Taylor & Francis
Taylor & Francis Group

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagh20

Foxby equivalences associated to Gorenstein
categories #(#,#,#)

Wanru Zhang, Zhongkui Liu & Xiaoyan Yang

To cite this article: Wanru Zhang, Zhongkui Liu & Xiaoyan Yang (2018) Foxby equivalences
associated to Gorenstein categories #(#,#,#), Communications in Algebra, 46:9, 4042-4051, DOI:
10.1080/00927872.2018.1435788

To link to this article: https://doi.org/10.1080/00927872.2018.1435788

ﬁ Published online: 19 Mar 2018.

N
CJ/ Submit your article to this journal &

||I| Article views: 79

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=lagh20


http://www.tandfonline.com/action/journalInformation?journalCode=lagb20
http://www.tandfonline.com/loi/lagb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2018.1435788
https://doi.org/10.1080/00927872.2018.1435788
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1435788&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1435788&domain=pdf&date_stamp=2018-03-19

COMMUNICATIONS IN ALGEBRA® Tavior & F .
2018, VOL. 46, NO. 9, 40424051 Taly &?r * rancis
https://doi.org/10.1080/00927872.2018.1435788 aylor & Francis Lroup

‘ 1) Check for updates ‘

Foxby equivalences associated to Gorenstein categories
g(X, Y 2)
Wanru Zhang, Zhongkui Liu, and Xiaoyan Yang
Department of Mathematics, Northwest Normal University, Lanzhou, Gansu, China
ABSTRACT ARTICLE HISTORY

In this paper, we establish some new Foxby equivalences between some Received 18 March 2017
Gorenstein subcategories in the Auslander class .A¢(R) and that in the Bass Revised 22 August 2017

class B¢ (S) in a general setting. Our results provide a unification and general- ~ Communicated by S. Bazzoni
ization Qf some known results and generate some new Foxby equivalences of KEYWORDS
categories. Auslander class; Bass class;

Foxby equivalence;
Gorenstein category

2010 MATHEMATICS
SUBJECT CLASSIFICATION
18B05; 18G25; 18G20

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary. Let .4 be an
abelian category and X, ), Z additive full subcategories of A. Yang [19] introduced the Gorenstein
category G(X, ), Z) as follows

G(X,Y, Z) = {M is an object of A | there exists an exact sequence of objects in X’
cv > X; = X = X° > X' = ..., which is both Hom_4 (), —)-exact
and Hom 4 (—, Z)-exact, such that M = Im(Xy — X°)}.

This definition unifies the following notions: Gorenstein projective (injective) modules [7, 8, 11], Ding
projective (injective) modules [6, 15, 18], Gorenstein AC-projective (AC-injective) modules [3, 4],
Z -Gorenstein projective (injective) modules [2, 16], C-Gorenstein projective (injective) modules [10],
Ding C-projective (C-injective) modules [20], the Gorenstein category G(C) [17], and so on.

Let C be a semidualizing module over a commutative noetherian ring R. Enochs et al. [9, Proposition
2.1] established the following Foxby equivalence of categories:

CQr—
Ac(R) Bc(R),

Homg(C,—)

where Ac(R) and B¢ (R) denote the Auslander class and the Bass class with respect to C, respectively.
Holm and White [12] extended this result to the non-noetherian and non-commutative setting. Later,
Foxby equivalences between some special classes of modules in the Auslander class Ac(R) and that in
the Bass class B¢(S) have been studied by many authors, see [5, 9, 10, 12, 14, 20].
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Let sCg be a faithfully semidualizing bimodule. It was shown in [10, Theorem 3.11] that there exists
the following Foxby equivalence diagram:

CRr—
Ac(R) N G-Proj Gc-Proj,
Homg(C,—)

where G-Proj denotes the category of Gorenstein projective left R-modules, and G¢-Proj denotes the
category of C-Gorenstein projective left S-modules in [10]. Note that G¢-Proj € Bc(S), thus we have

COr—
Ac(R) N G-Proj Bc(S) N Ge-Proj. (%)
Homg(C,—)

Also, Zhang et al. [20] introduced the Ding C-projective modules, and established the similar equiva-
lence of categories.

