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Bi2Se3 and Bi2Te3 are layered compounds of technological importance, being excellent thermoelectric
materials as well as topological insulators. We report density functional theory calculations of the atomic,
electronic, and thermoelectric properties of strained bulk and thin-film Bi2Se3 and Bi2Te3, focusing on an
appropriate description of van der Waals (vdW) interactions. The calculations show that the van der Waals
density functional (vdW-DF) with Cooper’s exchange (vdW-DFC09

x) can reproduce closely the experimental
interlayer distances in unstrained Bi2Se3 and Bi2Te3. Interestingly, we predict atomic structures that are in much
better agreement with the experimentally determined structure from Nakajima than that obtained from Wyckoff,
especially for Bi2Se3, where the difference in atomic structures qualitatively changes the electronic band structure.
The band structure obtained using the Nakajima structure and the vdW-DFC09

x optimized structure are in much
better agreement with previous reports of photoemission measurements, than that obtained using the Wyckoff
structure. Using vdW-DFC09

x to fully optimize atomic structures of bulk and thin-film Bi2Se3 and Bi2Te3 under
different in-plane and uniaxial strains, we predict that the electronic bandgap of both the bulk materials and
thin films decreases with tensile in-plane strain and increases with compressive in-plane strain. We also predict,
using the semiclassical Boltzmann approach, that the magnitude of the n-type Seebeck coefficient of Bi2Te3

can be increased by the compressive in-plane strain while that of Bi2Se3 can be increased with tensile in-plane
strain. Further, the in-plane power factor of n-doped Bi2Se3 can be increased with compressive uniaxial strain
while that of n-doped Bi2Te3 can be increased by compressive in-plane strain. Strain engineering thus provides a
direct method to control the electronic and thermoelectric properties in these thermoelectric topological insulator
materials.
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I. INTRODUCTION

Bi2Se3 and Bi2Te3 are members of the (Bi, Sb)2(Te,
Se)3 family of traditional thermoelectric materials—they can
directly convert waste heat to electricity without any moving
parts. These bulk thermoelectric materials were discovered
to have large Seebeck coefficients half a century ago and
are now widely used in thermoelectric refrigeration.1–3 In
recent years, there has been a surge of renewed interest in
these thermoelectric materials—it was predicted and later,
experimentally demonstrated,4–7 that these materials consti-
tute an exotic class of condensed matter, called topological
insulators.8–10 The topological insulators are distinguished by
the existence of metallic spin-helical surface states, which
are robust against the presence of nonmagnetic impurities or
disorder.11,12 These surface states have potential applications
in spintronics,9,13 quantum computation,8,10,14 and thermo-
electric energy conversion.15 Importantly, these applications
require a better fundamental understanding of the atomic and
electronic structure of Bi2Se3 and Bi2Te3 when interfaced with
other materials.

It is well known that Bi2Se3 and Bi2Te3 belong to the
tetradymite-type crystal with a rhombohedral structure (point
group R-3m). In the rhombohedral unit cell [Fig. 1(a)],
there are three Se (Te) atoms that can be classified into
two inequivalent types. We label these inequivalent atoms as
Se1(Te1) (two of them in one unit cell) and Se2(Te2). The Bi
atoms are equivalent. The Bi2Se3 and Bi2Te3 structure is also
often alternatively described in the hexagonal representation
with a unit cell of 15 atoms, as shown in Fig. 1(b). Within this

representation, it is clear that Bi2Se3 and Bi2Te3 have layered
structures. Each Se1(Te1)-Bi-Se2(Te2)-Bi-Se1(Te1) forms a
so-called quintuple layer (QL), which is a slab with five atomic
layers. The QLs are stacked along the c axis with the weak
van der Waals (vdW) interactions between neighboring QLs.
The vdW interaction is relatively weak, but it can play a dom-
inant role in interactions between atoms or layers separated
by empty space (so-called sparse matter). This interaction
results exclusively from long-range correlations, which are
absent from standard local and gradient-corrected density
functional theory (DFT) functionals.16,17 Much significant
advancement has since been made that enables the treatment
of vdW interactions within DFT. In addition to the method
of dispersion-correction as an add-on to DFT,18 the recently
developed van der Waals density functional (vdW-DF)19,20

incorporates the long-range dispersion effects as a perturbation
to the local-density approximation (LDA) correlation term,
and this method has been applied successfully in diverse
material systems.17 The choice of exchange functional is
also important—the standard functional used within vdW-
DF, revised Perdew–Burke–Ernzerhof (revPBE)21 typically
gives vdW bond lengths that are a few percent too large.22

Most recently, Cooper developed an exchange functional that
reduces the short-range repulsion term in revPBE.23

Although extensive electronic structure calculations have
been performed for Bi2Se3 and Bi2Te3,13,24–31 most of them are
calculated with experimental structures without full relaxation
or in the slab calculations, with only the top four layers of
atoms in the top QL allowed to relax, fixing the inter-QL
distance.13,32
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FIG. 1. (Color online) Atomic structures of bulk Bi2Te3 and
Bi2Se3. One QL contains five atoms in Se1(Te1)-Bi-Se2(Te2)-Bi-
Se1(Te1) series. (a) Rhombohedral unit cell. (b) Hexagonal unit cell
(containing three QLs)

Yet, inter-QL vdW interactions are essential for predicting
atomic and electronic structures of Bi2Se3 and Bi2Te3, when
interfaced or intercalated with other materials. Indeed, much
of the current interest in these materials involves interfacing
them with other materials, and recent experiments indicate
that depositing Ag on Bi2Se3 results in Ag intercalation
between QLs.11,33 Furthermore, vdW interactions are required
for accurate predictions of atomic structures of Bi2Se3 and
Bi2Te3 under strain, which can directly influence topological
properties.28,34,35 On the other hand, previous theoretical
calculations found that pressure and uniaxial stress can greatly
influence the thermoelectric properties of Sb2Te3,36 and stress
also plays an important role in the formation of defects
in these thermoelectric materials.37,38 Recent experiments
and molecular simulations show that the lattice thermal
conductivity of thermoelectric materials will be affected by
different strain conditions.39,40 How important is the vdW
interaction in strain engineering, and how do they affect the
thermoelectric properties of these materials?

In this paper, we first explore the applicability of different
exchange-correlation functionals, including those with vdW
corrections, on predicting atomic structures of Bi2Se3 and
Bi2Te3. Next, using an appropriate vdW functional, we fully
optimize the atomic structures of strained bulk and thin-film
Bi2Se3 and Bi2Te3. Based on these optimized reference
structures, the effect of strain on atomic, electronic, and ther-
moelectric properties are reported, and the importance of vdW
interactions is elucidated by comparing the results with those
obtained using structures optimized with the Perdew–Burke–
Ernzerhof (PBE) functional (including spin-orbit interactions).
We also explore the effects of vdW interactions and spin-orbit
interactions on the bulk moduli and phonon frequencies in the
unstrained bulk systems.

