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Abstract In this paper, we obtain some stability results for parametric weak gener-
alized Ky Fan Inequality with set-valued mappings. Under new assumptions, which
are weaker than the assumption of C-strict monotonicity, we provide sufficient con-
ditions for the lower semicontinuity of the solution maps to two classes of parametric
weak generalized Ky Fan Inequalities in Hausdorff topological vector spaces. These
results extend and improve some results in the literature.

Keywords Stability · Lower semicontinuity · f -efficient solutions · Parametric
weak generalized Ky Fan inequalities · Scalarization

1 Introduction

It is well known that the Ky Fan Inequality is a very general mathematical model,
which embraces the formats of several disciplines, as those for equilibrium problems
of Mathematical Physics, those from Game Theory, those from (Vector) Optimization
and (Vector) Variational Inequalities, and so on (see [1, 2]).

The stability analysis of solution set map for a parametric Ky Fan Inequality
(PKFI, in short) is of considerable interest. Many papers discussed the semiconti-
nuity of solution maps, especially the lower semicontinuity of the solution maps for
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PKFI. Cheng and Zhu [3] have obtained a lower semicontinuity result of the solu-
tion mapping to a PKFI in finite-dimensional spaces by using a scalarization method.
Huang et al. [4] discussed the upper semicontinuity and lower semicontinuity of the
solution map for a parametric implicit Ky Fan Inequality. By virtue of a density result
and scalarization technique, Gong and Yao [5] first discussed the lower semicontinu-
ity of the set of efficient solutions to a PKFI with vector-valued maps. By using the
idea of Cheng and Zhu [3], Gong [6] studied the continuity of the solution maps to
a PKFI with vector-valued maps. Recently, Chen et al. [7] studied the stability of
solution sets of PKFI without the uniform compactness assumption, which improved
the corresponding results of [3] and [5]. Chen and Li [8] established the lower semi-
continuity and continuity of the solution mapping to a PKFI with set-valued maps,
which extended the corresponding results of [5] and [6]. Subsequently, Li et al. [9]
established the lower semicontinuity of the solution maps to a generalized PKFI with
set-valued maps, which is different from the model considered in [8].

We observed that the semicontinuity of solution maps of the (generalized) PKFIs
has been discussed under assumption of C-strict monotonicity for the vector-valued
or set-valued maps, which implies that the f -solution set of the (generalized) PKFIs
is a singleton for a linear continuous functional f (see [3, 5–9]). However, it is well
known that the f -solution set of the (generalized) PKFIs should be general, but not
a singleton. So, in this paper, we aim at studying the lower semicontinuity of the
solution maps for two classes of weak generalized PKFIs when the f -solution set is
a general set by removing the assumption of C-strict monotonicity.

The rest of the paper is organized as follows. In Sect. 2, we present two classes
of weak generalized PKFIs, and recall some concepts and their properties. In Sect. 3,
we discuss the lower semicontinuity of the solution mappings for the two classes
of PKFIs, and provide some examples to illustrate that our main results extend the
corresponding ones in [3, 5–9].

2 Preliminaries

Throughout this paper, if not otherwise specified, let X and Y be two real Hausdorff
topological vector spaces, Z be a real topological space and Λ be a nonempty subset
of Z. Let Y ∗ be the topological dual space of Y , and let C be a closed, convex and
pointed cone of Y with intC �= ∅, where intC denotes the interior of C. Let C∗ :=
{f ∈ Y ∗ : f (y) ≥ 0, ∀y ∈ C} be the dual cone of C.

Let A be a nonempty subset of X, and F : A × A ⇒ Y \ {∅} be a set-valued
mapping. When the set A and the function F are perturbed by a parameter λ which
varies over a set Λ of Z, we consider the following two classes of weak generalized
PKFIs of finding x ∈ A(λ) such that

F(x, y,λ) ∩ (Y \ −intC) �= ∅, ∀y ∈ A(λ); (1)

and of finding x ∈ A(λ) such that

F(x, y,λ) ⊆ Y \ −intC, ∀y ∈ A(λ). (2)
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where A : Λ ⇒ X\{∅} is a set-valued mapping and F : B × B × Λ ⊂ X × X × Z ⇒
Y\{∅} is a set-valued mapping with A(Λ) = ⋃

λ∈Λ A(λ) ⊂ B .
Special case

(i) When F is a vector-valued mapping, the models (1) and (2) simultaneously re-
duce to the parametric generalized Ky Fan inequality in [10].

