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Abstract—In this paper, we explore optimization-based and
data-driven solutions in a reconfigurable intelligent surface (RIS)-
aided multi-user mobile edge computing (MEC) system, where
the user equipment (UEs) can partially offload their computation
tasks to the access point (AP). We aim at maximizing the total
completed task-input bits (TCTB) of all UEs with limited energy
budgets during a given time slot, through jointly optimizing the
RIS reflecting coefficients, the AP’s receive beamforming vectors,
and the UEs’ energy partition strategies for local computing
and offloading. A three-step block coordinate descending (BCD)
algorithm is first proposed to effectively solve the non-convex
TCTB maximization problem with guaranteed convergence. In
order to reduce the computational complexity and facilitate
lightweight online implementation of the optimization algorithm,
we further construct two deep learning architectures. The first
one takes channel state information (CSI) as input, while the
second one exploits the UEs’ locations only for online inference.
The two data-driven approaches are trained using data samples
generated by the BCD algorithm via supervised learning. Our
simulation results reveal a close match between the performance
of the optimization-based BCD algorithm and the low-complexity
learning-based architectures, all with superior performance to
existing schemes in both cases with perfect and imperfect input
features. Importantly, the location-only deep learning method
is shown to offer a particularly practical and robust solution
alleviating the need for CSI estimation and feedback when line-
of-sight (LoS) direct links exist between UEs and the AP.

Index Terms—Mobile edge computing, reconfigurable intelli-
gent surface, receive beamforming, energy partition, deep learn-
ing.

I. INTRODUCTION

A. Motivations and Prior Works

The increasing data rates provided by 5G and beyond
technologies, together with the proliferation of Internet-of-
things (IoT) devices, have recently given rise to massive con-
nectivity communications. Accompanied by a wide range of
emerging computation-intensive applications, the computing
and processing demands for user equipment (UEs), e.g., smart
devices and IoT sensors, are growing unprecedentedly. In order
to liberate the resource-limited UEs from heavy computation
workloads and provide them with high-performance low-
latency computing services, mobile edge computing (MEC)
promotes to use cloud computing capabilities at the edge
of mobile networks through integrating MEC servers at the
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wireless access points (APs) [2]. Hence, UEs’ computation-
intensive tasks can be offloaded and completed at the adjacent
APs with less cost, energy and time.

Extensive works have contributed to the performance en-
hancement of applying MEC in various wireless networks, ei-
ther improving the energy efficiency or reducing the execution
latency through jointly optimizing the radio and computational
resources [3–8]. A multicell MEC system was considered
in [3], where users’ energy consumption was minimized
through joint resource allocation. Later in [4], a game-theoretic
algorithm was proposed to maximize the cell load as well
as minimize the cost of time and energy. The offloading
priority function was defined in [5] to show the relationship
between the offloading strategy and resource allocation. A
wireless powered MEC system was investigated in [6], where
user cooperation was utilized to counteract the double-near-far
effect. Work in [7] addressed the joint resource allocation of a
multi-user multi-server MEC scenario to maximize the system
utility. The complementary benefits of edge and central cloud
computing were studied in a two-tier heterogeneous cloud
computing network in [8].

In order to further enhance the uplink offloading perfor-
mance of the resource-limited UEs, great attentions have
been drawn to the technology of reconfigurable intelligent
surface (RIS) recently, due to its advantages of low cost, easy
deployment, fine-grained passive beamforming and directional
signal enhancement or interference nulling [9–11]. Through
controlling the reflecting elements on the surface, RISs can
be reconfigured to provide a more favourable wireless prop-
agation environment for communications. Clearly, leveraging
RISs into MEC systems is a cost-effective and environment-
friendly way to facilitate UEs’ computation offloading.

