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Purpose: To develop and evaluate a novel method for pseudo-CT generation from 

multi-parametric MR images using multi-channel multi-path generative adversarial network 

(MCMP-GAN). 

Methods: Pre- and post-contrast T1-weighted (T1-w), T2-weighted (T2-w) MRI, and treatment 

planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a 

pixel-to-pixel MCMP-GAN. The network was developed based on a 5-level Residual U-Net 

(ResUNet) with the channel-based independent feature extraction network to generate pseudo-CT 

images from multi-parametric MR images. The discriminator with 5 convolutional layers was 

added to distinguish between the real CT and pseudo-CT images, improving the non-linearity and 

prediction accuracy of the model. Eight-fold cross-validation was implemented to validate the 

proposed MCMP-GAN. The pseudo-CT images were evaluated against the corresponding 

planning CT images based on mean absolute error (MAE), peak signal-to-noise ratio (PSNR), 

Dice similarity coefficient (DSC) and Structural similarity index (SSIM). Similar comparisons 

were also performed against the multi-channel single-path GAN (MCSP-GAN), the single-channel 

single-path GAN (SCSP-GAN).  

Results: It took approximately 20 hours to train the MCMP-GAN model on a Quadro P6000, 

and less than 10 seconds to generate all pseudo-CT images for the subjects in the test set. The 

average head MAE between pseudo-CT and planning CT was 75.714.6 Hounsfield Unit (HU) for 

MCMP-GAN, significantly (p-values<0.05) lower than that for MCSP-GAN (79.213.0 HU) and 

SCSP-GAN (85.814.3 HU). For bone only, the MCMP-GAN yielded a smaller mean MAE 

(194.638.9 HU) than MCSP-GAN (203.733.1 HU), SCSP-GAN (227.036.7 HU). The average 

PSNR of MCMP-GAN (29.11.6) was found higher than that of MCSP-GAN (28.81.2) and 

SCSP-GAN (28.21.3). In terms of metrics for image similarity, MCMP-GAN achieved the 

highest SSIM (0.92±0.02) but did not show significantly improved bone DSC results in 

comparison with MCSP-GAN.   

Conclusions: We developed a novel multi-channel GAN approach for generating pseudo-CT 

from multi-parametric MR images. Our preliminary results in NPC patients showed that the A
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MCMP-GAN method performed apparently superior to the UNet-GAN and SCSP-GAN, and 

slightly better than MCSP-GAN.

Keywords: deep learning, multi-parametric MRI, pseudo-CT, radiation therapy, nasopharyngeal 

carcinoma
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Introduction

Magnetic Resonance Imaging (MRI)-only radiotherapy is an emerging technology in which all 

radiotherapy tasks are carried out using MRI as the sole imaging modality1, 2. MRI-only 

radiotherapy can decrease the number of scans, reduce overall cost3 and minimize patient exposure 

to ionizing radiation. Furthermore, MRI offers excellent soft tissue contrast, improving tumor 

visualization as compared to computed tomography (CT) images4, 5. More and more evidences 

showed that the accurate delineation in MRI-guided radiotherapy could provide better results in 

the treatment planning, including improved dosimetry, in multiple cases of cancers6. One of the 

key challenges in MRI-only radiotherapy is that MR images do not contain information about 

tissue electron density which is crucial for radiation dose calculation. To overcome this challenge, 

MR images need to be converted to CT images for the purpose of radiation dose calculation, 

so-called “pseudo-CT”, or “synthetic-CT”. To date, a number of methods have been proposed for 

CT synthesis, which can be generally classified into three categories2, 4, 7: segmentation-based, 

atlas-based and learning-based methods. 

The segmentation-based method8-14 first classifies MR image voxels into a small number of 

bulk densities (often 3-4 tissue types), and then assigns corresponding CT values to each tissue 

type. In most cases, water equivalent and bony structures were segmented, while other types were 

dependent on the purpose and subjects. This method is straightforward, but with prominent 

disadvantages4, 7. For example, the ultra-short echo-time (UTE) MR sequence, which is widely 

used in segmentation-based methods, suffers from long acquisition time. Low signal-to-noise 

(SNR) ratio and partial volume effects can lead to bone segmentation errors15. Manual bone 

segmentation is impractical due to signal void of bone in conventional MRI. 

In the atlas-based method16-20, a database comprising of co-registered CT and MRI is first 

established. Then a new set of MR images is matched to the data atlas via deformable image 

registration7. Finally, the deformation is applied to the corresponding co-registered CT to generate 

the pseudo-CT. The accuracy of the atlas-based method is highly dependent on the registration 

quality in the MR/CT database21. To address it, Burgos et al.19 proposed an iterative multi-atlas A
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framework, combining structure-guided registration and image synthesis to build a high-quality 

database, which actually complicated the workflow. 