(ii) If for any λ ∈ Λ,x,y ∈ A(λ), F(x, y,λ) := ϕ(x, y,λ) + ψ(y,λ) − ψ(x,λ), ϕ :
A(μ) × A(μ) × Λ → Y and ψ : A(μ) × Λ → Y be three maps, then (1) and (2)
reduce to the parametric weak vector equilibrium problem in [5–7, 11].

For each λ ∈ Λ, the solution set of (1) is defined by

V I (F,λ) := {x ∈ A(λ)|F(x, y,λ) � −intC,∀y ∈ A(λ)};
and for each λ ∈ Λ, the solution set of (2) is defined by

V II (F,λ) := {x ∈ A(λ)|F(x, y,λ) ⊆ Y \ −intC,∀y ∈ A(λ)}.
For each f ∈ C∗\{0} and for each λ ∈ Λ, the f -efficient solutions set of (1) is

defined by

V I
f (F,λ) := {x ∈ A(λ)|∀y ∈ A(λ),∃z ∈ F(x, y,λ), such that f (z) ≥ 0};

and the f -efficient solution set of (2) is defined by

V II
f (F,λ) =

{
x ∈ A(λ)| inf

z∈F(x,y,λ)
f (z) ≥ 0,∀y ∈ A(λ)

}
.

Throughout this paper, we always assume V I (F,λ) �= ∅ and V II (F,λ) �= ∅ for
all λ ∈ Λ. This paper aims at investigating the lower semicontinuity of the solution
mappings V I (F,λ) and V II (F,λ) as two set-valued maps from the set Λ into X.
Now we recall some basic definitions and their properties.

Definition 2.1 Let F : X × X × Λ ⇒ Y\{∅} is a trifunction.

(i) F(x, ·, λ) is called C-function on A(λ) (i.e.,F(x,A(λ),λ) + C is covex), iff
for every x1, x2 ∈ A(λ) and t ∈ [0,1], tF (x, x1, λ) + (1 − t)F (x, x2, λ) ⊂
F(x, tx1 + (1 − t)x2, λ) + C.

(ii) F(x, ·, λ) is called C-like-function on A(λ), iff for any x1, x2 ∈ A(λ) and any
t ∈ [0,1], there exists x3 ∈ A(λ) such that tF (x, x1, λ) + (1 − t)F (x, x2, λ) ⊂
F(x, x3, λ) + C.

(iii) F(·, ·, ·) is called C-strictly monotone on A(Λ) × A(Λ) × Λ, iff for any given
λ ∈ Λ, for all x, y ∈ A(λ) and x �= y, F(x, y,λ) + F(y, x,λ) ⊂ −intC.

Definition 2.2 [12, 13] Let X and Y be topological spaces, T : X ⇒ Y be a set-valued
mapping.

(i) T is said to be upper semicontinuous (u.s.c., for short) at x0 ∈ X iff for any
open set V containing T (x0), there exists an open set U containing x0 such that
T (x) ⊆ V for all x ∈ U .



J Optim Theory Appl (2012) 152:256–264 259

(ii) T is said to be lower semicontinuous (l.s.c., for short) at x0 ∈ X iff for any open
set V with T (x0) ∩ V �= ∅, there exists an open set U containing x0 such that
T (x) ∩ V �= ∅ for all x ∈ U .

(iii) T is said to be continuous at x0 ∈ X, if it is both l.s.c. and u.s.c. at x0 ∈ X. T is
said to be l.s.c. (resp. u.s.c.) on X, iff it is l.s.c. (resp. u.s.c.) at each x ∈ X.

Proposition 2.1 [13, 14] Let X and Y be topological spaces, T : X ⇒ Y be a set-
valued mapping.

(i) T is l.s.c. at x0 ∈ X if and only if for any net {xα} ⊂ X with xα → x0 and any
y0 ∈ T (x0), there exists yα ∈ T (xα) such that yα → y0.

(ii) If T has compact values (i.e., T (x) is a compact set for each x ∈ X), then T

is u.s.c. at x0 if and only if for any net {xα} ⊂ X with xα → x0 and for any
yα ∈ T (xα), there exist y0 ∈ T (x0) and a subnet {yβ} of {yα}, such that yβ → y0.

3 Lower Semicontinuity of the Solution Map to Weak Generalized PKFIs

In this section, we discuss the lower semicontinuity of the solutions to two classes of
weak generalized PKFIs.

Using a similar method of Lemma 3.3 in [9], we can get the following results.

