
Xie ChangjianSoochow Uniersity · School of Mathematical Sciences
Xie Changjian
About
8
Publications
1,032
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
59
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (8)
A second order accurate, linear numerical method is analyzed for the Landau-Lifshitz equation with large damping parameters. This equation describes the dynamics of magnetization, with a non-convexity constraint of unit length of the magnetization. The numerical method is based on the second-order backward differentiation formula in time, combined...
A second order accurate numerical scheme is proposed and implemented for the Landau-Lifshitz-Gilbert equation, which models magnetization dynamics in ferromagnetic materials, with large damping parameters. The main advantages of this method are associated with the following features: (1) It only solves linear systems of equations with coefficient m...
The numerical approximation for the Landau-Lifshitz equation, which models the dynamics of the magnetization in a ferromagnetic material, is taken into consideration. This highly nonlinear equation, with a non-convex constraint, has several equivalent forms, and involves solving an auxiliary problem in the infinite domain. All these features have p...
Micromagnetics simulations require accurate approximation of the magnetization dynamics described by the Landau-Lifshitz-Gilbert equation, which is nonlinear, nonlocal, and has a non-convex constraint, posing interesting challenges in developing numerical methods. In this paper, we propose two second-order semi-implicit projection methods based on...
Micromagnetic simulation is an important tool to study various dynamic behaviors of magnetic order in ferromagnetic materials. The underlying model is the Landau-Lifshitz-Gilbert equation, where the magnetization dynamics is driven by the gyromagnetic torque term and the Gilbert damping term. Numerically, considerable progress has been made in the...
In this paper, we present two improved Gauss-Seidel projection methods with unconditional stability. The first method updates the gyromagnetic term and the damping term simultaneously and follows by a projection step. The second method introduces two sets of approximate solutions, where we update the gyromagnetic term and the damping term simultane...
Micromagnetics simulations require accurate approximation of the magnetization dynamics described by the Landau-Lifshitz-Gilbert equation, which is nonlinear, nonlocal, and has a non-convex constraint, posing interesting challenges in developing numerical methods. In this paper, we propose two second-order semi-implicit projection methods based on...
The numerical approximation for the Landau-Lifshitz equation, the dynamics of magnetization in a ferromagnetic material, is taken into consideration. This highly nonlinear equation, with a non-convex constraint, has several equivalent forms, and involves solving an auxiliary problem in the infinite domain. All these features have posed interesting...
Projects
Projects (2)