II. COMPUTATIONAL DETAILS

Except for the thermoelectric transport properties (ad-
dressed below), all our calculations are performed using
the plane wave DFT code, Quantum-ESPRESSO (QE).34

The norm-conserving pseudopotentials are generated using
the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) approach. For
structural relaxation, the plane-wave kinetic energy cutoff is
set to 56 Ry and the Brillouin zone is sampled with a 9 × 9 × 1
Monkhorst-Pack mesh—using a higher plane-wave cutoff of
70 Ry and a 13 × 13 × 1k-point mesh changes the lattice
constants and internal coordinates by less than 0.2%, with
essentially no difference in resulting band structure. Phonon
frequencies in the bulk are computed using a dense k-point
mesh of 13 × 13 × 13. On the other hand, a plane-wave
cutoff of 40 Ry is found to be sufficient (compared to 56
Ry) for calculations of band structure and bulk moduli. A
vacuum thickness of 16 Å is used in thin-film slab calculations
(converged relative to a vacuum thickness of 20 Å). In
the self-consistent calculation, the convergence threshold for
energy is set to 10−9 eV. All the internal atomic coordinates and
lattice constants are relaxed, until the maximum component
of Hellmann-Feynman force acting on each ion is less
than 0.003 eV/Å. The spin-orbit coupling (SOC) effect,
important for the heavy elements considered here, is treated
self-consistently in fully relativistic pseudopotentials for the
valence electrons.41 In order to investigate the importance of
SOC and vdW interactions for different physical properties,
we have performed a detailed investigation with different
exchange-correlation functionals. However, the main physical
insights are obtained using atomic structures optimized using
the vdW-DF functional19,20,42 with Cooper’s exchange23 and
electronic structure calculated using the PBE43 functional
with SOC.

Many thermoelectric calculations44–46 of similar materials
are based on the WIEN2k package47 with the semiclas-
sical Boltzmann transport method in the relaxation-time
approximation.48 Therefore, to compare our results with the
literature, we use WIEN2k with BoltzTrap45 for calculating
thermoelectric transport properties of our previously relaxed
structures, with the same basis functions as in the reported
literature,44,45 and using the PBE43 functional with SOC49

as implemented in WIEN2k. The calculation of transport
properties requires a very dense k grid; here, a nonshifted
mesh with 56 000 k points (4960 in the irreducible Brillouin
zone) is used, which is found to be converged as compared to
a denser sampling with 70 000 k points. Within BoltzTrap, the
relaxation time τ is assumed to be a constant with respect
to the wave vector k and energy around the Fermi level,
and the effect of doping is introduced by the rigid band
approximation. Within the relaxation-time approximation, the
Seebeck coefficient S can be obtained directly from the
electronic structure without any adjustable parameters.

III. RESULTS AND DISCUSSIONS

A. Structural properties of equilibrium Bi2Se3 and Bi2Te3

Table I shows the fully optimized lattice constants and
internal coordinates obtained using different functionals. The
different functionals give consistent internal coordinates, but
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(Å
)

2.
57

9
2.

25
3

2.
40

6
2.

29
8

3.
57

4
3.

30
2

5.
14

5
2.

66
8

2.
57

0
2.

58
0

3.
72

2

2
Q

L
d

e
q
m

a
(Å
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the lattice parameters, especially that related to the interlayer
distance deqm (vertical distance between Se (or Te) atoms in
adjacent QLs), vary significantly with different functionals.
Focusing first on the LDA, PBE, and revPBE functionals,
we find that LDA50 results are closest to experiment, with
LDA underestimating deqm by 6.7 and 5.6% for Bi2Se3 and
Bi2Te3, respectively, and PBE43 overestimating deqm by 38.6
and 15.8% for Bi2Se3 and Bi2Te3, respectively. The revPBE21

functional predicts an even larger deqm of >4.48 Å. Calcu-
lations with the vdW-DF correlation functional together with
revPBE exchange lead to improved, smaller deqm compared
to the revPBE functional; however, the predicted deqm is still
overestimated by more than 20%. This error is much larger
than that reported for other vdW-bonded systems.22 In contrast,
the semiempirical vdW correction based on Grimme’s scheme
(PBE-D2)18,51,52 does help, predicting deqm within 3.4 and 8%
of experiment for Bi2Se3 and Bi2Te3, respectively. On the other
hand, using the vdW-DF functional19,53 with the most recently
developed Cooper’s exchange (vdW-DFC09

x),23 we can obtain
better agreement with experiment, with predicted deqm values
of 2.58 Å for Bi2Se3 and 2.582 Å for Bi2Te3, which are within
0.1 and 1.1% of experiment. We next consider the role of SOC
in relaxing atomic structures. We find that SOC tends to reduce
deqm in all cases; as a result, adding SOC increases the error for
LDA but reduces the error for PBE and PBE-D2, thus giving
deqm values within 1.5% of experiment for PBE-D2 + SOC. As
the vdW-DF functional has not been implemented with SOC,
we did not check the effect of SOC on these results. However,
since vdW-DFC09

x can already give excellent agreement with
experiment, it is still unclear if SOC is truly important for
structural optimization. We note that the very reasonable
results of PBE-D2 and PBE-D2 + SOC are quite remarkable
given that the correction is semiempirical. However, in the
following, we shall base most of our conclusions on structures
optimized using the vdW-DFC09

x functional.
Since the interlayer vdW interactions are important, we

focus on these interactions by computing, for simplicity, the
inter-QL binding energy as a function of interlayer distance,
for two QL Bi2Se3 and Bi2Te3 thin films (i.e., films with two
QLs each containing five atomic layers), where the internal
atoms within each QL are fixed to their experimental atomic
positions from the bulk (Fig. 2). Although the inter-QL
distance for the two-QL film may be slightly different from
the bulk, it has been shown that the vdW interactions are
dominated by those between nearest-neighbor layers in other
layered materials such as multilayer graphene and MoS2.54,55

The close correspondence (with deviation of less than 5% for
all functionals) between the equilibrium inter-QL distances
calculated for the bulk and for two QLs (Table I) further
supports this assumption. From Fig. 2, we see that revPBE
and revPBE + SOC give rise to repulsive interactions between
the two QLs. Furthermore, the curvature of the energy versus
distance curve is quite different for different functionals.
Although SOC does not change deqm significantly, it does
affect the interlayer force constants, which are given by the
second derivative of the energy as a function of distance.
We also note that the binding energies obtained using vdW-
DFC09

x or PBE-D2 are consistent with recent estimates
obtained by rescaling results from the VV10 functional56

according to quantitative random-phase approximation (RPA)

FIG. 2. (Color online) Inter-QL binding energy as a function of
inter-QL separation distance for (a) Bi2Se3 and (b) Bi2Te3 two-QL
thin films. The inter-QL energy is computed by taking the difference
between the total energy of the two-QL film and twice that of a one
QL film in the same unit cell. Here, the internal atoms within each QL
are fixed to their experimental atomic positions from the bulk. The
grey line shows the value of experimental distance in bulk, which is
from Ref. 58.

calculations.57 These binding energies are larger for Bi2Te3

than for Bi2Se3, a finding consistent with the larger atomic
size of Te compared to Se.