The learning-based method directly builds relationship between CT- and MRI-based prior 

knowledge. Some groups15, 22-28 employed conventional machine-learning methods, such as 

Gaussian Mixture Model (GMM), structure random forest (SRF), etc. Recently, deep learning 

methods21, 29-33 have been exploited for pseudo-CT generation, showing superior performance to 

the atlas-based and conventional machine-learning methods21. For instance, Nie et al.33 utilized 

fully convolutional neural network (FCN) as a generator for 3D pseudo-CT and added an 

adversarial network to produce realistic CT images in their work29. The adversarial network 

further improved the model in building the non-linear relationship between these two modalities, 

making the pseudo-CT images more realistic30. Emami et al.30 trained a conditional generative 

adversarial network (cGAN) comprised of residual FCN as the generator and convolutional neural 

network (CNN) as the discriminator to address the issues of performance degradation and gradient 

vanishing in deeper network. Lei et al.34 developed a dense CycleGAN-based model to produce 

pseudo-CT, making use of dense blocks and a novel distance loss function, which were employed 

to capture multi-scale information and resolve the blur and misclassification problems, 

respectively. In general, the deep learning-based methods achieved better performance than the 

atlas-based methods with lower reconstruction errors21 and dosimetric errors4. 

Previous methods mostly utilize a single MRI type as input to generate pseudo-CT. However, 

studies have shown that a single MRI type may be insufficient to accurately distinguish different 

tissue types11. Methods of multi-parametric MR-to-CT conversion have also been demonstrated 

and are typically handled using an early-fusion strategy35, in which the concatenation layer stacks 

the multi-parametric MR images. For instance, Maspero et al.1 utilized multi-contrast 

Dixon-reconstructed MRI as the input and cGAN as the training network for pelvic pseudo-CT 

generation. Leynes et al.36 used multi-parametric MRI patch input in 3D CT synthesis with three 

channels: proton density zero-echo-time image, Dixon fractional fat and water images, 

respectively. This method is straightforward to apply, but has limitations in handling modalities37 

whose complex relationships cannot be simply modelled by the early fusion layer35. Recently, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Chartsias et al.38, 39 proposed a novel multi-input multi-output model, which incorporated the 

modality-invariant latent representation for the retention of modality specific features. The 

max-fusion strategy of the latent representations encoded from the various inputs provided better 

synthetic results than those obtained from the unimodal models. 

Inspired by Chartsias’ work, in this study we developed a novel deep learning model with the 

late-fusion network for better use of the multi-parametric MRI images to generate more realistic 

pseudo-CT images.  Our model is a multi-channel multi-path generative adversarial network, 

labeled as MCMP-GAN. It was developed on the basis of a generative network, characterizing not 

only multi-channel inputs, but also multi-path architecture. To investigate our model, especially 

with regard to the effectiveness of the multi-path strategy, we compared MCMP-GAN to other 

models, including a multi-channel model with the concatenation layer merging the input MRIs 

(i.e., multi-channel single-path GAN, labeled as MCSP-GAN), and a single-channel single-path 

GAN model, labeled as SCSP-GAN. To our best knowledge, our work for the first time 

quantitatively investigated the impact of multi-modal inputs on image quality of pseudo-CT. The 

most common deep learning method to handle multi-parametric MRI thus far is to concatenate the 

MR images at the input, wherein each channel corresponds to each MR image volume. Although 

there exist some multi-input synthesis models35, 38-40, they have not yet been used for pseudo-CT 

application. 

Materials and Methods

Patient data

This study included 32 nasopharyngeal carcinoma (NPC) patients from Queen Elizabeth 

Hospital (QEH) of Hong Kong who had both MR and CT scans for radiotherapy treatment 

planning. Three MRI datasets, pre-contrast T1-weighted (T1-w) MRI, post-contrast T1-w MRI 

with fat-saturation, and T2-weighted (T2-w) MRI, were used as input images for the MCMP-GAN 

model. All MR images were acquired with proper immobilization in a 1.5T clinical MRI scanner 

(Avanto, Siemens, Germany). The T1-w MR images were acquired using the spin echo (SE) MR A
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sequence with the following parameters: repetition time (TR): 562-739 ms; echo time (TE): 13-17 

ms; matrix: 256-320; slice-thickness: 3.3-4.0 mm; voxel size 0.75-0.94 mm. The T2-w MR images 

were acquired using the short tau inversion recovery (STIR) MR sequence with the following 

parameters: TR: 7640 ms; TE: 97 ms; inversion time (TI): 165 ms; matrix: 320; slice-thickness: 

4.0 mm; voxel size 0.75 mm. The CT images were performed on a Brilliance Big Bore (Philips, 

USA) scanner with the following parameters: tube current: mostly 264 mA, tube voltage: 120 kVp, 

slice thickness: 3 mm and pixel spacing: 1.0-1.2 mm.