Lemma 3.1 For each λ ∈ Λ, and for each x ∈ A(λ),

(i) Suppose that for all y ∈ A(λ), there exists a selection z(y) of F(x, y,λ)\ − int C
(that is, z(y) ∈ F(x, y,λ)\ − int C), such that

⋃
y∈A(λ) z(y) + C be a convex set,

then

V I (F,λ) =
⋃

f ∈C∗\{0}
V I

f (F,λ).

(ii) Suppose that F(x,A(λ),λ) + C be a convex set, then

V II (F,λ) =
⋃

f ∈C∗\{0}
V II

f (F,λ).

Theorem 3.1 Let f ∈ C∗ \ {0}. Suppose that the following conditions be satisfied:

(i) A(·) is continuous with nonempty compact value on Λ;
(ii) F(·, ·, ·) is u.s.c. with nonempty compact values on B × B × Λ;

(iii) For each λ ∈ Λ, x ∈ A(λ) \ V I
f (F,λ), there exists y ∈ V I

f (F,λ), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) ⊂ −C.

Then, V I
f (F, ·) is l.s.c. on Λ.

Proof By the contrary, assume that there exists λ0 ∈ Λ, such that V I
f (F, ·) is not

l.s.c. at λ0. Then there exist λα with λα → λ0 and x0 ∈ V I
f (F,λ0), such that for any

xα ∈ V I
f (F,λα) with xα � x0.
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Since x0 ∈ A(λ0) and A(·) is l.s.c. at λ0, there exists a net x̂α ∈ A(λα) such that
x̂α → x0. Obviously, x̂α ∈ A(λ) \ V I

f (F,λα). By (iii), there exists yα ∈ V I
f (F,λα),

such that

F(x̂α, yα,λα) + F(yα, x̂α, λα) + B
(
0, d(x̂α, yα)

) ⊂ −C. (3)

For yα ∈ V I
f (F,λα) ⊂ A(λα), because A(·) is u.s.c. at λ0 with compact values,

there exist y0 ∈ A(λ0) and a subnet {yαk
} of {yα} such that yαk

→ y0. In particular,
for (3), we have

F(x̂αk
, yαk

, λαk
) + F(yαk

, x̂αk
, λαk

) + B
(
0, d(x̂αk

, yαk
)
) ⊂ −C.

Taking the limit as αk → +∞, we have

F(x̂0, y0, λ0) + F(y0, x̂0, λ0) + B
(
0, d(x̂0, y0)

) ⊂ −C. (4)

It follows from x0 ∈ V I
f (F,λ0) and y0 ∈ A(λ0) that there exists z01 ∈ F(x0, y0, λ0)

such that

f (z01) ≥ 0. (5)

On the other hand, since yαk
∈ V I

f (F,λαk
) and x̂αk

∈ A(λαk
), there exists zαk

∈
F(yαk

, x̂αk
, λαk

) such that

f (zαk
) ≥ 0. (6)

Since F(·, ·, ·) is u.s.c. at (y0, x0, λ0) with compact values, there exists z02 ∈
F(y0, x0, λ0) such that zαk

→ z02 (taking a subnet if necessary). It follows from the
continuity of f and (6) that

f (z02) ≥ 0. (7)

By (5), (7) and the linearity of f , we get

f (z01 + z02) = f (z01) + f (z02) ≥ 0. (8)

Assume that x0 �= y0, by (4), we can obtain that

F(x0, y0, λ0) + F(y0, x0, λ0) ⊂ −intC.

Then it follows from f ∈ C∗ \ {0} and z01 + z02 ∈ −intC that

f (z01 + z02) < 0,

which is a contradiction to (8). Therefore, x0 = y0. This is impossible by the contra-
diction assumption. Therefore, V I

f (F, ·) is l.s.c. on Λ. The proof is complete. �

Remark 3.1 In [3, 5–9], under the condition of C-strict monotonicity, the continuity
of the f -efficient solutions to the (GKFI) or (PKFI) is obtained. However, this con-
dition is so strict that the f -efficient solution set for various PKFIs is confined to
be a singleton. In our paper, we use assumption (iii) of Theorem 3.1 to weaken this
condition. Furthermore, the f -efficient solution set may be a general set, but not a
singleton. The following example is given to illustrate the case.
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Example 3.1 Let X = Z = Y = R,C = R+, Λ = [0,1] be a subset of Z. Let F : X ×
X×Λ ⇒ Y be a mapping defined by F(x, y,λ) = [−10+3λ, (y2 +1)(x−λ)] and let
A : Λ ⇒ X defined by A(λ) = [λ2,1]. For any given λ ∈ Λ, let f (F (x, y,λ)) = 3

2z,
∀z ∈ F(x, y,λ). Clearly, conditions (i)–(ii) of Theorem 3.1 are satisfied. It follows
from direct computations that A(Λ) = [0,1], V I

f (F,λ) = [λ,1], ∀λ ∈ Λ.
Obviously, the f -solution set to the (GKFI1) is not a singleton. The assumption

(iii) in Theorem 3.1 can be checked as follows: For any x ∈ A(λ)\V I
f (F,λ) = [0, λ),

there exists y = λ ∈ V I
f (F,λ) = [λ,1], such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) ⊂ −C.

