interval group because it reaches a maximum
deviation of 2.5c¢m from both 10cm and 15c¢m in the database,
and should have the most significant reconstruction error.
Similarly, 21.5cm is chosen for the 3cm-interval group.

Without soundfield reconstruction, 38.81 and 77.81 are the
Euclidean distances between enrolled (in blue) and verifica-
tion signals (in yellow) at 12.5cm and 21.5cm, respectively.
Table. VI shows the Euclidean distances between enrolled
and reconstructed signals. We found that a larger interval
corresponds to a larger Euclidean Distance (i.e., reconstruc-
tion error). In addition, a larger Euclidean distance (3cm-
interval: 14.96 vs. lcm-interval: 13.84) between the enrolled
and reconstructed signals only brings a slight performance
decrease (i.e., slightly higher EER). We envision that man-
ufacturers can balance the IR database establishment burden
and reconstruction effectiveness according to their security and
usability requirements. For instance, as for a scenario with
higher security requirement, the manufacturer should choose
Icm-interval or even more refined intervals. As for scenarios
where usability is more important, we think 3cm-interval can
meet the requirements.

VII. RELATED WORK

Voice authentication. Voice authentication is an essential
branch in biometric authentication technology (e.g., face,
voiceprint, fingerprint) and can be divided into two categories:
active and passive. “Active” refers to the authentication method
of obtaining user characteristics by emitting and receiving
designed signals, and “passive” denotes performing a series of
processing and authentication for users’ speech signals only.
For active authentication, VocalPrint [52] uses mmWave to
sense tiny vocal vibrations near the user’s throat, but the cost
is prohibitive due to the introduction of expensive equipment.
EarPrint [53] obtains the sound conduction characteristics
of the user’s body for identification by sending a swept
signal in the ear canal and receiving it. VocalLock [54]
emits FMCW-like acoustic signals to characterize the static
vocal tract shape and dynamic motion of the vocal tract
during speech. In passive authentication, deep learning-based
methods are widely used. At the same time, the lack of
pathological speech data hinders its prosperity in this direction
due to the prerequisite of considerable training data. [55]
uses inward-facing microphones to collect bone-conducted
sounds of dental occlusion in binaural canals to achieve
authentication. [56] captures the dynamic movements of the
lip based on the Doppler effect, which adversaries can easily



imitate. CaField [12] enables capturing soundfield by com-
mercial smartphones to distinguish humans from loudspeakers
to defend against spoofing attacks. [57] implements speaker
verification and liveness detection by leveraging the additional
high-sample rate microphone, which is impractical in most
scenarios. However, existing works did not consider a non-
negligible authentication case that speech attribute changes
because of vocal tract sickness. SOFTER investigates that the
soundfield is insensitive to the human physical condition and
proposes distance sensing and soundfield reconstruction to
address the distance-sensitive challenge. Besides, we do not
require any additional hardware or modification, suggesting
its practicality, usability, and effectiveness.

Pitch-variable & pathological speech. Previous works
have uncovered the significant impact of pitch on ASVs [9],
[58]. A speaker’s voiceprint would inevitably change with the
pitch as a fundamental speech attribute. Based on the property,
attackers can easily disguise ASVs by only modifying the
pitch [10], [11]. Correlatively, intra-speaker pitch variation
may also be caused by ageing or pathology. [59] proposed
a multi-task learning strategy to improve the pitch-variable
singer identification performance, which might be a corner
case in ASV. We envision new biometrics—soundfield can
theoretically fix the issue. We also demonstrate that soundfield
is pitch-insensitive and generalize it for pathological speaker
verification. Whereas existing works mainly focus on explor-
ing the characteristics of pathological speech and diagnosis
of the specific etiology. [7] investigates the audible effects of
cold on a phonetic level and shows that pathological speech
introduces pitch changes and additional noise. [60], [61] look
into the aspect of detecting etiology, such as how to detect
Parkinson’s disease via speech. [8] collects a dataset of 40 days
and proposes a dual model strategy to resist the degradation
caused by unhealthy physical conditions, while pathological
speech usually suddenly appears and is rare. It requires more
data to update the models smoothly, suggesting it lacks prac-
ticality. In contrast, our work aims to robustly authenticate
users on both sides (health and unhealth), requiring only a
few utterances for enrollment.

VIII. CONCLUSION

In this paper, we propose SOFTER based on soundfield to
tackle the challenges of poor speaker verification performance
when the speech is pitch-changed, which is also inevitable
when a speaker is in unhealthy physical conditions. Our
investigation demonstrates that soundfield delivers advantages
of pitch & pathological speech-insensitiveness. In addition, for
the mismatch between soundfield and the registration phase
due to the user-phone distance change during authentication
(i.e., distance sensitivity of the soundfield), we propose a two-
stage mechanism: distance ranging and soundfield reconstruc-
tion to tackle the challenge. We also collected two datasets,
including 31,000 utterances recorded from different physical
conditions of 134 speakers. Results show that SOFTER can
maintain the speaker discrimination capability well regardless
of the pitch variation or speaker’s physical conditions, sug-
gesting its effectiveness.
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Fig. 20. The t-SNE of MFCC, X-Vector, and SFF, the pitch-shifted and
original speech of 12 speakers were mixed together for feature extraction.