Interestingly, we find that our first-principles-predicted
structures using both PBE-D2 and vdW-DFC09

x functionals
are more consistent with the experimental structures reported
by Nakajima,58 rather than that from Wyckoff (Table I).59

Both experimental structures have been widely used in the
theoretical literature, but importantly, the internal atomic
coordinates are different in these two structures (Table I),
especially for Bi2Se3, where the interlayer distance deqm is
quite different (2.579 Å in Nakajima’s structure and 2.253 Å
in Wyckoff’s structure). It is noted that the crystal structure
from Wyckoff is obtained from an early electron diffraction
study,60 while structures of Nakajima are obtained from x-ray
diffraction powder analysis. As the interaction of electrons
with matter are about 10 000 times stronger than that of xrays,
multiple dynamical scattering will influence the intensity
of electron diffraction patterns, thus making the structure

184111-4
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FIG. 3. (Color online) Band structures of bulk (a) Bi2Se3 and (b) Bi2Te3, computed using the GGA-PBE functional with SOC. The
experimental ARPES data for Bi2Se3 (Ref. 61) is shown along the � and Z high-symmetry direction. The band structures of (c) Bi2Se3 and (d)
Bi2Te3 without SOC are also calculated with vdW-DFC09

x and PBE functionals.

determination from electron diffraction more difficult and less
reliable than that from x-ray diffraction.58

B. Electronic properties of equilibrium Bi2Se3 and Bi2Te3

Using PBE + SOC, we compute the band structures of the
Nakajima and Wyckoff atomic structures and the vdW-DFC09

x

optimized structures. We find that the band structures for the
vdW-DFC09

x optimized structures match very well to those
of the Nakajima structures, as we expect from the above
discussion. The band structures of the Wyckoff and Nakajima
structures are very similar in the case of Bi2Te3 [Fig. 3(b)]
but are qualitatively different for Bi2Se3 [Fig. 3(a)]. Focusing
now on these differences for Bi2Se3, we note that the lowest
conduction band along the �-Z-F high-symmetry direction is
more rippled in the Wyckoff structure than in the Nakajima and
vdW-DFC09

x optimized structures [Fig. 3(a).] Furthermore,
the direct gap at F is 0.40 eV smaller in the Wyckoff Bi2Se3

structure than in the Nakajima structure, while the bandgap at
� is 0.20 eV smaller in the Nakajima Bi2Se3 structure than
in the Wyckoff structure. (We note that the calculated band
structures of Bi2Se3 based on the PBE-D2 + SOC relaxed
structure and that of vdW-DFC09

x optimized structures are
almost the same; not shown here.) Comparing the computed
band structure with that measured in recent angle-resolved
photoelectron spectroscopy (ARPES) experiments,61 we find
that the band structure for the Nakajima structure is closer to
experiment than that for the Wyckoff structure, thus providing

direct experimental evidence favoring the coordinates from
Nakajima and our optimization procedure. Specifically, there
are two key qualitative features indicating that the ARPES
measurements agree better with the band structure for the
Nakajima structure. Focusing on the band structure along
�-Z, close to the Fermi level, we see (1) the highest-occupied
valence band is flatter in the Nakajima structure, similar to that
from ARPES; (2) the energy separation between the highest-
occupied valence band and the next-highest-occupied band is
about 0.75 eV for the Nakajima structure, in contrast to 0.3 eV
for the Wyckoff structure and similar to that from ARPES. It
is thus clear that agreement is much better for the Nakajima
structure than for the Wyckoff structure. Interestingly, the
authors of the ARPES paper61 had commented that the
measured energy bands in the �-Z direction were significantly
flatter than that predicted by DFT; our calculations strongly
suggest that the reason for this discrepancy was that the
Wyckoff structure was used for their calculations instead of
the Nakajima structure. Since the main difference between
the Nakajima and Wyckoff Bi2Se3 structures is the larger
interlayer separation in the former, these results underscore
the importance of a careful treatment of vdW interactions for
prediction of band structures.

We note that although DFT in many cases gives accurate
qualitative predictions of band structure, the DFT Kohn-
Sham values cannot quantitatively predict quasiparticle band
structures.62 In this case, the calculated bandgaps of Bi2Se3 and
Bi2Te3 (using the vdW-DFC09

x optimized structures) are 0.30
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FIG. 4. (Color online) Thickness-
dependent bandgaps at the � point induced
by the interaction between the surface states
of thin film for (a) Bi2Se3 and (b) Bi2Te3.
Experimental results are reproduced from
Ref. 66, PBE data are obtained from Ref. 65,
and the GW calculation data are derived
from Ref. 64. The slab structures in PBE and
GW calculations are based on the Wyckoff
structures.

and 0.10 eV, slightly smaller than the experimentally measured
values of 0.35 eV for Bi2Se3

63 and 0.17 eV for Bi2Te3
6 but

consistent with the other DFT results.13,26

Although our calculations suggest that SOC is not crucial
for predicting atomic structures, SOC has an important effect
on the band structure. To illustrate this, we compare the
band structures in Figs. 3(a) and 3(b) with those computed
without SOC [Figs. 3(c) and 3(d)], using the vdW-DFC09

x

optimized structures. The band structures with and without
SOC are quite different, consistent with large SOC-induced
band inversion at �. Furthermore, we note that the band
structures computed by the vdW-DFC09

x functional and PBE
are quite similar, suggesting that the vdW-DFC09

x functional
can produce band structures that are consistent with PBE
and that vdW interactions have minimal effect on the band
structure. This justifies our neglect of vdW effects in the band
structure calculations.

Recent interest in the topological metallic surface states
in Bi2Se3 and Bi2Te3 slabs focus on the Dirac cone feature
in the band structure at the � point.13,30,64–66 At very thin
slab thickness, the interaction between the surface states at
opposite interfaces opens the bandgap at �, and this gap will
gradually decay to zero as the slab thickness is increased.
Previous PBE (with SOC) calculations on the unrelaxed slabs
derived from Wyckoff structures found that the bandgap at �

begins to close by three and four QLs for Bi2Se3 and Bi2Te3,
respectively.65 To address the question of whether the atomic
structure influences these predictions, we fully optimized
slab structures from one to five QLs using the vdW-DFC09

x

functionals; the fully optimized slab structures are similar to
those directly derived from Nakajima structures. Based on the
optimized slab structures, we calculated the bandgap at � with
PBE + SOC, as shown in Fig. 4. Our results are close to that
using the Wyckoff structures, except that the bandgap closes
only at four QLs instead of three QLs for Bi2Se3. We note that
compared to experiment and previous GW calculations,64 the
predicted gaps are too small. It is unclear if using the Nakajima
instead of the Wyckoff structures would affect the computed
GW gaps; however, such calculations are beyond the scope of
the current work.