Inspired by the Foxby equivalence (*) and the similar result in [20], in this paper, we consider the
Foxby equivalences between some Gorenstein subcategories in the Auslander class A¢(R) and that in
the Bass class B¢(S) in a general setting. Let sCr be a faithfully semidualizing bimodule. We show that
if X,), Z € Ac(R), then there is an equivalence of categories:

C®r—
Ac(R)NG(X, Y, Z) Bc(S) NGi1(X, Y, 2),
Homg(C,—)

where G; (X, Y, Z) denotes the Gorenstein category G(C ®r X', C®r Y, C ®r Z). Dually, we also show
thatif X, ), Z C Bc(S), then there is an equivalence of categories:

C®r—
Ac(R) N G(X, Y, Z) Be($) NG(X, Y, 2),
Homg(C,—)
where Gy(X,),Z) denotes the Gorenstein category G(Homg(C, X),Homg(C,)), Homs(C, Z)).
Our results provide a unification and generalization of the known results in [10, Theorem 3.11],
[20, Proposition 4.2] and generate some new Foxby equivalences of categories.

2. Preliminaries

In this section, we will recall some notions and terminologies which we need in the later section.
Semidualizing bimodules. An (S, R)-bimodule C = sCp is semidualizing if
(1) sC admits a degreewise finite S-projective resolution.
(2) Cr admits a degreewise finite R-projective resolution.
(3) The homothety map sSs LN Homg(C, C) is an isomorphism.
(4) The homothety map rRp R Homg(C, C) is an isomorphism.
(5) Bxtz'(C,C) = 0.
(6) Extz'(C,C) = 0.
A semidualizing bimodule gCr is faithfully semidualizing if it satisfies the following conditions for all
modules gN and My
(a) If Homg(C,N) = 0, then N = 0.
(b) If Homg(C, M) = 0, then M = 0.
Auslander class and Bass class with respect to C. The Auslander class Ac(R) with respect to C
consists of all R-modules M satisfying
(1) Torgl(c,M) =0,
(2) Ext'(C,C ®r M) =0,
(3) The natural evaluation homomorphism s : M — Homg(C, C ®g M) is an isomorphism.
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The Bass class B¢ (S) with respect to C consists of all S-modules N satisfying
(1) Bxtz ' (C,N) =0,
(2) Tor | (C;Homs(C,N)) =0,
(3) The natural evaluation homomorphism vy : C g Homg(C,N) — N is an isomorphism.
X-resolution. Let X' be a class of left (resp., right) R-modules and M a left (resp., right) R-module.
A left X-resolution of M is an exact sequence

X=X, > X 1> >X1—>Xg>M—>0

with X; € & forall i > 0. Dually, one can define the right X'-resolution of M.

3. Main results

In the following, we assume that A is the category of modules, and X', ), Z are full subcategories of A.
C always stands for a faithfully semidualizing bimodule sCg. Let X, ), Z € Ac(R), we use G, (X, ), Z)
to denote the Gorenstein category G(C ®r X, C ®r )V, C ®@r 2Z).

Lemma 3.1. Assume that X,Y, Z C Ac(R) and M € Bc(S). Then the following are equivalent:
(1) M e Gi(X,), 2).
(2) Homg(C,M) € G(X, ), 2).

