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ABSTRACT

In this paper, we establish some new Foxby equivalences between some
Gorenstein subcategories in the Auslander class AC(R) and that in the Bass
class BC(S) in a general setting. Our results provide a uni�cation and general-
ization of some known results and generate some new Foxby equivalences of
categories.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary. Let A be an
abelian category and X ,Y ,Z additive full subcategories of A. Yang [19] introduced the Gorenstein
category G(X ,Y ,Z) as follows

G(X ,Y ,Z) = {M is an object ofA | there exists an exact sequence of objects in X

· · · → X1 → X0 → X0 → X1 → · · · , which is both HomA(Y ,−)-exact

and HomA(−,Z)-exact, such thatM ∼= Im(X0 → X0)}.

This de�nition uni�es the following notions: Gorenstein projective (injective) modules [7, 8, 11], Ding
projective (injective) modules [6, 15, 18], Gorenstein AC-projective (AC-injective) modules [3, 4],
X -Gorenstein projective (injective) modules [2, 16], C-Gorenstein projective (injective) modules [10],
Ding C-projective (C-injective) modules [20], the Gorenstein category G(C) [17], and so on.

Let C be a semidualizing module over a commutative noetherian ring R. Enochs et al. [9, Proposition
2.1] established the following Foxby equivalence of categories:

AC(R)

C⊗R−
//
BC(R),

HomR(C,−)
oo

where AC(R) and BC(R) denote the Auslander class and the Bass class with respect to C, respectively.
Holm and White [12] extended this result to the non-noetherian and non-commutative setting. Later,
Foxby equivalences between some special classes of modules in the Auslander class AC(R) and that in
the Bass class BC(S) have been studied by many authors, see [5, 9, 10, 12, 14, 20].
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Let SCR be a faithfully semidualizing bimodule. It was shown in [10, Theorem 3.11] that there exists
the following Foxby equivalence diagram:

AC(R) ∩ G-Proj
C⊗R−

//
GC-Proj,

HomS(C,−)
oo

where G-Proj denotes the category of Gorenstein projective le� R-modules, and GC-Proj denotes the
category of C-Gorenstein projective le� S-modules in [10]. Note that GC-Proj ⊆ BC(S), thus we have

AC(R) ∩ G-Proj
C⊗R−

//
BC(S) ∩ GC-Proj.

HomS(C,−)
oo (∗)

Also, Zhang et al. [20] introduced the Ding C-projective modules, and established the similar equiva-
lence of categories.

Inspired by the Foxby equivalence (∗) and the similar result in [20], in this paper, we consider the
Foxby equivalences between some Gorenstein subcategories in the Auslander class AC(R) and that in
the Bass class BC(S) in a general setting. Let SCR be a faithfully semidualizing bimodule. We show that
if X ,Y ,Z ⊆ AC(R), then there is an equivalence of categories:

AC(R) ∩ G(X ,Y ,Z)

C⊗R−
//
BC(S) ∩ G1(X ,Y ,Z),

HomS(C,−)
oo

where G1(X ,Y ,Z) denotes the Gorenstein category G(C⊗R X ,C⊗R Y ,C⊗RZ). Dually, we also show
that if X ,Y ,Z ⊆ BC(S), then there is an equivalence of categories:

AC(R) ∩ G2(X ,Y ,Z)

C⊗R−
//
BC(S) ∩ G(X ,Y ,Z),

HomS(C,−)
oo

where G2(X ,Y ,Z) denotes the Gorenstein category G(HomS(C,X ), HomS(C,Y), HomS(C,Z)).
Our results provide a uni�cation and generalization of the known results in [10, Theorem 3.11],
[20, Proposition 4.2] and generate some new Foxby equivalences of categories.

2. Preliminaries

In this section, we will recall some notions and terminologies which we need in the later section.
Semidualizing bimodules. An (S,R)-bimodule C = SCR is semidualizing if

(1) SC admits a degreewise �nite S-projective resolution.
(2) CR admits a degreewise �nite R-projective resolution.

(3) The homothety map SSS
Sγ
−→ HomR(C,C) is an isomorphism.

(4) The homothety map RRR
γR
−→ HomS(C,C) is an isomorphism.

(5) Ext
>1
S (C,C) = 0.