C. Bulk moduli and phonon frequencies of equilibrium
Bi2Se3 and Bi2Te3

We further predict the bulk moduli and phonon frequencies
of equilibrium Bi2Se3 and Bi2Te3 with vdW-DFC09

x and
other functionals and compare our predictions with available
experimental literature. The bulk modulus B and its pressure
derivative B ′ can be obtained by computing the changes in
total energy of Bi2Se3 and Bi2Te3 with hydrostatic pressure
and fitting the resulting energy-volume curves using the
Birch-Murnaghan equation of state:

E(η) = E0 + 9BV0

16
[(η2 − 1)3B ′ + (η2 − 1)2(6 − 4η2)],

(1)

where η = (V0/V )1/3, V0 is the equilibrium volume of the
fully relaxed structure. The bulk moduli thus obtained are
reported in Table II. In general, the values of B predicted
for both Bi2Se3 and Bi2Te3 are similar (∼30–40 GPa). The
experimental reports for B differ, especially for Bi2Se3, where
an exceptionally high value of 53 GPa is obtained by Vilaplana
et al.67 However, the remaining experimental values are
in reasonable agreement with our predicted values. Due to
the different experimental values, we are unable to draw a
conclusion of the importance of vdW interactions or SOC in
determining the bulk modulus.

More insights can be obtained by comparing computed
zone center phonon frequencies with experiment. As can
be shown by group theory, the irreducible representations
of the zone center phonon modes in Bi2Te3 and Bi2Se3 are
� = 2A1g + 3A2u + 2Eg + 3Eu, among which 2A1g and 2Eg

are Raman (R) active; 3A2u and 3Eu are infrared (I) active,
the three acoustic modes are composed by one A2u and two
degenerate Eu modes. For the R-active modes, Eg describes
the shear mode of in-plane atomic vibrations, and A1g de-
scribes the breathing mode of out-of-plane atomic vibrations.
Except for results obtained with the vdW-DF functional, all
phonon frequencies are computed within density functional
perturbation theory (DFPT) as introduced by Lazzeri and
Mauri68 in QE. Since the phonon frequencies cannot be
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TABLE II. The calculated bulk moduli B (GPa) of Bi2Te3 and Bi2Se3.

vdW-DFC09x PBE-D2 PBE-D2 + SOC LDA LDA + SOC PBE + SOC Exp.

Bi2Se3 42.8 42.92 41.0 46.68 48.82 49.45 32.98a, 53b

Bi2Te3 40.2 35.61 32.5 42.46 46.56 42.55 39.47c, 32.5d

aFrom Ref. 81.
bFrom Ref. 67.
cFrom Ref. 82.
dFrom Ref. 83.

computed with vdW-DF in QE, we adopt the force-constant
approach69,70 to compute the phonon frequencies with the
vdW-DFC09

x functional. In this method, we displace each atom
in the primitive cell from its equilibrium position in the x,
y, and z directions by a distance of 0.015 Å and calculate
the forces acting on each atom using the Hellmann-Feynman
theorem. Subsequently, the interatomic force-constant matrix
is evaluated using a central finite-difference scheme. (We have
checked that within LDA, the phonon frequencies as calculated
with the force-constant approach are essentially the same as
those obtained from the DFPT method.)

First, comparing LDA and PBE results with and without
SOC with experiment (Table III), we note that in all cases, SOC
reduces the phonon frequencies. In general, inclusion of SOC
then leads to better agreement with experiment, as previously
observed by Cheng et al.71 We note that the importance of SOC
in determining force constants is in contrast to our earlier ob-
servation that SOC was not important for structural relaxation.
The difference lies in the fact that force constants are related to
the rate of change of force with atomic displacements, whereas
structural relaxation is related only to the coordinates for the

minima of the potential energy surface. This can be illustrated
in the simplified picture in Fig. 2 where the minima of the
energy-distance curves are similar with and without SOC,
but the curvatures of the curves are quite different. Next,
although the PBE atomic structure is significantly different
from experiment compared to the PBE-D2 atomic structure, we
find that the PBE frequencies are quite similar to the PBE-D2
frequencies, and in fact, the PBE-D2 frequencies are in many
cases slightly farther from the experimental values. The PBE-
D2 frequencies are quite similar to those obtained with the
vdW-DFC09

x functional. However, PBE-D2 + SOC frequen-
cies give the best match with experiment, suggesting that PBE-
D2 + SOC can be used to make predictions on frequencies.

D. Atomic and electronic properties of strained
Bi2Se3 and Bi2Te3

Strain engineering is a mature technique for controlling
the electronic properties of nanoscale semiconductors in
industry—mechanical strain can be imposed by microelec-
tromechanical systems (MEMS) or by epitaxial growth of thin

TABLE III. Calculated zone-center phonon frequencies for Bi2Se3 and Bi2Te3 bulks with and without SOC and the unit of frequency is in
wave number per centimeter. The R- and I-active modes are denoted with R or I.

LDA + SOC LDA PBE + SOCa PBEa PBE-D2 + SOC PBE-D2 vdW-DFC09x Exp.

Bi2Se3 Eg
1 (R) 42.80 44.272 38.893 42.128 38.83 43.92 43.048 37b

A1g
1 (R) 75. 50 74.978 63.843 74.584 71.58 74.94 72.639 72.2c

Eu
1 (I) 82.46 86.966 64.677 85.057 83.92 89.33 86.288

Eu
2 (I) 131.06 136.108 126.819 132.957 128.80 135.23 133.62 131.4c

Eg
2 (R) 137.99 142.911 123.984 138.894 130.47 138.39 138.172

A2u
1 (I) 137.44 145.20 136.692 142.730 146.67 153.36 146.575

A2u
2 (I) 162.89 171.504 155.439 167.113 165.87 169.95 167.856

A1g
2 (R) 174.46 180.546 166.346 179.455 175.47 182.80 179.762 174c

Bi2Te3 Eg
1 (R) 42.04 43.34 35.457 36.358 38.51 41.84 40.737 34.356d

A1g
1 (R) 62.64 65.6 53.869 53.903 59.99 61.54 62.184 62.042d

Eu
1 (I) 64.28 69.4 48.399 63.142 66.77 76.18 68.945

Eu
2 (I) 94.92 99.65 91.228 97.399 95.46 102.68 100.393

Eg
2 (R) 104.67 112.72 95.931 104.404 102.75 111.19 109.670 101.735d

A2u
1 (I) 96.8 104.03 95.064 102.569 104.30 111.89 103.956

A2u
2 (I) 120.5 129.47 118.613 128.220 126.81 137.21 128.644

A1g
2 (R) 131.91 140.38 127.219 137.2266 136.45 145.83 139.788 134.091d

aPBE + SOC and PBE calculated data cited from Ref. 71.
bReference 84.
cReference 67.
dReference 85.
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FIG. 5. (Color online) (a) and (b) Calculated bandgap as a function of in-plane strain applied to Bi2Se3 and Bi2Te3 (a) bulk materials and
(b) two-QL thin films. (c) and (d) Bandgap at � point as a function of in-plane strain for (c) bulk and (d) two-QL thin films. All band structures
are calculated by PBE + SOC; the notation behind each material denotes which functional is used to relax the structure.