MR and CT images were acquired within the same day. The MR/CT pairs were co-registered 

using the affine registration algorithm in MIM Maestro (MIM Software Inc., Beachwood, OH, 

USA). All MR and CT images were resampled to an isotropic voxel of 1.01.01.2 mm3 and 

cropped to 240192 before further preprocessing. A binary head mask excluding outer air was 

extracted from CT images via thresholding and Canny edge detection for each patient and was 

used in model training. All MR images were corrected for signal inhomogeneity using a N4 bias 

correction algorithm41 and then normalized using a histogram-matching technique42. The standard 

intensity space was determined by the MRI fed to the standardization model. If new MR images 

were inputted, the model could map them to the same scale42. The pre-set parameters, such as 

cutoff values and landmark locations, were all set to the default values as in Github 

(https://github.com/loli/medpy). In CT images, regions outside the masks were set to -1000 HU.

Network architecture

Figure 1 shows the architecture of the proposed MCMP-GAN. The input layer includes three 

channels, corresponding to three input MR images respectively. The generative network was built 

based on the U-Net proposed by Ronneberger et al.43, consisting of a contracting path and an 

expanding path. The contracting path is split into three training paths, wherein each channel has its 

own feature extraction network. These independent encoding paths were designed to separately 

extract the image characteristics from each input MRI dataset and to avoid the loss of unique 

features that otherwise would be merged in the low level. Despite the independent encoding paths 

for each input MRI dataset, the entire network was trained simultaneously. In the decoder, the A
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outputs of each residual block are concatenated to the feature maps within the same depth level 

from the encoder via long skip connections. The extra feature maps copied from each encoding 

path make it easier for the extending path to recover the image information which is lost during 

the down-sampling.

Furthermore, the skip connections rendered the network more flexible21, i.e., the network 

could skip the coarse features from high level if the fine features were sufficient to generate 

high-quality images. Instead of the regular convolutional block, the residual convolutional block 

was used in the MCMP-GAN. The residual blocks prevented performance degradation and 

gradient vanishing when the neural network was very deep44. The identity maps, where 2D 

convolution with a kernel size of 11 was used to adjust the number of filters, added the block 

input to the output. Each residual block contained two convolutional layers with a kernel size of 

33, both of which were batch normalized46 and activated by ReLU. Unlike some UNet-like 

architectures, the max-pooling layers were replaced by the convolutional layers with strides of 2, 

which avoided the excessive loss of information, achieving a better performance, especially in the 

deep convolutional GAN (DCGAN)47. The structures of each encoding path were the same. While 

in the extending path, each residual block had a 33 kernel following a 55 kernel with a dilation 

rate of 2 which amplified the receptive field on the concatenated features. In the final layer, a 11 

convolutional layer was used to project the feature maps to the corresponding CT images. 

The detailed parameters and output size of each step are shown in Table 1. “3” means the 

total number of feature extraction networks which were trained independently along each 

encoding path. Additionally, Dropout layers48 were added as an option in the residual blocks to 

prevent overfitting and improve performance in the validation. The dropout ratio was set to the 

default value of 0.5. 

The discriminator consists of four convolutional layers with a kernel size of 55 and strides 

of 2, followed by batch-normalization layers and ‘LeakyReLU’49 (alpha=0.2) activation layers 

(see details in Table 2). The derivative of ‘LeakyReLU’ in the negative part is a small fraction, 

unlike ‘ReLU’ which is zero. The final layer is a 33 convolutional layer with only one filter. The 

output of the discriminator is the validity of the input CT images. The discriminator is real A
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(validity=1) for planning CT and is fake (validity=0) for generated CT. The benefits of the 

adversarial network have been shown by Emami30, Nie29 and Ledig50, which can be summarized 

as follows: (1) it prevents the generated images from blurring and preserve better details, 

especially for edge features; (2) the accuracy of pseudo-CT within bone regions is increased; and 

(3) the discriminator detects patch features in both real and fake images, mitigating 

mis-registration problem caused by the imperfect alignment between the multi-parametric MRI 

and CT. 

Implementation details

The proposed model was implemented in Keras (https://github.com/fchollet/keras). The loss 

function was similar to that of least square GAN (LSGAN) which has been shown better than the 

cross-entropy loss function by providing better image quality and performing more consistently 51. 

The objective function is defined as below: 

The generator loss is 

2
~ ( ) ~ P ( ),x ~ P 1min (G) [(D(G(z)) 1) ] || G1

2
(z) ||

G G dataG z P z z zL E xE                   (1)

and the discriminator loss is

2 2
~ z ~ (z)min (D) [(D(x) 1)1 ] [(D(G(z)) 0 ]

2
)1

2data GD x P PL E E                     (2)

where G is the generator, D is the discriminator, and z is the input of the generative network, 

sampled from the probability distribution of the MR data (PG). G(z) is the generated output, and x 

is the reference output of the G, sampled from the probability distribution of the CT data (Pdata). 