However, for λ ∈ [0, 1
3 ], there exists x = 0, y = 1 with y �= x, such that

F(x, y,λ)+F(y, x,λ) � −intC, which implies that F(·, ·, ·) is not C-strictly mono-
tone on A(Λ) × A(Λ) × Λ.

Theorem 3.2 For each f ∈ C∗ \ {0}. Suppose that the following conditions be satis-
fied:

(i) A(·) is continuous with nonempty compact value on Λ;
(ii) F(·, ·, ·) is u.s.c. with nonempty compact values on B × B × Λ;

(iii) For each λ ∈ Λ, x ∈ A(λ) \ V I
f (F,λ), there exists y ∈ V I

f (F,λ), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) ⊂ −C.

(iv) For each λ ∈ Λ, x ∈ A(λ) and for all y ∈ A(λ), there exists a selection z(y) of
F(x, y,λ)\ − int C, such that

⋃
y∈A(λ) z(y) + C be a convex set.

Then, V I (F, ·) is l.s.c. on Λ.

Proof It follows from assumption (iv) and Lemma 3.1 that for each λ ∈ Λ,

V I (F,λ) =
⋃

f ∈C∗\{0}
V I

f (F,λ).

By Theorem 3.1, for each f ∈ C∗ \ {0}, V I
f (F, ·) is l.s.c. on Λ. Therefore, in view

of Theorem 2 (p. 114 in [14]), we have V I (F, ·) is l.s.c. on Λ. This completes the
proof. �

Now, we give an example to illustrate that our result extends that of [9].

Example 3.2 Let X = Z = R, Y = R,C = R+, Λ = [−1,1] be a subset of Z. Let

F : X × X × Λ ⇒ Y be a mapping defined by F(x, y,λ) = [−10 + |x| 1
2 + |y| 1

2 −
λ, (λ2 + 2)x] and let A : Λ ⇒ X defined by A(λ) = [−λ2,1]. Then, it can be shown
that A(λ) = [−1,1] and V I (F,λ) = [0,1]. For each f ∈ C∗ \ {0}, it follows from
a direct computation that if V I

f (F,λ) �= ∅, then 0 ∈ V I
f (F,λ). Clearly, conditions

(i), (ii), (iv) of Theorem 3.2 are satisfied. For any x ∈ A(λ) \ V I
f (F,λ), there exists
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y = 0 ∈ V I
f (F,λ), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y))

= [−20 + 2|x| 1
2 − 2λ, (λ2 + 2)x

] + B(0, d(x,0)) ⊂ −C.

Thus, the condition (iii) of Theorem 3.2 is also satisfied. By Theorem 3.2, V I (F, ·)
is l.s.c. on Λ.

However, for ∀x ∈ A(λ), exists y = −x ∈ A(λ) with y �= x, such that F(x, y,λ)+
F(y, x,λ) � −intC, which implies that F(·, ·, ·) is not C-strictly monotone on
A(Λ) × A(Λ) × Λ. Thus, Theorem 3.7 in [9] is not applicable.

Now, we discuss the lower semicontinuity of the solutions to weak generalized
PKFI (2).

Theorem 3.3 Let f ∈ C∗ \ {0}. For the problem (2), suppose that the following con-
ditions be satisfied:

(i) A(·) is continuous with nonempty compact value on Λ;
(ii) F(·, ·, ·) is u.s.c. with nonempty compact values on B × B × Λ;

(iii) For each λ ∈ Λ, x ∈ A(λ) \ V II
f (F,λ), there exists y ∈ V II

f (F,λ), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) ⊂ −C.

Then, V II
f (F, ·) is l.s.c. on Λ.

Proof In a similar way to the proof of Theorem 3.1, with suitable modifications, we
can obtain the conclusion. �

The following example illustrates that the assumption (iii) in Theorem 3.3 is es-
sential.