Several pioneer RIS-aided MEC works have been done to
explore the potential benefits of utilizing RISs in MEC systems
[12–15]. A multi-user RIS-aided MEC system was considered
in [12], where the execution latency was minimized with joint
optimization on resource allocation and RIS coefficients design
in an iterative way. It was verified that significant performance
improvement can be attained compared to the case without
RIS. The advantages of RIS in directional beamforming were
exploited for both uplink task offloading and downlink results
downloading in [13], where the power minimization problem
was solved with an iterative block-structured algorithm. Simi-
larly, both uplink and downlink transmissions were considered
in the RIS-aided MEC work [14], while the system utility
was maximized iteratively to reduce the cost of energy and



time. Later in [15], RIS was used in a wireless powered MEC
system, and the energy consumption was minimized through
a two-step iterative method.

For RIS-aided MEC systems, the formulated performance
enhancement problems are typically non-convex with coupled
optimization variables. Hence, iterative algorithms are usually
necessary for jointly optimizing the radio and computational
resource allocation as well as the RIS coefficients design. It
is true that iterative algorithms may be capable of providing
near-optimal solution even with guaranteed convergence, but
they have very high computational complexity which require
long execution time and thus may hinder their utilization
in practical networks. To tackle this issue, deep learning
architectures provide a promising way to achieve lightweight
online implementation via offline training [16–18].

Note that deep learning methods have been investigated in
some MEC systems to simplify the optimization algorithm
or fulfill online implementations [19–22]. A deep learning-
based offloading strategy was designed in [20] to minimize
the weighted energy consumption and latency. The deep re-
inforcement learning (DRL) was leveraged in [21] for smart
resource allocation of a software defined network (SDN)-
enabled MEC architecture, also in [22] for online offloading
decisions and resource allocation of a wireless powered MEC
system. Recently, the DRL was also used in the RIS-aided
architectures to enhance the security [23] and maximize the
sum rate of the downlink communications [24]. In [25],
a convolutional neural network (CNN) was constructed for
channel estimation of a large RIS-aided millimeter-wave (mm-
Wave) communication system.

B. Our Contributions

As per the above literature, deep learning approaches are
promising to offer low-complexity solutions for the traditional
MEC-related systems or RIS-aided downlink communication
architectures. However, the potentials of deep learning meth-
ods in simplifying the optimization algorithms of complex
RIS-aided MEC systems have not been explored in the existing
literature. In this paper, a multi-user RIS-aided MEC architec-
ture with multiplexing computation offloading is considered,
where the RIS is installed to constructively control the interfer-
ence and enhance the overall performance of UEs. We not only
propose an iterative optimization algorithm to efficiently solve
the formulated problem with guaranteed convergence, but also
construct two deep learning architectures to facilitate online
implementations of the proposed algorithm with significantly
reduced complexity. To the best of our knowledge, this is the
first work that leverages the data-driven approach in the RIS-
aided MEC systems. Also, the proposed optimization-based
algorithm is used to train the deep neural networks (DNNs) for
efficient optimization and lightweight online implementation.

Our main contributions are summarized as follows:
• A RIS-aided MEC architecture with uplink multiplexing

offloading is leveraged to enhance the performance for
maximizing the total completed task-input bits (TCTB)
of all the resource-limited UEs. Partial computation
offloading is adopted for the RIS-aided MEC system in

a multiplexing way, where the UEs can partially offload
their computation task-input bits simultaneously. We aim
at maximizing the TCTB of all the UEs with limited
energy supply budgets during a given time slot, which
maximizes the computation efficiency in both time and
energy, through jointly optimizing the RIS reflecting
coefficients, the AP’s receive beamforming vectors, and
the UEs’ energy partition strategies for local computing
and computation offloading. The utilization of RIS is
capable to enhance the performance of maximizing TCTB
by constructively reconfiguring favourable propagations
for all the UEs.