LS loss prevents blurring of the images, but may lead to sharped images and introduce artifacts52, 

53. L1 reconstruction loss helps to produce more realistic images with less artifacts. The weighting 

factor ( ) measuring the significance of reconstruction error was set to 10.λ

The optimization used in our model was Adam54 with the learning rate of 2e-4 and momentum 

term (β1) of 0.5. It stabilizes training in the learning process47. The stochastic optimization method 

randomly selects the subsets from the training data and updates the parameters, so-called 

mini-batch. Batch size of 5 was used for training in our study. The weight initiators were randomly A
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sampled from a truncated normal distribution55 centered at 0 with the standard deviation of 

 (fanin and fanout are the number of input units and output units in the weight 2/(fanin + fanout)

tensor, respectively). The initial biases were set to “zero”. To avoid overfitting, we used early 

stopping at the end of the learning process. Before training, data augmentation was performed 

artificially. The samples from the training set were randomly selected to flip horizontally and 

vertically, or rotate in some certain angles. Eight-fold cross validation was implemented, where 

each group had 4 subjects. At each validation fold, seven groups (28 patients) were used for 

training the model and the remaining group (4 patients) was used for validation. 

Evaluation metrics

Performance of MCMP-GAN was evaluated by comparing the generated pseudo-CT images 

against the planning CT images (as references) to determine the mean absolute error (MAE), peak 

signal-to-noise ratio (PSNR), Dice similarity coefficient (DSC), and structure similarity index 

(SSIM). MAE is defined as: 

        
1 | CT |A real pseudoCTMAE
a

                             (3)

where a is the total number of voxels within the head region that was delineated previously. The 

lower the MAE, the higher the accuracy of the pseudo-CT images. MAE was measured for the 

entire head region, and for the bony structure only. For the latter, a is the total number of voxels of 

bony structure which was segmented using a threshold of 200 HU on the planning CT images. The 

PSNR is defined as: 

 
2

1010 log ( )RPSN
E

R
MS

                                (4)

where MSE is the mean square error, defined as , in which  and MSE =  
∑

Ax,  Ay
 (CTreal ― CTpseudo)2

Ax ⋅ Ay
𝐴𝑥

 are the row and column of the image respectively; R is the maximal fluctuation of the input 𝐴𝑦

image. The larger the PSNR, the lower the reconstruction error. DSC and SSIM are commonly 

used metric for similarity measures and their calculations were performed as usual. Their 

expressions are defined below: A
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                                                   (5)𝐷𝑆𝐶 =
2 × bonereal ∩ bonepseudo

|bonereal| ⋅ |bonepseudo|

                            1 2
2 2 2 2

1 2

(2 C )(2 C )
( C )( C )

x y xy

x y x y

SSIM
  

   
 


   

                        (6)

Where bone with subscript represents the bone segmentation maps with threshold 200 HU 

extracted from real CT and pseudo-CT images respectively. By default, C1 and C2 are expressed as 

, .   C1 = (0.01 ⋅ R)2 C1 = (0.03 ⋅ R)2

Comparison models

To evaluate the MCMP-GAN model, especially to investigate the impact of multi-channel 

input and independent feature extraction network in the contracting path, we also implemented a 

SCSP-GAN model and a MCSP-GAN model for comparison. The SCSP-GAN and MCSP-GAN 

have the optimization method and training strategy as those of MCMP-GAN, with only slight 

differences in architecture as detailed below. The SCSP-GAN was comprised of the single channel 

residual U-Net and 5-layer CNN. The post-contrast T1-w MR images were used as the single input 

to the SCSP-GAN network; and unlike the generator of MCMP-GAN, the single extraction 

network was utilized in the contracting path to capture the image characteristics from high to low 

resolution. The discriminator was the same as that of MCMP-GAN. Both Maspero1 and Emami30 

developed the single channel GAN, which outperformed the regular CNN methods. Here, we 

borrowed their ideas (the elaborate descriptions were shown in Isola et al.53), constructed a model 

with the similar architecture, but incorporated the residual blocks, identical to what we did in the 

MCMP-GAN model.

 The MCSP-GAN model was built based on the architecture of SCSP-GAN. The 

concatenation layer was added between the input layer and the first residual block to stack the 

input multi-parametric MRIs along the channel. In the generative network of MCSP-GAN, the 

images were fused at the input, which meant the information from each type of MR cannot be 

disentangled in the deeper layers. A
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Results

Pseudo-CT images of MCMP-GAN 

Approximately 7000 samples (after data augmentation) were used in the model training. With 

a mini-batch size of 5, it took about 100 epochs for the model to converge, resulting in a model 

training time of 20 hours on a Quadro P6000 workstation. There were approximately 350 images 

in the testing dataset. Once the model was trained, the pseudo-CT images were generated within a 

few seconds. Table 3 summarizes the measurements for all patients. The average MAE was 

75.714.6 HU and the mean PSNR was 29.11.6 for the entire head region. For bony structure 

only, the average MAE was 194.638.9 HU, indicating that the prediction accuracy for the bone is 

still challenging. As respect to image similarity metrics, MCMP-GAN achieved 0.86±0.03 for 

bone DSC and 0.92±0.02 for SSIM.