films. To study the effect of strain on the atomic structures
and electronic properties of Bi2Se3 and Bi2Te3, we imposed
different in-plane and uniaxial strains to the bulk material.
The strain is defined by η = (αstrain/α0 − 1) × 100%, where
αstrain is the lattice constant of the strained state, and α0 is the
optimized lattice constant of the unstrained bulk material. α is
the in-plane lattice constant and out-of-plane lattice constant
for in-plane strain and uniaxial strain, respectively. In our
calculation, a uniform in-plane strain from − 3 to 3% is applied
to Bi2Se3 and Bi2Te3 bulk and two-QL thin films. For the
bulk material, the effect of uniaxial strain from − 6 to 6%
is also investigated. To predict the strained structures in the
bulk, we start by constraining the in-plane (or out-of-plane)
lattice constants to the strained state and then relaxing the
lattice constant along the c axis (or uniformly in-plane), as well
as the internal coordinates, with the vdW-DFC09

x functional.
Once we obtain the optimized atomic structures, we compute
the electronic properties using PBE + SOC.

With the in-plane strain changing from 3 to −3%, we
find that the out-of-plane lattice constants of the relaxed bulk
structures increase approximately linearly, with a slope of
0.342 Å (1.2% of out-of-plane lattice constant) and 0.353 Å
(1.17% of out-of-plane lattice constant) per unit decrease in
percentage in-plane strain, for Bi2Se3 and Bi2Te3, respectively.
For uniaxial strain changing from 6 to −6%, a similar
linear relationship was found, with the slope of 0.008 Å

(0.19% of in-plane lattice constant) and 0.012 Å (0.27%
of in-plane lattice constant) per unit decrease in percentage
uniaxial strain for Bi2Se3 and Bi2Te3, respectively. These
results show that the out-of-plane lattice constant is strongly
coupled with the in-plane lattice constant when the structures
are optimized under different strain. The different percentage
changes suggest strong anisotropy in the elastic properties of
these layered materials. Although the overall band structures
of the strained systems are similar to those of the unstrained
ones, the band structure near the Fermi level is influenced
by the applied strains, resulting in significant changes in the
bandgaps. Figure 5(a) shows the evolution of bandgap as a
function of the in-plane strain for bulk Bi2Se3 and Bi2Te3.
Focusing on the vdW-DFC09

x relaxed structures, we note
that the energy gap increased from 0.07 to 0.16 eV for bulk
Bi2Te3, when the in-plane strain changed from 3 to −3%. For
vdW-DFC09

x optimized bulk Bi2Se3, the bandgap in general
increases from extensive to compressive strain [from 0.25 eV
(3.2% strain)] to 0.33 eV (−1.8% strain). However, further
increase in compressive strain to − 2.8% reduces the bandgap
(here, the k point for the valence-band maximum shifts from
its original location near the Z symmetry point to the shoulder
of the M shape band near the � high-symmetry point). To
illustrate the importance of vdW interactions, we relaxed the
structures with both vdW-DFC09

x and PBE + SOC functionals
and then calculated the electronic structures with PBE + SOC.
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The bandgaps for the PBE + SOC optimized bulk Bi2Te3

are similar to those for the vdW-DFC09
x relaxed structures.

However, the bandgaps obtained for PBE + SOC optimized
bulk Bi2Se3 are significantly different. These results are
consistent with the fact that PBE + SOC overestimates deqm

by 28% in bulk Bi2Se3, but by only 4.7% in bulk Bi2Te3.
Moving now to the two-QL thin films, optimized using

vdW-DFC09
x , we note that the optimized in-plane lattice con-

stants are smaller than the bulk—about 0.3 and 1.0% smaller
for Bi2Te3 and Bi2Se3, respectively. However, the equilibrium
inter-QL distances (deqm is 2.589 Å for Bi2Se3 and 2.595 Å
for Bi2Te3 in the fully relaxed two-QL thin films) are similar
to those obtained in Fig. 2. The bandgap for two-QL films is
smaller than that for the bulk, because the bandgap in two-QL
films is determined by interactions between metallic surface
states on both sides of the film. As observed for the bulk,
the bandgap for the two-QL films increases with compressive
strain and decreases with tensile strain, with the exception
of Bi2Te3 thin films, where there is a very small decrease in
bandgap at −3% compressive strain [Fig. 5(b)]. Further, the
Bi2Se3 and Bi2Te3 thin films become metallic when the tensile
strain is larger than 3 and 1%, respectively. We note that in
this case, using the PBE + SOC relaxed structures results in
bandgaps that are about twice as large or more, although the
general trend of how the bandgap evolves with strain are con-
sistent with those for the vdW-DFC09

x optimized structures.
It should be noted that in both the thin films and bulk

material, the bandgap is indirect. The direct bandgap at the �

point is an important issue for topological insulators, because
of the Dirac cones at � for the thin films. Figures 5(c) and 5(d)
show the bandgaps at � for both the bulk and the two-QL thin
film. We note that Bi2Se3 has a smaller direct bandgap at �

than Bi2Te3 but has a larger indirect bandgap; this explains why
Bi2Se3 is more widely studied for its potential applications as
a topological insulator, where it is important to distinguish
metallic surface-state carriers from intrinsic bulk carriers.
Except for Bi2Se3 two-QL films, the direct bandgap at � tends
to decrease from extensive to compressive strain. Predictions
using PBE + SOC relaxed structures result in similar trends
for Bi2Te3 but not for Bi2Se3.

We note that Young et al. has investigated the evolution
of the topological phase of bulk Bi2Se3 under mechanical
strain,28 using regression fits to obtain bandgap stress and
stiffness tensors (the linear and quadratic coefficients relating
the �-point bandgap to strain). From these tensors, it was
predicted that the topological phase transition will occur at
6.4% uniaxial strain in the out-of-plane direction, relative to
the experimental structure. Here, we apply uniaxial strains
on bulk Bi2Se3 and Bi2Te3, in each case fully optimizing
the internal coordinates and in-plane lattice constants using
the vdW-DFC09

x functional. In contrast to the case of in-
plane strain, which affects the out-of-plane lattice constant
significantly, out-of-plane uniaxial strain has much less effect
on the in-plane lattice constant. In general, the gaps decrease
with increasing tensile uniaxial strain [Fig. 6(a)], and there
is no clear quadratic or linear relation of the uniaxial strain
at �-point bandgap in Bi2Se3. Our calculations also predict a
topological phase transition (closing of �-point bandgap) at
6% uniaxial strain for Bi2Se3 [Fig. 6(b)], which interestingly,
is approximately consistent with the prediction by Young et al.

FIG. 6. (Color online) (a) Direct bandgap at � point as a function
of uniaxial strain in bulk Bi2Se3 and Bi2Te3. (b) The topological phase
transition at 6% uniaxial stain for Bi2Se3.