(6) Ext
>1
R (C,C) = 0.

A semidualizing bimodule SCR is faithfully semidualizing if it satis�es the following conditions for all
modules SN andMR

(a) If HomS(C,N) = 0, then N = 0.
(b) If HomR(C,M) = 0, thenM = 0.

Auslander class and Bass class with respect to C. The Auslander class AC(R) with respect to C
consists of all R-modulesM satisfying
(1) TorR

>1(C,M) = 0,

(2) Ext
>1
S (C,C ⊗R M) = 0,

(3) The natural evaluation homomorphism µM : M → HomS(C,C ⊗R M) is an isomorphism.
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The Bass class BC(S) with respect to C consists of all S-modules N satisfying

(1) Ext
>1
S (C,N) = 0,

(2) TorR
>1(C,HomS(C,N)) = 0,

(3) The natural evaluation homomorphism νN : C ⊗R HomS(C,N) → N is an isomorphism.
XXX -resolution. Let X be a class of le� (resp., right) R-modules and M a le� (resp., right) R-module.

A le� X -resolution ofM is an exact sequence

X = · · · → Xn → Xn−1 → · · · → X1 → X0 → M → 0

with Xi ∈ X for all i ≥ 0. Dually, one can de�ne the right X -resolution ofM.

3. Main results

In the following, we assume thatA is the category of modules, and X ,Y ,Z are full subcategories ofA.
C always stands for a faithfully semidualizing bimodule SCR. LetX ,Y ,Z ⊆ AC(R), we use G1(X ,Y ,Z)

to denote the Gorenstein category G(C ⊗R X ,C ⊗R Y ,C ⊗R Z).

Lemma 3.1. Assume that X ,Y ,Z ⊆ AC(R) and M ∈ BC(S). Then the following are equivalent:
(1) M ∈ G1(X ,Y ,Z).
(2) HomS(C,M) ∈ G(X ,Y ,Z).

Proof.
(1)⇒(2) IfM ∈ G1(X ,Y ,Z), then there exists an exact sequence

H : · · · → C ⊗R X1 → C ⊗R X0 → C ⊗R X0 → C ⊗R X1 → · · ·

with Xi,Xj ∈ X andM ∼= Im(C⊗RX0 → C⊗RX
0) such that HomS(C⊗RY ,−) and HomS(−,C⊗R Z)

leave the sequence exact for any Y ∈ Y and Z ∈ Z . Since M ∈ BC(S) and C ⊗R X ⊆ BC(S), we have
that every kernel and cokernel in H are in BC(S) by [12, Corollary 6.3]. Note that X ⊆ AC(R), then
HomS(C,C⊗R X) ∼= X for any X ∈ X . If we apply the functor HomS(C,−) to the exact sequenceH, we
obtain an exact sequence

F : · · · → X1 → X0 → X0 → X1 → · · ·

with HomS(C,M) ∼= Im(X0 → X0). Given any Y ∈ Y and Z ∈ Z , we get that both

HomS(C ⊗R Y ,H) ∼= HomR(Y , HomS(C,H)) ∼= HomR(Y ,F)

and

HomS(H,C ⊗R Z) ∼= HomR(F, HomS(C,C ⊗R Z)) ∼= HomR(F,Z)

are exact. This means that HomS(C,M) ∈ G(X ,Y ,Z).

(2)⇒(1) If HomS(C,M) ∈ G(X ,Y ,Z), then there exists an exact sequence

F : · · · → X1 → X0 → X0 → X1 → · · ·

with Xi,Xj ∈ X and HomS(C,M) ∼= Im(X0 → X0) such that HomR(Y ,−) and HomR(−,Z) leave the
sequence exact for any Y ∈ Y and Z ∈ Z . Given that M ∈ BC(S), then HomS(C,M) ∈ AC(R). Note
that X ⊆ AC(R), then every kernel and cokernel in F are inAC(R) by [12, Corollary 6.3]. Applying the
functor C ⊗R − to the exact sequence F, we obtain an exact sequence

H : · · · → C ⊗R X1 → C ⊗R X0 → C ⊗R X0 → C ⊗R X1 → · · ·

such that M ∼= Im(C ⊗R X0 → C ⊗R X0). Given any Y ∈ Y and Z ∈ Z , we have that both
HomS(C ⊗R Y ,H) ∼= HomR(Y ,F) and HomS(H,C ⊗R Z) ∼= HomR(F,Z) are exact. This means that
M ∈ G1(X ,Y ,Z).
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Lemma 3.2. Assume that X ,Y ,Z ⊆ AC(R) and M ∈ AC(R). Then the following are equivalent:
(1) M ∈ G(X ,Y ,Z).
(2) C ⊗R M ∈ G1(X ,Y ,Z).