Figure 2 shows example pseudo-CT images generated using MCMP-GAN, along with the 

multi-parametric input MR images and the reference planning CT images, as well as the difference 

maps between the pseudo-CT and the reference planning CT. It can be seen that the difference 

between the reference planning CT and pseudo-CT was minimal in the soft tissues, but apparent in 

the bone regions, especially at the edges of the bony structure. Large differences were also 

observed at the interface between air and bone, shown in the regions of maxillary sinus, which 

were highlighted in the colored boxes in the fourth row. These large differences were presumably 

caused by the following reasons: (1) CT values in regions between two abut tissue types are 

discrete, not continuous. Neural network may have difficulty to build localized discrete function to 

handle this situation. As a result, large gradient changes may cause errors in these regions. (2) 

There were residual registration errors between MRI and CT images, which caused wrong learning 

models in the imperfectly aligned regions. 

Model comparison
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The average MAE and PSNR were 75.7±14.6 HU and 29.1±1.6 for MCMP-GAN, as 

compared to 85.8±14.3 HU and 28.2±1.3 for SCSP-GAN. Table 4 summarizes the average 

evaluating metrics for all subjects, along with the p-values comparing MCMP-GAN and other 

networks. It can be seen that MCMP-GAN performed slightly better than MCSP-GAN and 

significantly better than SCSP-GAN, yielding the lowest overall and bone MAE and largest 

PSNR.

Figure 3 shows the representative results obtained from MCMP-GAN, and SCSP-GAN 

respectively. The blurs and large errors occurred in the areas with complex details in the 

SCSP-GAN, but decreased in the MCMP-GAN. At the interfaces between bone and tissues, the 

errors of the MCMP-GAN results were slightly smaller than those of the UNet-GAN and 

SCSP-GAN results, while in the air cavities, the MCMP-GAN performed apparently better than 

the other methods. For instance, the ethmoidal sinuses contained fine details, which was a great 

test for the proposed model and others. In the first row, only the pseudo-CT generated via 

MCMP-GAN preserved more details, similar to the real CT. However, the pseudo-CT images 

obtained by SCSP-GAN lost some details and were blurry. Another example was that the obvious 

errors, highlighted in the red circles in the third row, were only found in the pseudo-CTs produced 

by the SCSP-GAN, but were not present in those generated by MCMP-GAN. At the interfaces 

between the maxillary sinuses and surrounding bony structures, the pseudo-CT from MCMP-GAN 

succeeded to depict the borders, but the pseudo-CTs obtained via SCSP-GAN failed, as shown in 

the red and green boxes in the second row. The yellow boxes (2nd row) showed the reconstruction 

of the sphenoid sinus: only the pseudo-CT generated by MCMP-GAN held the comparatively 

complete information. 

The MCSP-GAN yielded the average MAE of 79.213.0 HU and mean PSNR of 28.81.2 

across the entire FOV of head. The quantitative comparison showed that MCMP-GAN performed 

slightly but significantly better than MCSP-GAN with lower MAE (p-values<0.05), higher PSNR 

(p-values<0.05) and higher SSIM (p-values<0.05). For bony structure, the MAE of MCMP-GAN 

was also significantly smaller than that of MCSP-GAN (p-value<0.05). However, the bone DSC 
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didn’t show an improved result in MCMP-GAN, which was probably due to the rough bone 

segmentation maps extracted from the pseudo- and real CT.  

Figure 4 shows the visual comparison of pseudo-CT images obtained via MCMP-GAN and 

MCSP-GAN, and zooms in the marked details below the CT images. The enlarged regions in the 

first row illustrated that the pseudo-CT generated by MCMP-GAN was more similar to the real 

CT in the maxillary sinuses, while the pseudo-CT generated by MCSP-GAN showed large errors 

within and at the border of the sinuses, as shown in the colored boxes. The clear blurs and large 

errors in the petrous temporal bone, enhanced in the red boxes in the second row, occurred in the 

pseudo-CT produced by MCSP-GAN, but did not appear noticeably in the MCMP-GAN output.