Finally, we note that the �-point bandgap is more sensitive to
uniaxial strain than the indirect bandgap.

To assess the practical feasibility of strain engineering, we
compare the strain energy (the energy differences between
the strained states and their corresponding unstrained coun-
terparts) with the vdW interaction energy. The strain energy
is hundredths of electron volts per unit cell, and even at
3% in-plane strain or 6% uniaxial strain, is still less than
0.1 eV/unit cell. This is quite small compared to the vdW
inter-QL interaction energy of about 0.20–0.25 eV/unit cell
(Fig. 2), indicating that these layered compounds are likely to
be able to withstand such strains without surface exfoliation,
the prospects of using strain (e.g., via MEMS) to engineer their
bandgaps are promising.

E. Thermoelectric properties

As mentioned before, Bi2Te3 and Bi2Se3 are traditional
thermoelectric materials that can generate electricity from
waste heat once a temperature gradient exists.46,72–74 The
thermoelectric performance is quantified by the figure of merit,
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FIG. 7. (Color online) (a) and (b) The Seebeck coefficient S of vdW-DFC09
x optimized, bulk (a) Bi2Te3 and (b) Bi2Se3 as a function of

dopant concentrations, with different in-plane strains. (c) and (d) For comparison, the results based on the PBE + SOC relaxed structure are
shown in (c) and (d) for Bi2Te3 and Bi2Se3, respectively. Please note that the scales are different for the different panels.

ZT , where T is the temperature and Z is defined by3

Z = S2σ

(κe + kL)
, (2)

and S is the Seebeck coefficient, σ the electronic conductivity,
and κe and kL are the electronic and lattice thermal conduc-
tivities, respectively. S2σ is also known as the power factor.
Superlattice materials based on Bi2Te3 have resulted in high
ZT values >1.3 A higher ZT can be obtained by increasing
the power factor and decreasing the thermal conductivity.75

In the following, we shall focus on analyzing the effect of
strain on the power factor and the Seebeck coefficient, which
can be computed within the linear response regime in the
semiclassical Boltzmann framework,45 as

σ ≡ q2L0 (3)

S = kB

q

L1

L0
(4)

with

Lj =
∫ ∞

−∞
−∂f0

∂E
D(E)v2τ

(
E − μ

kBT

)j

dE,

where q is the charge of carriers, f0 is the Fermi distribution
function of electrons, v is the Fermi velocity, τ is the relaxation
time, μ is the chemical potential, and D(E) is the density of

states. Using a constant relaxation-time approximation, the
Seebeck coefficient can be completely determined from the
band structure.

We note that several scholars have done some pioneering
thermoelectric studies on related materials, using PBE + SOC
optimized structures or experimental structures.36,44 It was
shown that the semiclassical Boltzmann transport method
within the relaxation-time approximation can predict thermo-
electric properties of unstrained Bi2Te3, in good agreement
with experiment.44 Furthermore, it was predicted that strain
engineering can increase the power factor in Sb2Te3.36,38

More recently, studies on Bi and Sb tellurides show that the
lattice constants and volume expansion have an important
influence on the temperature behavior of Seebeck coefficient,76

and strain can also play an important role in the anisotropy
of electrical conductivity and Seebeck coefficient.77 Since
most of these studies are carried out in WEIN2k using the
semiclassical Boltzmann transport method,45 for the sake
of comparison, we use the same method (and the same,
tested parameters from the literature44) for calculation of
thermoelectric properties.78

We study the effect of in-plane and out-of-plane strain
on the in-plane Seebeck coefficient and power factor of bulk
Bi2Se3 and Bi2Te3 under n- and p-type doping, and at different
temperatures, using the vdW-DFC09

x optimized structures.
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FIG. 8. (Color online) Seebeck coefficient S of Bi2Te3 and Bi2Se3 under various strained states and both p-type doping and n-type doping
are shown. The doping level is fixed to 1019cm−3. Please note that the scales are different for different panels.

(The out-of-plane conductivity is very low, thus resulting in
very small out-of-plane power factors.) We find that in-plane
compressive strain can significantly improve the Seebeck
coefficient and power factor of Bi2Te3 (by as much as two
times), while effects on Bi2Se3 are less significant. Overall,
Bi2Te3 has a power factor that is an order of magnitude larger
than that of Bi2Se3, even in the unstrained state; therefore,
these results are significant for further enhancing the ZT of
this excellent thermoelectric material. In contrast, we find that
uniaxial strain does not improve the power factor of Bi2Te3.
For Bi2Se3, the power factor can be increased by compressive
uniaxial strain in the case of n doping and by 6% uniaxial
tensile strain in the case of p doping.

Figure 7 shows the calculated in-plane Seebeck coefficient
S at 300 K for both n-type and p-type doping as a function of
carrier concentration. As the electron concentration increases,
the Fermi level is shifted higher into the conduction band,
resulting in less asymmetry between electrons and holes,
therefore reducing the n-type Seebeck coefficient. Similar
arguments can be made for p-doped systems. Focusing on
the vdW-DFC09

x relaxed structures [Figs. 7(a) and 7(b)], we
see that the Seebeck coefficient of p-doped Bi2Te3 can be
increased by 2% tensile strain for hole concentrations of
1019 − 1021 cm−3 and by 2% compressive strain for hole
concentrations of 1017 − 1019 cm−3. On the other hand, 2%
compressive strain can increase the magnitude of S in n-doped

Bi2Te3 for all dopant concentrations studied, while 2% tensile
strain reduces the magnitude of S. This trend is consistent
with the increase in bandgap from tensile to compressive
strain in Bi2Te3, as well as to the steeper slope of conductivity
versus energy [as can be inferred from Fig. 9(b)]. For p-doped
Bi2Se3, the overall Seebeck coefficient is significantly higher
than Bi2Te3 due to the steeper variation of the density of
states in the valence bands,46 and the effect of strain on
the improvement of Seebeck coefficient for Bi2Se3 is less
obvious. However, 2% tensile strain can increase the mag-
nitude of S in n-doped Bi2Se3 for electron concentrations of
2 × 1018 cm−3 − 1020 cm−3. For comparison, we have also
computed the thermoelectric properties of corresponding
PBE + SOC optimized structures. The predicted thermoelec-
tric properties can be qualitatively different, as shown in
Figs. 7(c) and 7(d), therefore underscoring the importance of
vdW interactions in structural optimization and in predicting
the effects of strain on electronic and thermoelectric properties.
In the following, we focus on vdW-DFC09

x relaxed structures.
Figure 8 depicts the temperature dependence of the Seebeck

coefficient S under different in-plane strains, with the carrier
concentration fixed to 1019cm−3. Figure 8(a) shows that
compressive strain can increase the Seebeck coefficient of
p-doped Bi2Te3 when the temperature is higher than 350 K,
and the peak value can be shifted from 300 to 400 K when a 3%
compressive strain is applied. This result is very similar to the
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FIG. 9. (Color online) The conductivity, Seebeck coefficient and power factor of (a) Bi2Se3 and (b) Bi2Te3 under different in-plane strains.
Negative-carrier concentrations denote electron doping. The power factor of Bi2Se3 is an order of magnitude smaller than that of Bi2Te3,
because of its much smaller conductivity.