Proof.
(1)⇒(2) Since M ∈ AC(R), we have C ⊗R M ∈ BC(S). Note that HomS(C,C ⊗R M) ∼= M ∈

G(X ,Y ,Z) by hypothesis, then Lemma 3.1 implies that C ⊗R M ∈ G1(X ,Y ,Z).

(2)⇒(1) SinceM ∈ AC(R), it follows thatM ∼= HomS(C,C⊗RM). Note thatC⊗RM ∈ G1(X ,Y ,Z),
in view of Lemma 3.1, we conclude that HomS(C,C ⊗R M) ∼= M ∈ G(X ,Y ,Z).

Theorem 3.3. Assume that X ,Y ,Z ⊆ AC(R). There is an equivalence of categories:

AC(R) ∩ G(X ,Y ,Z)

C⊗R−
//
BC(S) ∩ G1(X ,Y ,Z).

HomS(C,−)
oo

Proof. By Lemmas 3.1 and 3.2, it is obvious that the functor C ⊗R − maps AC(R) ∩ G(X ,Y ,Z) to
BC(S)∩G1(X ,Y ,Z), also the functor HomS(C,−)maps BC(S)∩G1(X ,Y ,Z) toAC(R)∩G(X ,Y ,Z).
Moreover, note that ifM ∈ AC(R)∩G(X ,Y ,Z) andN ∈ BC(S)∩G1(X ,Y ,Z), then there exist natural
isomorphismsM ∼= HomS(C,C ⊗R M) and N ∼= C ⊗R HomS(C,N). Therefore the desired equivalence
of categories follows.

LetW be a class of modules, and 0 → N → G → M → 0 an arbitrary exact sequence of modules.
According to [12], the class W is closed under extensions provided that both M and N are in W , then
G ∈ W . The classW is closed under kernels of epimorphisms if whenever G andM are inW , then so
is N. Finally,W is closed under cokernels of monomorphisms if wheneverN and G are inW , then so is
M. The classW is projectively resolving ifW contains every projective module, andW is closed under
extensions and kernels of epimorphisms. The notion of injectively resolving is de�ned dually.

Proposition 3.4. Let M be a module. If G(X ,Y ,Z) is closed under extensions, then M has a le�
G(X ,Y ,Z)-resolution if and only if M has a le� X -resolution.

Proof. Note that X ⊆ G(X ,Y ,Z), so if M has a le� X -resolution, then M has a le� G(X ,Y ,Z)-
resolution. Conversely, let 0 → N → G0 → M → 0 be an exact sequence with G0 ∈ G(X ,Y ,Z)

and N having a le� G(X ,Y ,Z)-resolution. Since G0 ∈ G(X ,Y ,Z), there exists an exact sequence
0 → D → X0 → G0 → 0 with X0 ∈ X and D ∈ G(X ,Y ,Z). Consider the following pullback
diagram

0

��

0

��

D

��

D

��

0 // H

��

// X0

��

// M // 0

0 // N //

��

G0

��

// M // 0

0 0
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Since N has a le� G(X ,Y ,Z)-resolution, there exists an exact sequence 0 → B → G1 → N → 0
with G1 ∈ G(X ,Y ,Z) and B having a le� G(X ,Y ,Z)-resolution. Consider the following pullback
diagram

0

��

0

��

B

��

B

��

0 // D // L

��

// G1

��

// 0

0 // D // H

��

// N

��

// 0

0 0

Note that D,G1 ∈ G(X ,Y ,Z) from the middle horizontal sequence, it follows that L ∈ G(X ,Y ,Z)

since G(X ,Y ,Z) is closed under extensions by hypothesis. Then H has a le� G(X ,Y ,Z)-resolution.
Note that 0 → H → X0 → M → 0 is exact from the �rst diagram. By repeating the preceding process,
we have thatM has a le� X -resolution.