Discussion

Pseudo-CT generation is a key component in MR-only radiotherapy treatment planning, and 

has been proven a challenging task due to various reasons including, but not limited to, low signal 

of bony structure and no signal of air cavity in MR images, MR image distortion, image 

misalignment, etc. In this study we demonstrated a novel deep learning-based MCMP-GAN model 

for generating pseudo-CTs from multi-parametric MR images. This is the first work focusing on 

the impact of the multi-channel input on the quality of pseudo-CT images, as well as on using 

independent feature extraction network to produce pseudo-CT images. Our results showed that 

overall MCMP-GAN outperformed other comparing methods: MCSP-GAN, SCSP-GAN, and 

UNet-GAN.

Comparison between MCMP-GAN and MCSP-GAN showed that MCMP-GAN made better 

use of multi-parametric MR images and had higher accuracy in pseudo-CT. Instead of stacking the 

multi-parametric MR images at the input, we trained the independent feature extraction network 

for each encoding path in the contracting path; while in the extending path, the feature maps were 

fused with those in the contracting path in the same depth level, so-called feature fusion. Figure 5 

shows the intermediate convent outputs (output of the level 4 at the encoder). The feature maps 

from each encoding path were clearly different. Based on the similarity of the features extracted A
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from each type of MR, they can be divided into two groups: shared features and independent 

features. The shared features represented the similar images characteristics, which were probably 

more beneficial to the CT synthesis. At the same time, the independent features were still retained, 

increasing the total number of feature maps at each level and further helping recover the spatial 

details of the images during the upsampling. By comparison, if we concatenated MRI at the 

low-level stage, the independent features might be lost at the higher level. Multi-parametric MR 

images included unique and complementary characteristics. Stacking them like handling RGB 

images decreased the utilization of each weighted MRI. Another benefit of our network was a 

more flexible architecture which could handle the data-deficiency issue among the 

multi-parametric MRIs. Assuming that the cases of T1-w MRI and CT were quite abundant while 

those of T2-w MRI and CT were not as rich. In the MCSP-GAN, lots of T1-w images could not be 

used in the training because they did not have the corresponding T2-w images. However, in the 

MCMP-GAN, these T1-w images could serve as the samples in the pre-training stage. In the 

training stage, the pretrained weights in the encoder can be transferred to the T1-w encoding path.

The MCMP-GAN model yielded an overall MAE of 75.714.6 HU, lower than those 

reported by Nie29 (92.513.9HU) and by Emami30 (89.3010.25HU). Nie et al.29 extended the 

generative model to three dimension, which required more GPU memory and computation time. 

Emami et al.30 incorporated ResNet (residual network) into FCN, and achieved exciting results in 

GAN compared to CNN methods. The loss functions in our work and theirs were both the 

combination of the least square loss and reconstruction error. Emami used FCN without long skip 

connections between the feature maps in the contracting path and those in the extending path. 

Instead of the regular ResNet, we constructed the ResUNet, in which the copy layers were added 

to help recover the spatial information. Not only that, the separate feature extraction network at the 

encoder further increased the number of feature maps in the same depth level, improving the 

utilization of multi-channel inputs.

Another progress in pseudo-CT generation was CycleGAN model for MR-to-CT translation 

using unpaired data32. They achieved low MAE of 73.72.3 HU and high PSNR of 32.30.7, and 

demonstrated that the model trained using unpaired data outperformed the model trained using A
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paired data. Considering that this method avoided the misalignment between MR and CT, the 

highly accurate results with less artifacts and blurs were understandable. However, in Jin’s work5, 

they pointed out that the images obtained from CycleGAN using unpaired data had poor 

anatomical definitions compared with those generated from the model trained with paired data. 

Additionally, the voxel-wise loss for paired data played a more significant role in providing the 

realistic images with less blurs. Unquestionably, Wolterink et al. 32 presented very exciting results, 

but it was still hard to prove whether the model using unaligned data was really superior to the 

GAN model on paired data. Extending the CycleGAN model to multi-channel CycleGAN is 

undoubtedly an interesting topic, which can reduce the need for paired data and realize the 

many-to-one or many-to-many mappings. Almahairi et al. 56 proposed the Augmented CycleGAN 

to handle it and examined its feasibility on several image datasets. In future work, we will try to 

introduce the Augmented CycleGAN to the MR-to-CT translation task, in hope of further 

improving the accuracy of generated CT images and strengthening its availability in clinical work. 

In multi-modal segmentation, some papers presented novel networks for the late-fusion 

approaches, which also give us some new ideas for future work. In Nie’s 40 late-fusion FCN, each 

modality image had a separate network to capture features, which were fused in the high-level 

layers for the final infant brain segmentation. Dolz et al.35 incorporated the inception modules and 

hyper-dense connectivity into the multi-path U-Net to better account for the complex and 

non-linear relationship among different modalities in ischemic stroke lesion segmentation. In some 

cases, a huge network with the complicated architecture and so many training parameters may 

cause overfitting and leave heavy burden on the GPU. In the future, we will consider adding new 

modules into the network to improve the complexity, and at the same time avoid overfitting.