Proof.
(D=Q2) IfM € Gi1(X,), 2Z), then there exists an exact sequence
H:--- > CQrX;1 —> CQr Xy — C®RXO—> C®RX1 — ..

with X', X; € X and M = Im(C®r Xo — C®rX") such that Homg(C®g Y, —) and Homg(—, C®r Z)
leave the sequence exact forany Y € YV and Z € Z. Since M € B¢(S) and C ®r X € Bc(S), we have
that every kernel and cokernel in H are in B¢(S) by [12, Corollary 6.3]. Note that X < Ac(R), then
Homg(C,C®g X) = X for any X € X.If we apply the functor Homg(C, —) to the exact sequence H, we
obtain an exact sequence

F:ooo5>X > Xo> X0 > X > ..
with Homg(C, M) = Im(Xy — X°). Given any Y € Y and Z € Z, we get that both
Homg(C ®r Y, H) = Hompg(Y, Homg(C, H)) = Homg(Y,F)
and
Homg(H, C ®r Z) = Homg(F, Homg(C, C ®r Z)) = Homg(F, Z)
are exact. This means that Homg(C, M) € G(X, ), Z).

(2)=(1) If Homg(C, M) € G(X, ), Z), then there exists an exact sequence
F:-~—>X1—>X0—>X0—>X1—>

with X%, X; € X and Homg(C, M) = Im(Xo — X°) such that Homg(Y, —) and Homg(—, Z) leave the
sequence exact forany Y € )V and Z € Z. Given that M € B¢(S), then Homg(C, M) € Ac(R). Note
that X € Ac(R), then every kernel and cokernel in I are in A¢(R) by [12, Corollary 6.3]. Applying the
functor C @ — to the exact sequence IF, we obtain an exact sequence

H: - > C®rX;—> CrXo— CRRrRX" > Cp X! —> ---

such that M = Im(C ®g Xo — C ®g X°). Given any Y € ) and Z € Z, we have that both
Homg(C ®g Y,H) = Homg(Y,F) and Homg(H, C ®z Z) = Homg(F, Z) are exact. This means that
M e Gi(X, ), 2). O
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Lemma 3.2. Assume that X,Y,Z C Ac(R) and M € Ac(R). Then the following are equivalent:
(1) M e GX, ), 2).
(2) COrM € G (X,), 2).

Proof.
(1)=(2) Since M € Ac(R), we have C @ M € Bc(S). Note that Homg(C,C g M) = M €
G(&X,Y, Z) by hypothesis, then Lemma 3.1 implies that C @r M € G1(X, ), 2).

(2)=(1) Since M € Ac(R), it follows that M = Homg(C, C®rM). Note that C®QrM € G (X, V, 2),
in view of Lemma 3.1, we conclude that Homg(C,C @ M) =M € G(X, ), Z). O

Theorem 3.3. Assume that X,Y, Z C Ac(R). There is an equivalence of categories:

C®r—
Ac(R)NG(X, Y, Z) Bc(S) NGi1(X, Y, 2).

Homg(C,—)

Proof. By Lemmas 3.1 and 3.2, it is obvious that the functor C ® g — maps Ac(R) N G(X, ), 2) to
Bc(S) NG1(X, Y, 2), also the functor Homg(C, —) maps B¢ (S) NG (X, Y, Z) to Ac(R) NG(X, Y, Z).
Moreover, note that if M € Ac(R)NG(X, ), Z)and N € Bc(S) NG (X, ), Z), then there exist natural
isomorphisms M = Homg(C, C ®r M) and N = C @ Homg(C, N). Therefore the desired equivalence
of categories follows. O

Let W be a class of modules,and 0 - N — G — M — 0 an arbitrary exact sequence of modules.
According to [12], the class WV is closed under extensions provided that both M and N are in W, then
G € W. The class W is closed under kernels of epimorphisms if whenever G and M are in WV, then so
is N. Finally, W is closed under cokernels of monomorphisms if whenever N and G are in W, then so is
M. The class W is projectively resolving if VW contains every projective module, and W is closed under
extensions and kernels of epimorphisms. The notion of injectively resolving is defined dually.

Proposition 3.4. Let M be a module. If G(X,Y, 2) is closed under extensions, then M has a left
G(X, Y, Z)-resolution if and only if M has a left X -resolution.