Lemma 3.5. Assume that G(X ,Y ,Z) is projectively resolving. Consider the following exact sequences of
modules

0 → Kn → Gn−1 → · · · → G1 → G0 → M → 0,

0 → Ln → Qn−1 → · · · → Q1 → Q0 → M → 0,

where each Gi and Qi are in G(X ,Y ,Z). Then Kn ∈ G(X ,Y ,Z) if and only if Ln ∈ G(X ,Y ,Z).

Proof. Suppose G(X ,Y ,Z) is projectively resolving. It is easy to check that G(X ,Y ,Z) closed under
countable direct sums. Moreover, G(X ,Y ,Z) is closed under direct summands by [19, Theorem 2.9].
Then the stated result is a direct consequence of [1, Lemma 3.12].

Remark 3.6.

(1) Most of the results in [19], the assumptions X ⊆ Y and X ⊆ Z are used. However, upon reading
the proof of [19, Theorem 2.9], it doesn’t seem that the containments assumptions are needed.
So we don’t have to assume that X ⊆ Y and X ⊆ Z in Lemma 3.5.

(2) In Lemma3.5, we assume thatG(X ,Y ,Z) is projectively resolving.On the one hand, this assumption
ensures the existence of the le� G(X ,Y ,Z)-resolution of any module M; on the other hand, it
guarantees the rationality of the G(X ,Y ,Z)-projective dimension, which is de�ned in the below.
Lemma 3.5 implies that if G(X ,Y ,Z) is projectively resolving, then the G(X ,Y ,Z)-projective
dimension is independent of the choice of the le� G(X ,Y ,Z)-resolutions.

At this point, we introduce the G(X ,Y ,Z)-projective dimension.

De�nition 3.7. Suppose G(X ,Y ,Z) is projectively resolving. The G(X ,Y ,Z)-projective dimension,
G(X ,Y ,Z)-pd(M), of a moduleM is de�ned by declaring that G(X ,Y ,Z)-pd(M) ≤ n if and only ifM
has a le� G(X ,Y ,Z)-resolution

0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0.
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If no such �nite sequence exists, de�ne G(X ,Y ,Z)-pd(M) = ∞; otherwise, if n is the least such integer,
de�ne G(X ,Y ,Z)-pd(M) = n.

Proposition 3.8. Assume that G1(X ,Y ,Z) is projectively resolving. Let M be a le� S-module with �nite
G1(X ,Y ,Z)-projective dimension and n a nonnegative integer. Then the following are equivalent:
(1) G1(X ,Y ,Z)-pd(M) ≤ n.
(2) There exists an exact sequence 0 → C⊗R Xn → · · · → C⊗R X2 → C⊗R X1 → G → M → 0 with

G ∈ G1(X ,Y ,Z) and Xi ∈ X for all 1 ≤ i ≤ n.
(3) For any exact sequence of le� S-modules 0 → Kn → Gn−1 → · · · → G1 → G0 → M → 0 with

Gi ∈ G1(X ,Y ,Z) for all 0 ≤ i ≤ n − 1, then Kn ∈ G1(X ,Y ,Z).

Proof.
(2)⇒(1) is obvious. (3)⇔(1) is clear by Lemma 3.5.

(1)⇒(2) Assume that G1(X ,Y ,Z)-pd(M) ≤ n. Then there exists an exact sequence

0 → Gn
f
−→ Gn−1 → · · · → G0 → M → 0

with Gi ∈ G1(X ,Y ,Z) for any 0 ≤ i ≤ n. Since Gn ∈ G1(X ,Y ,Z), there exists an exact sequence

0 → Gn
g
−→ C ⊗R Xn → N → 0 with Xn ∈ X and N ∈ G1(X ,Y ,Z). Consider the pushout diagram

0

��

0

��

0 // Gn

g

��

f
// Gn−1

��

// Gn−2
// · · ·

0 // C ⊗R Xn
h //

��

Dn−1

��

N

��

N

��

0 0

Then Dn−1 ∈ G1(X ,Y ,Z) since G1(X ,Y ,Z) is closed under extensions by hypothesis. Clearly, f and h
have isomorphic cokernels, so we have the following exact sequence

0 → C ⊗R Xn
h
−→ Dn−1 → Gn−2 → · · · → G0 → M → 0.