Example 3.3 Let X = Y = R,C = R+. Let Λ = [1,2] be a subset of Z. For each
λ ∈ Λ,x,y ∈ X, let A(λ) = [λ − 1,1] and F(x, y,λ) = [(10 − λ2)λx(x − y),+∞).
Obviously, assumptions (i) and (ii) of Theorem 3.3 are satisfied, and A(λ) = [0,1],
∀λ ∈ Λ. For any given λ ∈ Λ, let f (F (x, y,λ)) = 2z, ∀z ∈ F(x, y,λ). Then, it fol-
lows from a direct computation that

V II
f (F,1) = {0,1} and V II

f (F,λ) = 1, ∀λ ∈ (1,2].

Hence V II
f (F,λ) is even not l.c.s at λ = 1. The reason is that the assumption

(iii) is violated. Indeed, if x′ = 0 ∈ V II
f (F,λ), for λ = 1, there exist y = 1

4 ∈ A(λ) \
V II

f (F,λ) = (0,1), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y))

= [(
10 − λ2)λx(x − y),+∞) + [(

10 − λ2)λy(y − x),+∞) + B(0, d(x, y))

= [(
10 − λ2)λ(x − y)2,+∞) + B(0, d(x, y))
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=
[

9

16
,+∞

)

+ B

(

0,
1

4

)

� −C;

if x′ = 1 ∈ V II
f (F,λ), for λ = 1, there exist y = 1

4 ∈ A(λ)\V II
f (F,λ), using a similar

method, we have F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) = [ 81
16 ,+∞) + B(0, 3

4 ) �
−C. Therefore, (iii) is violated.

Theorem 3.4 For the problem (2), suppose that the following conditions be satis-
fied:

(i) A(·) is continuous with nonempty compact value on Λ;
(ii) F(·, ·, ·) is u.s.c. with nonempty compact values on B × B × Λ;

(iii) For each f ∈ C∗ \ {0}, λ ∈ Λ, and x ∈ A(λ) \ V II
f (F,λ), there exists y ∈

V II
f (F,λ), such that

F(x, y,λ) + F(y, x,λ) + B(0, d(x, y)) ⊂ −C.

(iv) For each λ ∈ Λ and for each x ∈ A(λ), F(x, ·, λ) is C-like-function on A(λ).

Then, V II (F, ·) is l.s.c. on Λ.

Proof For each λ ∈ Λ and for each x ∈ A(λ), since F(x, ·, λ) is C-like-function on
A(λ), F(x,A(λ),λ)+C is convex. Thus, by virtue of Lemma 3.1(ii), for each λ ∈ Λ,
it holds

V II (F,λ) =
⋃

f ∈C∗\{0}
V II

f (F,λ).

By Theorem 3.3, for each f ∈ C∗ \ {0}, V II
f (F, ·) is l.s.c. on Λ. Therefore, in view of

Theorem 2 in [14, p. 114], we have V II (F, ·) is l.s.c. on Λ. The proof is complete. �

Remark 3.2 Theorem 3.4 generalizes Theorem 3.1 in [10] for the mapping F from
vector-valued version to set-valued version.

Now, we give an example to illustrate that our result extends those of [8] and [5–7].

Example 3.4 Let X = Z = Y = R,C = R+, Λ = [0,2
1
2 ]. And let A : Λ ⇒ X defined

by A(λ) = [λ2,2], F(x, y,λ) = (−∞, (y + 1)(λ2 + 1)(x − λ)]. Then, V II (F,λ) =
[λ,2], ∀λ ∈ Λ = [0,2

1
2 ]. It is easy to verify that all assumptions of Theorem 3.4 are

satisfied. By Theorem 3.4, V II (F, ·) is l.s.c. on Λ.

However, for any λ ∈ [0,1] ⊂ Λ = [0,2
1
2 ], there exists x = λ ∈ A(λ), y = 2 ∈

A(λ) with y �= x, such that

F(x, y,λ) + F(y, x,λ) = (−∞, (λ + 1)
(
λ2 + 1

)
(2 − λ)

]
� −intC,

which implies that F(·, ·, ·) is not R+-strictly monotone on A(Λ)×A(Λ)×Λ. Then,
Theorems 3.1–3.2 in [8] are not applicable, and the corresponding results in refer-
ences (e.g. [5–7]) are also not applicable.
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4 Conclusion

In this paper, under new assumptions, which are weaker than C-strict monotonicity,
we establish sufficient conditions for the lower semicontinuity of the solutions to two
class of weak generalized PKFIs with set-valued maps in the case where f -solution
set is a general set-valued one. These results extend and improve the corresponding
ones obtained in [3, 5–10]. We have also showed some examples to illustrate the case.
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