Proof. Note that X C G(X,), Z), so if M has a left X'-resolution, then M has a left G(X, ), Z)-
resolution. Conversely, let 0 - N — Gy — M — 0 be an exact sequence with Gy € G(&X, ), 2)
and N having a left G(X, ), Z)-resolution. Since Gy € G(X,), Z), there exists an exact sequence
0> D — X9 > Gy »> OwithXy € Xand D € G(X,), Z). Consider the following pullback
diagram

0 0

D=——D
0 H Xo M 0
0 N Go M 0
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Since N has a left G(X, ), Z)-resolution, there exists an exact sequence 0 - B — G; —> N—0
with G; € G(X,), Z) and B having a left G(&X, ), Z)-resolution. Consider the following pullback
diagram

0 0
B B
0 D L Gy 0
0 D H N 0
0 0

Note that D,G; € G(&X,), Z) from the middle horizontal sequence, it follows that L € G(X, ), 2)
since G(X, Y, 2) is closed under extensions by hypothesis. Then H has a left G(&X, Y, Z)-resolution.
Note that 0 - H — Xo — M — 0 is exact from the first diagram. By repeating the preceding process,
we have that M has a left X'-resolution. O

Lemma 3.5. Assume that G(X,), Z) is projectively resolving. Consider the following exact sequences of
modules

0—-K,—-G,-1—>--—>G  —>G—>M-—0,

0—->L,—>Qu1—>-"—>Q > Q—>M—0,

where each G; and Q; are in G(X, Y, Z). Then K,, € G(X, Y, 2) ifand only if L, € G(X, Y, 2).

Proof. Suppose G(X, Y, Z) is projectively resolving. It is easy to check that G(&X, Y, Z) closed under
countable direct sums. Moreover, G(X, ), Z) is closed under direct summands by [19, Theorem 2.9].
Then the stated result is a direct consequence of [1, Lemma 3.12]. O

Remark 3.6.

(1) Most of the results in [19], the assumptions X C Y and X C Z are used. However, upon reading
the proof of [19, Theorem 2.9], it doesn't seem that the containments assumptions are needed.
So we don’t have to assume that ¥ € Y and X € Z in Lemma 3.5.

(2) InLemma 3.5, we assume that G(&X', V), 2) is projectively resolving. On the one hand, this assumption
ensures the existence of the left G(X, ), Z)-resolution of any module M; on the other hand, it
guarantees the rationality of the G(X, Y, Z)-projective dimension, which is defined in the below.
Lemma 3.5 implies that if G(X,)), Z) is projectively resolving, then the G(X, ), Z)-projective
dimension is independent of the choice of the left G(X, ), Z)-resolutions.

At this point, we introduce the G(X, ), Z)-projective dimension.
Definition 3.7. Suppose G(X,), Z) is projectively resolving. The G(X, ), Z)-projective dimension,

G(X, Y, Z2)-pd(M), of a module M is defined by declaring that G(X, Y, Z)-pd(M) < nifand onlyif M
has aleft G(X, ), Z)-resolution

0—)Gn—)Gn_1—)-~-—)G1—)G0—)M—>0.
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If no such finite sequence exists, define G(X, Y, Z)-pd(M) = oo; otherwise, if # is the least such integer,
define G(&X, Y, Z)-pd(M) = n.

Proposition 3.8. Assume that G(X, Y, 2) is projectively resolving. Let M be a left S-module with finite

G1(X, Y, Z)-projective dimension and n a nonnegative integer. Then the following are equivalent:

(1) G1(X, ), Z)-pd(M) < n.

(2) There exists an exact sequence 0 > CQrX, — -+ > CQrX2 > CQrX; - G —> M — 0 with
GeGi(X, Y, Z)and X; € X foralll <i<n.

(3) For any exact sequence of left S-modules 0 — K, — G,—1 — -+ - G — Gy > M — 0 with
G €GX,V,2)forall0 <i<n-—1thenK, € Gi(X, ), 2).