• The RIS reflecting coefficients design, receive beam-
forming design, and energy partition optimization for
maximizing the TCTB are effectively addressed through
a three-step block coordinate descending (BCD) opti-
mization algorithm with guaranteed convergence. The
non-convex property and strongly coupled optimization
variables of the formulated TCTB maximization problem
make it difficult to obtain the global optimal solution.
To address this issue, we propose a three-step BCD op-
timization algorithm to effectively separate the coupling
and solve the problem by addressing three sub-problems
iteratively. The DC (difference of convex functions) pro-
gramming method is leveraged to solve the first and third
sub-problems respectively for RIS reflecting coefficients
design and receive beamforming design with guaranteed
convergence, while the optimal solution of the second
sub-problem for receive beamforming design is obtained
via eigenvalue decompositions.

• A CSI-based deep learning architecture with DNN-CSI
is constructed to facilitate the online implementation of
the proposed optimization-based BCD algorithm with
significantly reduced complexity. Supervised learning is
adopted to train the DNN-CSI using the data samples
generated by the proposed BCD algorithm. It is shown
that this CSI-based data-driven method can sufficiently
capture the mapping of the BCD algorithm to the opti-
mization solution, with lightweight inference complexity.
Satisfactory and stable performance can be achieved in
both scenarios without and with strong line-of-sight (LoS)
direct links between the UEs and the AP.

• A location-only deep learning architecture is further
constructed that can effectively predict the solution of
the proposed BCD algorithm without the need for pilot
channel estimation and feedback during online infer-
ence. This data-driven method is also based on supervised
learning, and it performs well when LoS direct links are
available for UEs. The complexity of both training and
testing can be greatly reduced compared with the CSI-
based learning architecture since only UEs’ locations are
needed as the input feature. Thus, more lightweight online
implementation can be achieved.

• High effectiveness and robustness of the CSI-based
and the location-only deep learning architectures to the
uncertainty of the input CSI and UEs’ locations are val-
idated. The scenarios with corrupted input features to the
two proposed deep learning architectures are considered



to validate their effectiveness and robustness.
Simulation results are presented to evaluate the performance

of the proposed BCD optimization algorithm and the two deep
learning architectures. It is confirmed that the proposed BCD
algorithm highly outperforms the other three traditional bench-
marks. In addition, the CSI-based deep learning architecture
can always approach the performance of the BCD algorithm in
both scenarios without and with LoS direct links between the
UEs and the AP. It is noticeable that the location-only deep
learning architecture can replace the CSI-based architecture to
provide a satisfactory data-driven solution in the scenario with
LoS direct links, with much less required overheads. Besides,
it is shown that the constructed two deep learning architectures
can effectively emulate the proposed BCD algorithm even
in the more practical scenarios with uncertainty in the input
information of CSI and UEs’ locations.

The rest of this paper is organized as follows. Section II
introduces the considered system model and presents the
corresponding problem formulation. The BCD algorithm is
proposed in Section III to provide an optimization solution to
the formulated problem, while two deep learning architectures
are shown in Section IV to offer the learning-based solutions.
The implementation setting and complexity reduction of the
deep learning approaches are discussed in Section V. Sec-
tion VI provides the simulation results, and we conclude our
paper in Section VII.

Notations—In this paper, the upper and lower case bold
symbols denote matrices and vectors, respectively. The nota-
tions (·)T and (·)H represent transpose and conjugate transpose
for vectors or matrices. In addition, ⊗ denotes the Kronecker
product. Tr {A} is the trace of square matrix A. Also, eig {A}
denotes the set of all the eigenvalues of A, and eigvec {·} gives
the eigenvector for a given eigenvalue of A. ∇Xf(X) denotes
the Jacobian matrix of function f(X) with respect to (w.r.t.)
the matrix X, and ∂Xg(X) denotes a subgradient of function
g(X) w.r.t. X. ⟨X1,X2⟩ , R{tr(XH

1 X2)}, where R{·} is
the real-value operator. Finally, diag{x} is the diagonal matrix
formed by the elements of vector x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided MEC system as shown in Fig. 1,
which consists of N single-antenna ground UEs, one RIS with
K reflecting elements, and one M -antenna AP. The RIS can
be flexibly installed on the surrounding building walls, and it
is under the control of the AP through a wireless controller to
dynamically adjust the phase shift of each reflecting element.
By choosing a desirable location of the RIS, it is possible to
achieve LoS connections between the RIS and the AP as well
as the UEs within a certain area.