prediction of Ref. 76, in which the authors changed the lattice
constants of Bi2Te3 to that of Sb2Te3 to model a compressive
in-plane strain. Overall, the strain does not improve the p-type
Seebeck coefficient of Bi2Se3, except for a small enhancement
at temperatures higher than 500 K [Fig. 8(b)]. As noted before,
the p-type Seebeck coefficient, in general, is larger in Bi2Se3

than in Bi2Te3, reaching about 400 μV/K at 350 K.
On the other hand, compressive strain increases the

magnitude of the Seebeck coefficient in n-doped Bi2Te3 for
all temperatures considered here, and the maximum of the
Seebeck coefficient is shifted to higher temperature with
larger compressive strain [Fig. 8(c)]. Most notably, under 3%
compressive strain, the magnitude of the Seebeck coefficient
reaches a maximum of 305 μV/K at 350 K, roughly 45%
higher than that of unstrained Bi2Te3 (210 μV/K) at the
same temperature. For n-doped Bi2Se3, compressive strains
instead reduce the magnitude of the Seebeck coefficient,
but tensile strain increases this magnitude for temperatures
less than ∼500 K [Fig. 8(d)]. Furthermore, the maximum
magnitude of the Seebeck coefficient is shifted to lower
temperatures at larger tensile strains. A maximum magnitude
of 256 μV/K is achieved in the Seebeck coefficient of
Bi2Se3 under 1% tensile strain, 13% larger than the maximum
magnitude in the unstrained system. It is interesting to note
that under 2% tensile strain, the maximum magnitude of
Seebeck coefficient of n-type Bi2Se3 (252 μV/K) is at about
350 K, the same temperature where n-type Bi2Te3 has the
largest Seebeck coefficient under 3% compressive strain.
Since the in-plane lattice constant of Bi2Se3 is about 5%

smaller than that of Bi2Te3, it is possible that in a superlattice
structure, the tensile strain in Bi2Se3 and compressive strain
on Bi2Te3 result in a larger Seebeck coefficient. Together
with the reduced lattice thermal conductivity in a superlat-
tice structure, this may greatly improve the thermoelectric
performance.

The electrical conductivity σ can be readily calculated
within the constant relaxation-time approximation given an
estimate for the relaxation time τ . In practice, we can
estimate τ by comparing our computed values of σ/τ and
S for unstrained systems, with experimentally74,79 measured
values of σ and S at the same temperature (300 K), as
described in Ref. 44. In this way, in-plane relaxation times
of 2.2 × 10−14 s and 2.7 × 10−15s are derived for Bi2Te3

and Bi2Se3, respectively. In Ref. 44, it was shown that this
derived relaxation time for Bi2Te3 gives good agreement
with experiment for different doping concentrations; here, we
further assume that the relaxation time is independent of strain,
as is also assumed by other authors.37

The resulting conductivities and power factors (at 300 K)
are plotted in Fig. 9 for different in-plane strains (positive- and
negative-carrier concentrations denote the p-type and n-type
doping, respectively). The conductivity of Bi2Te3 is 20 times
larger than that of Bi2Se3; this is consistent with the physical
picture that Bi2Te3 has a smaller bandgap. Strain has a signifi-
cantly larger effect on the conductivity of Bi2Te3 than Bi2Se3.
Tensile strain increases the conductivity while compressive
strain decreases the conductivity in Bi2Te3, for both p-type
and n-type doping, an observation that is consistent with the
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FIG. 10. (Color online) The conductivity, Seebeck coefficient and power factor of (a) Bi2Se3 and (b) Bi2Te3 under different uniaxial strains.
Negative-carrier concentrations denote electron doping.

increase in bandgap from tensile to compressive strain. The
Seebeck coefficient is related with the conductivity and the
electron-hole asymmetry. When E − μ � kBT , Eq. (2) can
be expressed in the Mott formulas,80

S =
(

π2k2
BT

3eσ

)
dσ

dE

∣∣∣∣
E=EF

= π2k2
BT

3e

d ln σ

dE

∣∣∣∣
E=EF

. (5)

Therefore, we can understand the Seebeck coefficient
from the energy derivative of the log-scale conductivity.
By comparing the conductivity and Seebeck coefficients in
Figs. 9(a) and 9(b), we find that qualitatively, the carrier
concentration can be used as an approximate proxy for the
energy scale—the Seebeck coefficient is larger when the slope
of the conductivity curve is steeper. This is also consistent
with the increased Seebeck coefficients with compressive
strain for Bi2Te3. We further note that although the Seebeck
coefficient of Bi2Se3 is in general larger than that of Bi2Te3,
under compressive strain, the n-type Seebeck coefficient of
Bi2Te3 can surpass that of Bi2Se3. This large enhancement
in n-type Seebeck coefficient of Bi2Te3 with compressive
strain is in agreement with Ref. 77. Finally, we computed
the power factor for Bi2Se3 and Bi2Te3 under different strain
states. The power factor for Bi2Te3 is one order of magnitude
larger than that for Bi2Se3, due to the much larger conductivity
in Bi2Te3. Although the compressive strains can reduce the
electron conductivity of n-type Bi2Te3, it will also increase its
Seebeck coefficient. The larger enhancement of the Seebeck
coefficient makes it possible to compensate the reduction
of conductivity, resulting in an enhancement of the n-type
power factor for Bi2Te3, under compressive in-plane strain.

This result is different from that in Ref. 77—the discrepancy
may come from the different methods for imposing strain (in
Ref. 77, the strain is imposed by setting the in-plane and
out-of-plane lattice constants of Bi2Te3 to that of Sb2Te3,
without relaxing the internal coordinates).

Finally, we show in Fig. 10 the thermoelectric properties
of Bi2Se3 and Bi2Te3 under uniaxial strain. In contrast to
the case for in-plane strain, tensile uniaxial strain decreases
the conductivity, and compressive uniaxial strain increases the
conductivity for Bi2Te3, while tensile uniaxial strain increases
Seebeck coefficient slightly, and compressive strain decreases
Seebeck coefficient. Unlike the case of in-plane strain, these
opposite effects on Seebeck coefficient and conductivity result
in no enhancement of the power factor for Bi2Te3 under
compressive uniaxial strain. Uniaxial strain can be used to
enhance the power factor of Bi2Se3, however, compressive
strain enhances the n-type power factor because of an increased
magnitude of Seebeck coefficient (the power factor more than
doubles under compressive uniaxial strain of 4–6%, for doping
concentrations between 1019 and 1020 cm−3), while 2% com-
pressive uniaxial strain can enhance the p-type power factor.