Proof.
(2)=(1) is obvious. (3)<>(1) is clear by Lemma 3.5.

(1)=(2) Assume that G (X, Y, Z)-pd(M) < n. Then there exists an exact sequence

0— GHLG,,_I—>-~-—>G0—>M—>O
with G; € G1(X,), 2) forany 0 < i < n. Since G, € Gi1(X,), Z), there exists an exact sequence
0— G, LN C®rXy, > N — 0withX, € X and N € G (X, Y, Z). Consider the pushout diagram

0 0

0 0

Then D, € G1(X, ), Z) since G1(X, ), Z) is closed under extensions by hypothesis. Clearly, f and h
have isomorphic cokernels, so we have the following exact sequence

h
0->CQRrX,—>Dy 1—>Gy2—>---—>Gy— M~— 0.

Continuing this process yields the sequence. O

Let n be a nonnegative integer. If G (X, )V, Z) is projectively resolving, we use Gp(X, Y, Z) <, to denote
the class of modules with G(X, ), Z)-projective dimension at most #. In particular, if G; (X, ), Z) is
projectively resolving, G; (X, ), Z)<, denotes the class of left S-modules with G, (X, ), Z)-projective
dimension at most #. The symbol Pc(S) stands for the class C @g P with P a projective left R-module.

Theorem 3.9. Let n be a nonnegative integer and X, Y, Z € Ac(R). Ifboth G(X, Y, Z) and G1 (X, ), Z)
are closed under extensions and kernels of epimorphisms, and X contains every projective left R-module,
then there is an equivalence of categories:

COr—
Ac(R) N Gp(X, Y, Z)<n Be(S) NGi1(X, Y, Z) < -
Homg(C,—)
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Proof. Since X contains every projective left R-module, we have that the left G(X, ), Z)-resolution of
any module M exists by Proposition 3.4. Note that sCp is a faithfully semidualizing bimodule, then the
class Pc(S) is projectively resolving by [12, Corollary 6.4]. Thus for any projective left S-module N, we
have N € Pc(S) € C® & C G1(X,), Z), and so the left G; (X, ), Z)-resolution of any module M
always exists. Moreover, both G(X, Y, Z) and G, (X, ), Z) are projectively resolving.

If n = 0, the result is true by Theorem 3.3. In the following, we assume that n > 1.

Let M € Ac(R) N Gp(X,), Z)<y,. Then by Proposition 3.8 with C = gRg, there exists an exact
sequence of R-modules

0—-X,-X1—->-—->X1—->G->M-=0

with G € G(X, ), Z) and X; € X forany 1 < i < n. By [12, Corollary 6.3], we have that G and every
cokernel in the above sequence are in A¢(R). Applying the functor C @ — to the exact sequence, we
get the following exact sequence

0>CRrX;, >CRrXy_1—> - —>CRrX] >CQQRrG—>CQrM—0

with C ®g G and all C ®p Xj are in G1(X, Y, Z) N Bc(S) by Lemma 3.2, which means that C g M €
Be($) N Gi(X, Y, Z) <.

Conversely, let N € Bc(S) N G1(X, Y, Z)<,. Then by Proposition 3.8, there exists an exact sequence
of S-modules

0> CRrX, >CRrXy1—> - —>CQRrX1>G—>N—->0

with G € G1(X, Y, Z) and X; € X forany 1 < i < n. By [12, Corollary 6.3], we have that G and every
kernel in the above sequence are in B¢(S). Applying the functor Homg(C, —) to it, we have the following
exact sequence of R-modules

00— X, > X,—1 > -+ —> X; > Homg(C,G) - Homs(C,N) — 0.

Since G € Gi1(X,),2) N Bc(S), we have that Homg(C,G) € G(X,), Z) by Lemma 3.1. Thus
Homg(C,N) € Ac(R) N Gp(X, Y, Z)<p.