A. Completed Task-Input Bits (CTB) with Partial Offloading

Each UE n ∈ N = {1, 2, . . . , N} has intensive computation
task-input bits (e.g., program codes and input parameters) to be
dealt with, but with a limited energy budget dedicated for com-
pleting these task bits, denoted as En in Joules (J). A partial
offloading mode is adopted to handle UEs’ computation tasks,
which are suitable to the augmented reality (AR) applications
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Fig. 1. An illustration of the RIS-aided MEC architecture, where a K-
element RIS assists the multiplexing computation offloading of N UEs. The
phase shifts of the RIS elements can be adaptively adjusted by the AP through
the dedicated control channel, so as to refine the signal propagations.

mentioned in [2]. For these kinds of computation tasks, UEs’
task-input bits can be arbitrarily divided to facilitate parallel
operations at UEs for local computing and offloading to the
AP for remote computing. Hence, the accounted computation
energy consumption of each UE includes that both used
for local computing and computation offloading. The grid-
powered AP is co-located with a powerful MEC server for
helping UEs compute their offloaded tasks and it is also
capable of downloading UEs’ computation results, both in
negligible time.1 We use Cn to represent the amount of re-
quired computing resource, i.e., the number of CPU cycles, for
completing 1-bit of UE n’s input data. Our aim is to maximize
the TCTB of all UEs each with a limited energy budget
during a given time slot T , which is equivalent to maximizing
the computation efficiency of the RIS-assisted MEC system,
including both energy efficiency and time efficiency referring
to computation rate [26–29].

We first introduce a partition parameter an ∈ [0, 1] for UE
n ∈ N , and anEn J of energy will be used for computation
offloading while (1 − an)En J of energy will be used for
local computing. In this case, the transmit power of UE n for
computation offloading is given as

pn =
anEn

T
, anẼn, ∀n ∈ N , (1)

with Ẽn = En/T for n ∈ N .
Let sn denote the task-input data-bearing signal transmitted

by UE n ∈ N for computation offloading with |sn| = 1. Note
that all the UEs with offloading requirements transmit their
signals simultaneously in a multiplexing way within the given
time slot, and thus we can express the corresponding received

1In this paper, we ignore the execution latency at the MEC server due
to the fact that the MEC server is grid-power supplied and has a super-
high computing capability, and thus the corresponding execution latency is
negligible compared with that consumed at the UEs [5, 6, 8, 15, 26–30]. In
addition, we assume that the UEs’ computation results are with very small
sizes, e.g., a few command bits, which can be ignored especially compared
with their task-input bits, and thus the AP with a sufficient power supply can
transmit the results back to UEs with negligible time [5–8, 12, 14, 15, 26–28].



signal y ∈ CM×1 at the AP as [31]

y =
N∑

n=1

(HAPΦhr,n + hd,n)
√
pnsn + n, (2)

where hd,n ∈ CM×1 is the direct link between UE n and
the AP, hr,n ∈ CK×1 indicates the relay channel between
UE n and the RIS, and HAP ∈ CM×K represents the channel
between RIS and the AP. We assume that the channels {hd,n},
{hr,n} and HAP are quasi-static within the given time slot.
Additionally, Φ = diag{ϕ} indicates the reflection-coefficient
matrix of the RIS, where ϕ = [ϕ1, . . . , ϕK ]T and ϕk = ejθk

being the phase shift of the k-th reflecting element of the
RIS with θk ∈ [0, 2π] for k ∈ K = {1, 2, . . . ,K}. Also,
n ∼ CN (0, σ2IM ) is the the additive white Gaussian noise
(AWGN) at the AP with σ2 being the noise power. The linear
beamforming strategy is then adopted at the AP to decode the
UEs’ transmit signals, and wn ∈ CM×1 is the specific receive
beamforming vector for UE n. Thus, the estimated signal for
UE n can be given as

ŝn = wH
ny (3)

= wH
n

N∑
n=1

(HAPΦhr,n + hd,n)
√
pnsn +wH

nn, ∀n ∈ N .