Another point that will be explored in future study is whether the feature extraction network 

in the contracting path can improve the robustness of the model. In Figure 3, the pseudo-CT 

images generated by SCSP-GAN suffer from serious errors in certain regions, but the 

MCMP-GAN performs apparently better in reducing these errors, which indirectly proves the 

improved robustness of the network. To better validate it, our preliminary idea is to randomly add 

some noise in one of the MR weighted images and examine the quality of pseudo-CT. This is A
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straightforward but simplistic. In addition, whether the proposed model can efficiently reduce the 

impact of the misalignment errors between MR and CT, and the intra-registration errors among 

MRIs are still unknown. Discussion about these interesting topics will be part of our future study.

GAN models often suffer the gradient vanishing problem during the training process, which 

may influence the convergence of the network. The optimization method mentioned above was 

similar to that utilized in deep convolutional GAN47, but the instability and vanishing gradient 

were still not well resolved. One of the potential applications of pseudo-CT is the MR-based 

treatment planning which can be completed without extra scan of CT. In the future, the 

modification and dosimetric analysis of our model will be further discussed. 

There are limitations in our work. First, our method was based on 2D MR-to-CT translation, 

not 3D. Considering more training parameters compared to the single-channel model, it’s 

anticipated that in 3D MR-to-CT, balancing the computational memory, network architecture and 

accuracy of results will be the primary task. Second, the size of the training samples may not be 

large enough. One of the superiorities of the U-Net was its ability to handle a small-size dataset 

and utilize data augmentation to improve efficiency of data exploitation43. Third, there were 

residual registration errors between multi-parametric MR images which may have contributed to 

the discrepancies between real CT and pseudo CT. Our results implied that the overall MAE may 

be significantly affected by the discrepancy in bony regions as a result of image misalignment. It 

can be reasonably expected that the performance of MPMC-GAN could be even better if the 

registration errors can be reduced by using more sophisticated deformable image registration 

algorithms, or by using simultaneous multi-parametric MRI techniques such as magnetic 

resonance fingerprinting (MRF). In 2013, Ma57 first introduced MRF that permitted the 

quantification of the tissue properties, such as T1 relaxation time, T2 relaxation time, and proton 

density, in a time-efficient acquisition. The signal evolution curves obtained from certain MR 

sequence were matched to the best corresponding MRF dictionary entry and the highly accurate 

quantitative maps were generated58. Another technical breakthrough was MAGiC59 (MAGnetic 

resonance image Compilation) which allowed the acquisition of multi-contrast images in a single 
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scan, including T1-w, T2-w, PD-w and some contrasts that would not be generated in 

conventional MRI. 

Conclusion

In this work, we developed and evaluated a novel deep learning-based MCMP-GAN model 

for generating pseudo-CT images using multi-parametric MR images as the inputs. The 

preliminary results showed that the proposed MCMP-GAN model overall performed better than 

MCSP-GAN and SCSP-GAN.
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Figure Legends

Figure 1: The architecture of the proposed MCMP-GAN model.

Figure 2: Axial, coronal and sagittal view of the representative pseudo-CT images. Each one is 

accompanied with the real CT, corresponding MRIs and difference maps. The image types that 

each column represents have been indicated at the bottom of the figure.

Figure 3: Comparison of MCMP-GAN and SCSP-GAN in representative patients.

Figure 4: Comparison of MCMP-GAN and MCSP-GAN in representative patients.

Figure 5: The impact of independent feature extraction in the encoder. Each column corresponds 

to the intermediate convent outputs of one channel. From left to right: (a) pre-contrast T1-w, (b) 

post-contrast T1-w, and (c) T2-w. 
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Table 1: Detailed training parameters of the generative network of MCMP-GAN.

Level Conv 

Layer

Filter Stride Padding Output

Input Level 0 The encoding network is trained independently in each channel 2401921 (3)

Conv1_1 33 – 33 / 32 (3) (1,1) – (1,1) same 24019232 (3)
Level 1

Conv1_2 33 – 33 / 32 (3) (1,1) – (1,1) same 24019232 (3)

Conv2_1 33 – 33 / 64 (3) (2,2) – (1,1) same 1209664 (3)
Level 2

Conv2_2 33 – 33 / 64 (3) (1,1) – (1,1) same 1209664 (3)

Conv3_1 33 – 33 / 128 (3) (2,2) – (1,1) same 6048128 (3)
Level 3

Conv3_2 33 – 33 / 128 (3) (1,1) – (1,1) same 6048128 (3)

Conv4_1 33 – 33 / 256 (3) (2,2) – (1,1) same 3024256 (3)
Level 4

Conv4_2 33 – 33 / 256 (3) (1,1) – (1,1) same 3024256 (3)

Conv5_1 33 – 33 / 512 (3) (2,2) - (1,1) same 1512512 (3)

Encoding

Level 5 Concatenate 15121536

Conv5_2 55 – 33 / 512 (1,1) – (1,1) same 1512512

Level 4 Conv6 55 – 33 / 512 (1,1) – (1,1) same 3024512

Level 3 Conv7 55 – 33 / 256 (1,1) – (1,1) same 6048256

Level 2 Conv8 55 – 33 / 128 (1,1) – (1,1) same 12096128

Decoding

Level 1 Conv9 55 – 33 / 64 (1,1) – (1,1) same 24019264

Output Conv10 11 / 1 2401921
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Table 2. Detailed training parameters of the adversarial network of MCMP-GAN. 