Continuing this process yields the sequence.

Letn be a nonnegative integer. IfG(X ,Y ,Z) is projectively resolving, we useGP(X ,Y ,Z)≤n to denote
the class of modules with G(X ,Y ,Z)-projective dimension at most n. In particular, if G1(X ,Y ,Z) is
projectively resolving, G1(X ,Y ,Z)≤n denotes the class of le� S-modules with G1(X ,Y ,Z)-projective
dimension at most n. The symbol PC(S) stands for the class C ⊗R P with P a projective le� R-module.

Theorem 3.9. Let n be a nonnegative integer andX ,Y ,Z ⊆ AC(R). If both G(X ,Y ,Z) and G1(X ,Y ,Z)

are closed under extensions and kernels of epimorphisms, and X contains every projective le� R-module,
then there is an equivalence of categories:

AC(R) ∩ GP(X ,Y ,Z)≤n

C⊗R−
//
BC(S) ∩ G1(X ,Y ,Z)≤n

HomS(C,−)
oo .
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Proof. Since X contains every projective le� R-module, we have that the le� G(X ,Y ,Z)-resolution of
any moduleM exists by Proposition 3.4. Note that SCR is a faithfully semidualizing bimodule, then the
class PC(S) is projectively resolving by [12, Corollary 6.4]. Thus for any projective le� S-module N, we
have N ∈ PC(S) ⊆ C ⊗ X ⊆ G1(X ,Y ,Z), and so the le� G1(X ,Y ,Z)-resolution of any module M
always exists. Moreover, both G(X ,Y ,Z) and G1(X ,Y ,Z) are projectively resolving.

If n = 0, the result is true by Theorem 3.3. In the following, we assume that n ≥ 1.
Let M ∈ AC(R) ∩ GP(X ,Y ,Z)≤n. Then by Proposition 3.8 with C = RRR, there exists an exact

sequence of R-modules

0 → Xn → Xn−1 → · · · → X1 → G → M → 0

with G ∈ G(X ,Y ,Z) and Xi ∈ X for any 1 ≤ i ≤ n. By [12, Corollary 6.3], we have that G and every
cokernel in the above sequence are in AC(R). Applying the functor C ⊗R − to the exact sequence, we
get the following exact sequence

0 → C ⊗R Xn → C ⊗R Xn−1 → · · · → C ⊗R X1 → C ⊗R G → C ⊗R M → 0

with C ⊗R G and all C ⊗R Xi are in G1(X ,Y ,Z) ∩ BC(S) by Lemma 3.2, which means that C ⊗R M ∈

BC(S) ∩ G1(X ,Y ,Z)≤n.
Conversely, let N ∈ BC(S) ∩ G1(X ,Y ,Z)≤n. Then by Proposition 3.8, there exists an exact sequence

of S-modules

0 → C ⊗R Xn → C ⊗R Xn−1 → · · · → C ⊗R X1 → G → N → 0

with G ∈ G1(X ,Y ,Z) and Xi ∈ X for any 1 ≤ i ≤ n. By [12, Corollary 6.3], we have that G and every
kernel in the above sequence are inBC(S). Applying the functor HomS(C,−) to it, we have the following
exact sequence of R-modules

0 → Xn → Xn−1 → · · · → X1 → HomS(C,G) → HomS(C,N) → 0.

Since G ∈ G1(X ,Y ,Z) ∩ BC(S), we have that HomS(C,G) ∈ G(X ,Y ,Z) by Lemma 3.1. Thus
HomS(C,N) ∈ AC(R) ∩ GP(X ,Y ,Z)≤n.

Moreover, take anyM ∈ AC(R)∩GP(X ,Y ,Z)≤n andN ∈ BC(S)∩G1(X ,Y ,Z)≤n, there exist natural
isomorphismsM ∼= HomS(C,C ⊗R M) and N ∼= C ⊗R HomS(C,N). Therefore the desired equivalence
of categories follows.

We use P(R), F(R), I(S) and FI(S) to denote the classes of projective le� R-modules, �at le�
R-modules, injective le� S-modules and FP-injective le� S-modules, respectively. ThenP(R) ⊆ F(R) ⊆

AC(R) and I(S) ⊆ BC(S) by [12, Lemma 4.1].