Based on the analysis above, we can obtain the uplink signal-
to-interference-plus-noise ratio (SINR) for offloading UE n’s
tasks as

γn(a,wn,ϕ) = (4)

anẼn|wH
n (HAPΦhr,n + hd,n)|2

N∑
i=1,i̸=n

aiẼi|wH
n (HAPΦhr,i + hd,i)|2 + σ2∥wH

n∥2
, ∀n ∈ N ,

where we denote an energy partition vector a = [a1, . . . , aN ].
Then, the CTB of UE n through computation offloading can
be expressed as [32]

Roff
n (a,wn,ϕ) = BT log2(1 + γn(a,wn,ϕ)), ∀n ∈ N , (5)

where B is the given bandwidth shared with all the UEs.
As for the case of local computing, the dynamic voltage

and frequency scaling (DVFS) technique is adopted at all
the UEs for increasing the computation energy efficiency
through adaptively controlling the CPU frequency used for
computing [33]. Thus, the computation energy consumption
of UE n ∈ N can be expressed as Tκnf

3
n, where κn

is the effective capacitance coefficient of UE n, and fn is
the CPU frequency of its processing server. Also, we have
(1− an)En = Tκnf

3
n, and thus we can calculate fn as

fn = 3

√
(1− an)En

Tκn
, ∀n ∈ N . (6)

Hence, the CTB of UE n for local computing can be given as

Rloc
n (an) =

fnT

Cn
=

T

Cn

3

√
(1− an)Ẽn

κn
, ∀n ∈ N . (7)

B. Problem Formulation
We aim at maximizing the TCTB of all the UEs with

limited energy supply {En}n∈N in the given time slot T ,
including their CTB through both computation offloading and
local computing, where the objective TCTB is maximized
through jointly optimizing the reflection coefficients in ϕ, the
receive beamforming vectors in W = [w1, . . . ,wN ], and the
energy partition parameters in a. As we mentioned before,
maximizing the TCTB in this scenario can maximize the
computation efficiency in both time and energy [26–29]. The
corresponding TCTB maximization problem is formulated as
problem (P0) given below

(P0) : max
a,W,ϕ

N∑
n=1

(
Roff

n (a,wn,ϕ) +Rloc
n (an)

)
(8a)

s.t. an ∈ [0, 1], ∀n ∈ N , (8b)
|ϕn| = 1, ∀n ∈ N , (8c)

which is a non-convex optimization problem since the opti-
mization variables ϕ, W, and a are strongly coupled. Hence, it
is computationally difficult to find the global optimal solution
of problem (P0), similar in [12–15]. To address this issue, we
propose a three-step BCD optimization algorithm to effectively
separate the coupling among the optimization variables and
solve this problem iteratively with guaranteed convergence.

III. BCD OPTIMIZATION ALGORITHM DESIGN

The proposed BCD algorithm is operated in three major
steps by solving three sub-problems iteratively. In the χ-th
(χ = 1, 2, . . . ) iteration, we first design the RIS reflecting
coefficients in ϕ, with given Wχ−1 and aχ−1 obtained in
the previous iteration, and denote the solution as ϕχ. Then,
with given aχ−1 and the obtained ϕχ, we show that the
receive beamforming vectors in W have closed-form optimal
solutions, presented as Wχ. We finally optimize the energy
partition parameters in a with the obtained ϕχ and Wχ,
indicating the solution as aχ. With the given initial W0 and
a0, we can prove that the proposed three-step BCD algorithm
can be performed with guaranteed convergence. Next, we will
demonstrate the details of the BCD optimization algorithm for
solving the three sub-problems in the χ-th iteration.