IV. CONCLUSION

In summary, we have performed a comprehensive inves-
tigation of the effects of strain on the atomic, electronic,
and thermoelectric properties of Bi2Se3 and Bi2Te3, taking
into account the vdW interlayer interactions using the vdW-
DFC09

x functional. Our optimized, unstrained structures are
in much closer agreement with the experimental structure
from Nakajima (determined by x-ray diffraction) than with
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that from Wyckoff (determined by electron diffraction).58,59

Importantly, the two experimental structures have qualitatively
different band structures on Bi2Se3—previously published
photoemission results61 on Bi2Se3 are in good qualitative
agreement with the band structure of vdW-DFC09

x optimized
structure and the Nakajima structure, but not the Wyckoff
structure, and the �-point bandgap for the vdW-DFC09

x

optimized Bi2Se3 thin films closes at four QLs instead of
three QLs, as previously reported using the Wyckoff structure.
We predict that the bandgaps of these materials increase
from tensile to compressive in-plane strain, suggesting that
compressive strain may be used to increase the bulk bandgap
of Bi2Se3, thus making it easier to distinguish the metallic
topological surface state from intrinsic bulk carriers. We also
confirm that a topological phase transition can occur in Bi2Se3

at 6% uniaxial strain, as predicted by Young et al.28 Strain
can also be used to tune the thermoelectric properties of these
materials: the n-type Seebeck coefficient of Bi2Te3 can be
increased by compressive in-plane strain while that of Bi2Se3

can be increased with tensile in-plane strain. The power factor

of n-doped Bi2Se3 can be increased with compressive uniaxial
strain while that of n-doped Bi2Te3 can be increased by
compressive in-plane strain. Finally, we have compared the
properties of structures optimized using different functionals
and found that taking into account vdW interactions is crucial
for the predictions of electronic and thermoelectric properties
of strained structures, while spin-orbit interactions are less
important for structure determination. In contrast, calculations
on phonon frequencies suggest that SOC is important for
accurate predictions of frequencies, while it is unclear if vdW
methods, as currently implemented, contribute to accurate
predictions of frequencies.
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V. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis,
L. Kong, and S. Li, J. Phys.: Condens. Matter 21, 084203
(2009).

23V. R. Cooper, Phys. Rev. B 81, 161104 (2010).
24S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys.: Condens. Matter

9, 461 (1997).
25P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 61,

8162 (2000).
26P. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and

C. G. Olson, Phys. Rev. B 65, 085108 (2002).
27G. Wang and T. Cagin, Phys. Rev. B 76, 075201 (2007).
28S. M. Young, S. Chowdhury, E. J. Walter, E. J. Mele, C. L. Kane,

and A. M. Rappe, Phys. Rev. B 84, 085106 (2011).
29N. F. Hinsche, B. Y. Yavorsky, I. Mertig, and P. Zahn, Phys. Rev. B

84, 165214 (2011).
30W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys.

12, 065013 (2010).
31Y. Zhao, Y. Hu, L. Liu, Y. Zhu, and H. Guo, Nano Lett. 11, 2088

(2011).
32H. Chen, W. Zhu, D. Xiao, and Z. Zhang, Phys. Rev. Lett. 107,

056804 (2011).
33M. Ye, S. V. Eremeev, K. Kuroda, M. Nakatake, S. Kim, Y. Yamada,

E. E. Krasovskii, E. V. Chulkov, M. Arita, and H. Miyahara, e-print
arXiv:1112.5869 (unpublished).

34C. Brune, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann,
Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp,
Phys. Rev. Lett. 106, 126803 (2011).

35J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q.
Liu, S. M. Feng, X. C. Wang, R. C. Yu, and L. Z. Cao, Proc. Natl.
Acad. Sci. USA 108, 24 (2011).

184111-14

http://dx.doi.org/10.1038/nmat3013
http://dx.doi.org/10.1038/nnano.2008.417
http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.107.086802
http://dx.doi.org/10.1103/PhysRevLett.107.177602
http://dx.doi.org/10.1103/PhysRevLett.107.177602
http://dx.doi.org/10.1103/PhysRevLett.105.266806
http://dx.doi.org/10.1103/PhysRevLett.105.266806
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140432
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140432
http://dx.doi.org/10.1103/PhysRevLett.105.166603
http://dx.doi.org/10.1103/PhysRevLett.105.166603
http://dx.doi.org/10.1063/1.3269802
http://dx.doi.org/10.1002/poc.1606
http://dx.doi.org/10.1002/poc.1606
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1103/PhysRevLett.92.246401
http://dx.doi.org/10.1103/PhysRevB.76.125112
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1088/0953-8984/21/8/084203
http://dx.doi.org/10.1088/0953-8984/21/8/084203
http://dx.doi.org/10.1103/PhysRevB.81.161104
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1103/PhysRevB.61.8162
http://dx.doi.org/10.1103/PhysRevB.61.8162
http://dx.doi.org/10.1103/PhysRevB.65.085108
http://dx.doi.org/10.1103/PhysRevB.76.075201
http://dx.doi.org/10.1103/PhysRevB.84.085106
http://dx.doi.org/10.1103/PhysRevB.84.165214
http://dx.doi.org/10.1103/PhysRevB.84.165214
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1021/nl200584f
http://dx.doi.org/10.1021/nl200584f
http://dx.doi.org/10.1103/PhysRevLett.107.056804
http://dx.doi.org/10.1103/PhysRevLett.107.056804
http://arXiv.org/abs/arXiv:1112.5869
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1073/pnas.1014085108
http://dx.doi.org/10.1073/pnas.1014085108


FIRST-PRINCIPLES INVESTIGATIONS OF THE . . . PHYSICAL REVIEW B 86, 184111 (2012)

36T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and
G. D. Mahan, Phys. Rev. B 68, 085201 (2003).

37T. Thonhauser, G. S. Jeon, G. D. Mahan, and J. O. Sofo, Phys. Rev.
B 68, 205207 (2003).

38T. Thonhauser, Solid State Commun. 129, 249 (2004).
39M. T. Alam, M. P. Manoharan, M. A. Haque, C. Muratore, and

A. Voevodin, J. Micromech. Microeng. 22, 045001 (2012).
40X. Li, K. Maute, M. L. Dunn, and R. Yang, Phys. Rev. B 81, 245318

(2010).
41A. Dal Corso and A. Mosca Conte, Phys. Rev. B 71, 115106 (2005).
42M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, J.

Appl. Phys. 94, 1079 (2003).
43J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
44T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser,

J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
45G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175,

67 (2006).
46D. Parker and D. J. Singh, Phys. Rev. X 1, 021005 (2011).
47P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys.

Commun. 59, 399 (1990).
48B. R. Nag, Electron Transport in Compound Semiconductors

(Springer-Verlag, Berlin, 1980).
49A. H. MacDonald, W. E. Picket, and D. D. Koelling, J. Phys. C 13,

2675 (1980).
50J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
51S. Grimme, J. Comput. Chem. 27, 1787 (2006).
52V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and

A. Vittadini, J. Comput. Chem. 30, 934 (2009).
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J. González, A. Segura, A. Muñoz, P. Rodrı́guez-Hernández,
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