Moreover, takeany M € Ac(R)NGp(X, Y, Z)<pand N € Bc(S)NG1 (X, Y, Z) <y, there exist natural
isomorphisms M = Homg(C, C ®r M) and N = C @ Homg(C, N). Therefore the desired equivalence
of categories follows. O

We use P(R), F(R), Z(S) and FZ(S) to denote the classes of projective left R-modules, flat left
R-modules, injective left S-modules and FP-injective left S-modules, respectively. Then P(R) € F(R) C
Ac(R) and Z(S) € B¢(S) by [12, Lemma 4.1].

Corollary 3.10. Let n be a nonnegative integer. If ¥ = Y = P(R) € Z € Ac(R), then there is an
equivalence of categories:

COr—

Ac(R) N Gp(X, Y, Z)<n G1(X, YV, Z) <p.
Homg(C,—)

Proof. Clearly, G1(X,Y,2Z) < Bc(S) by [10, Proposition 3.5]. Then G1(X, Y, Z)<, S Bc(S) by

[12, Corollary 6.3]. Moreover, G(X, ), Z) is closed under extensions and kernels of epimorphisms by
[19, Corollary 2.5]. Take any Z € Z and for any pair of projective left R-modules P;, P, we have

Exth(C ®r P1,C ®g P2) = Exth(P1,Py) = 0
and

Exts(C ®g P2, C ®r Z) = Exth (P2, Z) = 0,
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for any i > 1, by [12, Theorem 6.4]. According to [19, Corollary 2.5], we obtain that G, (X,), Z) is
closed under extensions. Furthermore, given any exact sequence H : 0 - M — Q — N — 0 with
QN € G1(X, Y, Z), we have M € Bc(S) by [12, Corollary 6.3], then Homg(C, H) is exact. In view of
[12, Lemma 6.1], we conclude that Homg(C ®r P, H) is exact for any projective left R-module P. Thus
G1(X, ), Z) is closed under kernels of epimorphisms by [19, Corollary 2.5]. Then the result follows from
Theorem 3.9. O

Suppose G(X, Y, Z) is injectively resolving. Dually, we can define G(&X, ), Z)-injective dimension,
G(X, Y, 2)-id(M), of M.

Let n be a nonnegative integer. If G(X,)), Z) is injectively resolving, we use G;(X, Y, Z)<, to
denote the class of modules with G(X, ), Z)-injective dimension at most n. Let X, ), 2 < Bc(S).
Denote the Gorenstein category G(Homg(C, X), Homs(C, V), Homs(C, Z)) by G2(&X, Y, Z). In partic-
ular, if G,(X, ), Z) is injectively resolving, G»(X, Y, Z)<, stands for the class of left R-modules with
G2(X, ), Z)-injective dimension at most .

We note that all the foregoing results have the dual version. So we have the following results.

Theorem 3.11. Assume that X,), Z C Bc(S), then there is an equivalence of categories:

C®r—
Ac(R) N G2(X, Y, 2) Be(S) NGX, Y, 2).
Homg(C,—)

Theorem 3.12. Let n be a nonnegative integer and X,Y, Z C B¢(S). Ifboth G(X, Y, Z) and Go(X, Y, Z)
are closed under extensions and cokernels of monomorphisms, and X contains every injective left S-module,
then there is an equivalence of categories:

C®r—
Ac(R) N Go(X, Y, Z)<n Bc(S) NG (X, Y, Z) <n.
Homg(C,—)

Corollary 3.13. Let n be a nonnegative integer. If X = Z = I(S) € Y C Bc(S), then there is an
equivalence of categories:

COr—

G (X, Y, Z)<n Bc(S) NG (X, Y, Z)<n.
Homg(C,—)

4. Applications and examples

As the applications of our results, in this section, we give the following examples.