A. RIS Reflecting Coefficients Design
In the χ-th iteration of the BCD algorithm, we first consider

designing the RIS reflecting coefficients, i,e, ϕ, with given
W = Wχ−1 and a = aχ−1. With the given energy partition
parameters in a, we can equivalently obtain the UEs’ transmit
power as pn = anẼn. Then, the RIS’s reflecting coefficients
design problem (P1) can be described as

(P1) : max
ϕ

N∑
n=1

log2(1 + γn(ϕ)) (9a)

s.t. |ϕk| = 1, ∀k ∈ K, (9b)

which is still non-convex and difficult to deal with directly.
According to the expression of γn(ϕ) in (4) for n ∈ N , we
can re-express |wH

n (HAPΦhr,i + hd,i)|2 as

|wH
n (HAPΦhr,i + hd,i)|2 (10)



=|wH
nHAPdiag(hr,i)ϕ+wH

nhd,i|2

=|hRIS
r,n,iϕ+ hd,n,i|2, ∀n, i ∈ N ,

where hRIS
r,n,i = wH

nHAPdiag(hr,i) ∈ C1×K and hd,n,i =

wH
nhd,i. By defining a matrix Qn,i ∈ C(K+1)×(K+1) as

Qn,i =

[
(hRIS

r,n,i)
HhRIS

r,n,i, (hRIS
r,n,i)

Hhd,n,i

hH
d,n,ih

RIS
r,n,i, 0

]
, ∀n ∈ N , (11)

and a vector ϕ̃ = [ϕ1, . . . , ϕK , ξ]T ∈ C(K+1)×1 with an
auxiliary scalar ξ, we can then re-express |hRIS

r,n,iϕ+hd,n,i|2 =

ϕ̃
H
Qn,iϕ̃ + |hd,n,i|2 = Tr(Qn,iΨ) + |hd,n,i|2, where Ψ =

ϕ̃ϕ̃
H
∈ C(K+1)×(K+1) is a positive semidefinite matrix (PSD)

related to the RIS reflecting coefficients.
Note that each added item in the objective function, i.e.,

log2(1 + γn(ϕ)), can be re-written as

log2(1 + γn(ϕ)) = log2(1 + γn(ϕ̃)) (12)

= log2

(
N∑
j=1

pj |wH
n (HAPΦhr,j + hd,j)|2 + σ2||wH

n ||2
)

− log2

(
N∑

i=1,i̸=n

pi|wH
n (HAPΦhr,i + hd,i)|2 + σ2||wH

n ||2
)

= log2

(
N∑
j=1

pj(Tr(Qn,jΨ) + |hd,n,j |2) + σ2||wH
n ||2

)

− log2

(
N∑

i=1,i̸=n

pi(Tr(Qn,iΨ) + |hd,n,i|2) + σ2||wH
n ||2

)
, F1,n(Ψ)− F2,n(Ψ), ∀n ∈ N ,

where F1,n(Ψ) and F2,n(Ψ) are two concave functions w.r.t.
Ψ. Hence, the problem (P1) can be equivalently transformed
into the following problem (P̃1)

(P̃1) : max
Ψ≽0

N∑
n=1

F1,n(Ψ)− F2,n(Ψ) (13a)

s.t. Ψk,k = 1, ∀k = 1, 2, . . . ,K + 1, (13b)
rank(Ψ) = 1. (13c)

Even though the objective function in (13a) and the rank-one
constraint (13b) make problem (P̃1) non-convex, it is easy to
note that the objective function is a sum of differences of con-
cave functions. Next, we will show that the DC programming
[34] can be leveraged to effectively address the issues of the
objective function and the rank-one constraint.

As for the objective function, in the (l+1)-th (l = 0, 1, . . . )
iteration of the DC programming, the second concave item,
i.e., F2,n(Ψ) for n ∈ N , can be approximated by its linear
upper bound at the point Ψ(l) (the solution obtained from the
previous l-th iteration), which is given as

F2,n(Ψ) ≤ F̂2,n(Ψ;Ψ(l)) = F2,n(Ψ
(l))+ (14)

N∑
i=1,i ̸=n

pi
⟨
(Ψ−Ψ(l)),∇ΨTr(Qn,iΨ)|Ψ=Ψ(l)

⟩
ln 2

(
N∑

i=1,i ̸=n

pi(Tr(Qn,iΨ(l)) + |hd,n,i|2) + σ2||wH
n ||2

) ,

where ∇ΨTr(Qn,iΨ)|Ψ=Ψ(l) denotes the Jacobian matrix of
Tr(Qn,iΨ) w.r.t. Ψ at the point Ψ(l), and it is easy to note
that the equality holds when Ψ = Ψ(l).