Corollary 3.10. Let n be a nonnegative integer. If X = Y = P(R) ⊆ Z ⊆ AC(R), then there is an
equivalence of categories:

AC(R) ∩ GP(X ,Y ,Z)≤n

C⊗R−
//
G1(X ,Y ,Z)≤n

HomS(C,−)
oo .

Proof. Clearly, G1(X ,Y ,Z) ⊆ BC(S) by [10, Proposition 3.5]. Then G1(X ,Y ,Z)≤n ⊆ BC(S) by
[12, Corollary 6.3]. Moreover, G(X ,Y ,Z) is closed under extensions and kernels of epimorphisms by
[19, Corollary 2.5]. Take any Z ∈ Z and for any pair of projective le� R-modules P1,P2, we have

ExtiS(C ⊗R P1,C ⊗R P2) ∼= ExtiR(P1,P2) = 0

and

ExtiS(C ⊗R P2,C ⊗R Z) ∼= ExtiR(P2,Z) = 0,
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for any i ≥ 1, by [12, Theorem 6.4]. According to [19, Corollary 2.5], we obtain that G1(X ,Y ,Z) is
closed under extensions. Furthermore, given any exact sequence H : 0 → M → Q → N → 0 with
Q,N ∈ G1(X ,Y ,Z), we have M ∈ BC(S) by [12, Corollary 6.3], then HomS(C,H) is exact. In view of
[12, Lemma 6.1], we conclude that HomS(C ⊗R P,H) is exact for any projective le� R-module P. Thus
G1(X ,Y ,Z) is closed under kernels of epimorphisms by [19, Corollary 2.5]. Then the result follows from
Theorem 3.9.

Suppose G(X ,Y ,Z) is injectively resolving. Dually, we can de�ne G(X ,Y ,Z)-injective dimension,
G(X ,Y ,Z)-id(M), ofM.

Let n be a nonnegative integer. If G(X ,Y ,Z) is injectively resolving, we use GI(X ,Y ,Z)≤n to
denote the class of modules with G(X ,Y ,Z)-injective dimension at most n. Let X ,Y ,Z ⊆ BC(S).
Denote the Gorenstein category G(HomS(C,X ), HomS(C,Y), HomS(C,Z)) by G2(X ,Y ,Z). In partic-
ular, if G2(X ,Y ,Z) is injectively resolving, G2(X ,Y ,Z)≤n stands for the class of le� R-modules with
G2(X ,Y ,Z)-injective dimension at most n.

We note that all the foregoing results have the dual version. So we have the following results.

Theorem 3.11. Assume that X ,Y ,Z ⊆ BC(S), then there is an equivalence of categories:

AC(R) ∩ G2(X ,Y ,Z)

C⊗R−
//
BC(S) ∩ G(X ,Y ,Z).

HomS(C,−)
oo

Theorem3.12. Let n be a nonnegative integer andX ,Y ,Z ⊆ BC(S). If bothG(X ,Y ,Z) andG2(X ,Y ,Z)

are closed under extensions and cokernels of monomorphisms, andX contains every injective le� S-module,
then there is an equivalence of categories:

AC(R) ∩ G2(X ,Y ,Z)≤n

C⊗R−
//
BC(S) ∩ GI(X ,Y ,Z)≤n.

HomS(C,−)
oo

Corollary 3.13. Let n be a nonnegative integer. If X = Z = I(S) ⊆ Y ⊆ BC(S), then there is an
equivalence of categories:

G2(X ,Y ,Z)≤n

C⊗R−
//
BC(S) ∩ GI(X ,Y ,Z)≤n.

HomS(C,−)
oo

4. Applications and examples

As the applications of our results, in this section, we give the following examples.

Example 4.1. If X = Y = Z = P(R), then G(X ,Y ,Z) = G-Proj, the subcategory of Gorenstein
projective le� R-modules, and G1(X ,Y ,Z) = GC-Proj, the subcategory of C-Gorenstein projective
le� S-modules in [10]. Also, if X = Y = Z = I(S), then G(X ,Y ,Z) = G-Inj, the subcategory
of Gorenstein injective le� S-modules, and G2(X ,Y ,Z) = GC-Inj, the subcategory of C-Gorenstein
injective le� R-modules in [10]. According to Corollary 3.10 and Corollary 3.13, we obtain the following
equivalences of categories:

AC(R) ∩ G-Proj≤n

C⊗R−
//
GC-Proj≤n,

HomS(C,−)
oo

GC-Inj≤n

C⊗R−
//
BC(S) ∩ G-Inj≤n.