Level Conv 
Layer

Filter Stride Padding Activation Output

Input Level 0 Concatenate the input MRI (the label) with the generated CT 2401922

Encoding

Level 1 Conv1 55 / 64 (2,2) same LeakyReLU 1209664

Level 2 Conv2 55 / 128 (2,2) same LeakyReLU 6048128

Level 3 Conv3 55 / 256 (2,2) same LeakyReLU 3024256

Level 4 Conv4 55 / 512 (2,2) same LeakyReLU 1512512

Output Conv5 33 / 1 (1,1) same 15121
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Table 3: Summery of evaluating metrics for each subject.

Patient Head MAE 

(HU)

Bone MAE

(HU)

PSNR Bone DSC SSIM

Patient 01 74.7 176.2 29.4 0.88 0.92

Patient 02 67.5 189.1 29.3 0.87 0.92

Patient 03 73.7 192.7 29.2 0.87 0.91

Patient 04 73.5 209.0 29.1 0.86 0.91

Patient 05 81.0 221.5 28.5 0.83 0.90

Patient 06 85.7 225.9 28.2 0.84 0.89

Patient 07 67.6 177.8 30.1 0.88 0.93

Patient 08 67.2 163.2 30.0 0.87 0.93

Patient 09 76.1 212.1 28.7 0.82 0.92

Patient 10 91.3 242.9 27.5 0.83 0.92

Patient 11 88.4 205.5 28.3 0.82 0.89

Patient 12 80.9 187.8 28.6 0.88 0.92

Patient 13 46.1 116.9 32.9 0.89 0.96

Patient 14 72.7 176.9 29.5 0.87 0.92

Patient 15 69.2 167.8 29.3 0.85 0.93

Patient 16 81.5 202.5 28.4 0.85 0.91

Patient 17 83.7 218.8 27.8 0.86 0.91

Patient 18 81.1 187.4 28.1 0.84 0.91

Patient 19 84.5 268.4 27.8 0.80 0.90

Patient 20 73.8 177.8 29.4 0.86 0.92

Patient 21 85.0 246.5 28.0 0.82 0.91

Patient 22 46.1 110.5 33.7 0.90 0.96

Patient 23 82.8 218.2 28.1 0.85 0.91A
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Patient 24 88.5 215.9 27.6 0.87 0.91

Patient 25 82.3 221.8 28.2 0.82 0.90

Patient 26 77.1 164.8 29.5 0.87 0.92

Patient 27 89.0 233.8 27.5 0.86 0.90

Patient 28 71.0 193.9 29.3 0.85 0.92

Patient 29 69.5 160.1 30.0 0.88 0.93

Patient 30 64.1 166.8 30.9 0.87 0.92

Patient 31 84.8 194.9 28.5 0.85 0.90

Patient 32 63.3 179.9 30.1 0.88 0.93

Mean ± std 75.7±14.6 194.6±38.9 29.1±1.6 0.86±0.03 0.92±0.02
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Table 4: Summary of evaluating metrics for all subjects and for comparing models.

Head MAE

(HU)

Bone MAE

(HU)

PSNR DICE SSIM

MCMP-GAN 75.7±14.6 194.6±38.9 29.1±1.6 0.86±0.03 0.92±0.02

MCSP-GAN 79.2±13.0 203.7±33.0 28.8±1.2 0.85±0.04 0.91±0.02

p-value <0.05 <0.05 <0.05 0.07 <0.05

SCSP-GAN 88.6±14.3 230.1±36.7 27.9±1.3 0.83±0.03 0.89±0.02

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Figure 1: The architecture of the proposed MCMP-GAN model. 
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Figure 2: Axial, coronal and sagittal view of the representative pseudo-CT images. Each one is 

accompanied with the real CT, corresponding MRIs and difference maps. The image types that 

each column represents have been indicated at the bottom of the figure. 
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Figure 3: Comparison of MCMP-GAN and SCSP-GAN in representative patients. 
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Figure 4: Comparison of MCMP-GAN and MCSP-GAN in representative patients. 
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Figure 5: The impact of independent feature extraction in the encoder. Each column corresponds 

to the intermediate convent outputs of one channel. From left to right: (a) pre-contrast T1-w, (b) 

post-contrast T1-w, and (c) T2-w. 
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