Example 4.1. If ¥ = Y = Z = P(R), then G(X, )Y, Z) = G-Proj, the subcategory of Gorenstein
projective left R-modules, and G (X,), Z) = Gc-Proj, the subcategory of C-Gorenstein projective
left S-modules in [10]. Also, if X = Y = Z = Z(S), then G(X, ), Z) = G-Inj, the subcategory
of Gorenstein injective left S-modules, and G»(X,), Z) = G¢-Inj, the subcategory of C-Gorenstein
injective left R-modules in [10]. According to Corollary 3.10 and Corollary 3.13, we obtain the following
equivalences of categories:

C®r—
Ac(R) N G-Proj<y, Ge-Proj<y,
Homg(C,—)
C®r—
Ge-Inj<y Bc(S) N G-Inj<y.

Homg(C,—)
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This is the result in [10, Corollary 3.12]. In particular, if n = 0, we obtain the result in [10, Theorem
3.11] as follows

CQr—
Ac(R) N G-Proj Gc-Proj,
Homg(C,—)
CQr—
Go-Inj Bc(S) N G-Inj.
Homg(C,—)

Recall from [4] that an R-module M over a ring R is said to be of type FP, if M has a projective
resolution by finitely generated projective modules, and a left R-module N is called level if TorX (M, N) =
0 for all right R-modules M of type FP,. Denote by L(R) the class of level left R-modules. A left
R-module M is called Gorenstein AC-projective [3, 4] if M € G(P(R), P(R), L(R)). A left S-module
N is called absolutely clean [4] if Ext{(M,N) = 0 for all left S-modules M of type FP. Denote by
AC(S) the class of absolutely clean left S-modules. A left S-module M is called Gorenstein AC-injective
[4] if M € G(Z(S), AC(S),Z(S)).

Lemma 4.2 ([13, Proposition 3.3]). L(R) € Ac(R) and AC(S) < Bc(S).

Example 4.3. If ¥ = Y = P(R) and Z2 = L(R), then G(X,), Z) = GP ac(R), the subcategory of
Gorenstein AC-projective left R-modules in [3, 4]. Denote by QP%C (S) the subcategory Gi (X, ), Z).
Also, it ¥ = Z = Z(S) and Y = AC(S), then G(X, ), Z) = GT 4c(S), the subcategory of Gorenstein
AC-injective left S-modules in [3, 4]. Denote by gzjc (R) the category G>(&X, ), Z). According to
Corollaries 3.10 and 3.13, we obtain the following equivalences of categories:

C®r—

Ac(R) N GP ac(R)<n GPG () <ns
Homg(C,—)
C®r—
GIScR)<n Bc(S) N GT ac(S)<n-
Homg(C,—)

In particular, if n = 0, we obtain the following equivalences of categories:

COr—
Ac(R) N GP ac(R) GPS(S),
Homg(C,—)
CRr—
GTGc(R) Bc(S) N GT Ac(S).
Homg(C,—)

Example 44. If ¥ = Y = P(R) and Z = F(R), then G(X,),Z) = DP(R), the subcategory
of Ding projective left R-modules in [6, 18], and G, (X, Y, Z) = D(Pc(S)), the subcategory of Ding
C-projective left S-modules in [20]. Also, if ¥ = Z = Z(S) and Y = FZI(S) < AC(S) € Bc(S) by
Lemma 4.2, then G(X, ), Z) = DI(S), the subcategory of Ding injective left S-modules in [15, 18],
and G, (X, Y, Z) = D(Zc(R)), the subcategory of Ding C-injective left R-modules in [20]. According to
Corollaries 3.10 and 3.13, we obtain the following equivalences of categories:

C®r—
Ac(R) NDP(R)<n D(Pc(8) <n
Homg(C,—)
C®r—
D(Zc(R)) <n Be(S) N DL(S) <p.

Homg(C,—)
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This is the result in [20, Theorem 4.4]. In particular, if n = 0, we obtain the following equivalences of
categories:

COr—
Ac(R) N DP(R) D(Pc(8)),
Homg(C,—)
C®r—
D(Zc(R)) Bc(S) N DI(S),
Homg(C,—)

which appeared in [20, Proposition 4.2].
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