HomS(C,−)
oo
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This is the result in [10, Corollary 3.12]. In particular, if n = 0, we obtain the result in [10, Theorem
3.11] as follows

AC(R) ∩ G-Proj
C⊗R−

//
GC-Proj,

HomS(C,−)
oo

GC-Inj
C⊗R−

//
BC(S) ∩ G-Inj.

HomS(C,−)
oo

Recall from [4] that an R-module M over a ring R is said to be of type FP∞ if M has a projective
resolution by �nitely generated projectivemodules, and a le�R-moduleN is called level if TorR1 (M,N) =

0 for all right R-modules M of type FP∞. Denote by L(R) the class of level le� R-modules. A le�
R-module M is called Gorenstein AC-projective [3, 4] if M ∈ G(P(R),P(R),L(R)). A le� S-module
N is called absolutely clean [4] if Ext1S(M,N) = 0 for all le� S-modules M of type FP∞. Denote by
AC(S) the class of absolutely clean le� S-modules. A le� S-moduleM is called Gorenstein AC-injective
[4] ifM ∈ G(I(S),AC(S), I(S)).

Lemma 4.2 ([13, Proposition 3.3]). L(R) ⊆ AC(R) andAC(S) ⊆ BC(S).

Example 4.3. If X = Y = P(R) and Z = L(R), then G(X ,Y ,Z) = GPAC(R), the subcategory of
Gorenstein AC-projective le� R-modules in [3, 4]. Denote by GPC

AC
(S) the subcategory G1(X ,Y ,Z).

Also, if X = Z = I(S) and Y = AC(S), then G(X ,Y ,Z) = GIAC(S), the subcategory of Gorenstein
AC-injective le� S-modules in [3, 4]. Denote by GIC

AC
(R) the category G2(X ,Y ,Z). According to

Corollaries 3.10 and 3.13, we obtain the following equivalences of categories:

AC(R) ∩ GPAC(R)≤n

C⊗R−
//
GPC

AC
(S)≤n,

HomS(C,−)
oo

GIC
AC

(R)≤n

C⊗R−
//
BC(S) ∩ GIAC(S)≤n.

HomS(C,−)
oo

In particular, if n = 0, we obtain the following equivalences of categories:

AC(R) ∩ GPAC(R)

C⊗R−
//
GPC

AC
(S),

HomS(C,−)
oo

GIC
AC

(R)

C⊗R−
//
BC(S) ∩ GIAC(S).

HomS(C,−)
oo

Example 4.4. If X = Y = P(R) and Z = F(R), then G(X ,Y ,Z) = DP(R), the subcategory
of Ding projective le� R-modules in [6, 18], and G1(X ,Y ,Z) = D(PC(S)), the subcategory of Ding
C-projective le� S-modules in [20]. Also, if X = Z = I(S) and Y = FI(S) ⊆ AC(S) ⊆ BC(S) by
Lemma 4.2, then G(X ,Y ,Z) = DI(S), the subcategory of Ding injective le� S-modules in [15, 18],
and G2(X ,Y ,Z) = D(IC(R)), the subcategory of Ding C-injective le� R-modules in [20]. According to
Corollaries 3.10 and 3.13, we obtain the following equivalences of categories:

AC(R) ∩ DP(R)≤n

C⊗R−
//
D(PC(S))≤n,

HomS(C,−)
oo

D(IC(R))≤n

C⊗R−
//
BC(S) ∩ DI(S)≤n.

HomS(C,−)
oo
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This is the result in [20, Theorem 4.4]. In particular, if n = 0, we obtain the following equivalences of
categories:

AC(R) ∩ DP(R)

C⊗R−
//
D(PC(S)),

HomS(C,−)
oo

D(IC(R))

C⊗R−
//
BC(S) ∩ DI(S),

HomS(C,−)
oo

which appeared in [20, Proposition 4.2].
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