As for the rank-one constraint, it can be equivalentlly
transformed into the following form

Tr(Ψ)− ||Ψ||s = 0, (15)

where ||Ψ||s denotes the spectral norm of the PSD matrix Ψ. It
is noticeable that Tr(Ψ) =

∑K+1
k=1 ρk(Ψ) and ||Ψ||s = ρ1(Ψ),

where ρk(Ψ) indicates the k-th largest singular value of Ψ.
Hence, the equality of Tr(Ψ) = ||Ψ||s holds when the rank-
one constraint is satisfied with ρ1(Ψ) > 0 and ρk(Ψ) = 0 for
k = 2, . . . ,K + 1, and vice versa. Similarly, in the (l + 1)-th
iteration of the DC programming, a linear lower-bound of the
convex item ||Ψ||s at the point Ψ(l) can be expressed as

||Ψ||s ≥ ||Ψ(l)||s +
⟨
(Ψ−Ψ(l)), ∂Ψ||Ψ||s|Ψ=Ψ(l)

⟩
(16)

, Υ(Ψ;Ψ(l)),

where ∂Ψ||Ψ||s|Ψ=Ψ(l) is a subgradient of the spectral norm
||Ψ||s w.r.t. Ψ at the point Ψ(l), and the equality holds when
Ψ = Ψ(l). Note that one subgradient of ||Ψ||s at point Ψ(l)

can be efficiently computed as z1z
H
1 , where z1 is the vector

corresponding to the largest singular value of Ψ(l) [35].
With the obtained linear lower bound of ||Ψ||s in (16),

we can generate an approximate rank-one constraint of (15),
which is shown as

Tr(Ψ)−Υ(Ψ;Ψ(l)) ≤ εΨ, (17)

where εΨ is a positive threshold with very small value close
to zero. The approximated rank-one constraint can guarantee
that 0 ≤ Tr(Ψ) − ||Ψ||s ≤ Tr(Ψ) − Υ(Ψ;Ψ(l)) ≤ εΨ, and
the rank-one constraint can be approached with an arbitrary
accuracy by setting εΨ infinitely close to zero.

Hence, we can obtain an approximation problem of (P̃1) at
the (l + 1)-th iteration as

(P1.1) : max
Ψ≽0

N∑
n=1

F1,n(Ψ)− F̂2,n(Ψ;Ψ(l)) (18a)

s.t. Ψk,k = 1, ∀k = 1, 2, . . . ,K + 1, (18b)

Tr(Ψ)−Υ(Ψ;Ψ(l)) ≤ εΨ, (18c)

which is a convex optimization problem and can be readily
solved by the existing convex solvers such as CVX [36],
and the optimal solution can be obtained as Ψ(l+1). Through
choosing Ψ(0) = Ψχ−1 = ϕ̃χ−1ϕ̃

H
χ−1, it is easy to prove that

the feasibility of problem (P1.1) in each iteration l can always
be guaranteed since Ψ(l−1) is always a feasible solution.

Lemma 1. The objective function of problem (P1) in (13a)
monotonically increases with the iteration index l as

F1,n(Ψ
(l+1))− F2,n(Ψ

(l+1)) (19)
(a)

≥F1,n(Ψ
(l+1))− F̂2,n(Ψ

(l+1);Ψ(l))

(b)

≥F1,n(Ψ
(l))− F̂2,n(Ψ

(l);Ψ(l))

=F1,n(Ψ
(l))− F2,n(Ψ

(l)), ∀n ∈ N ,



where (a) comes from the inequality (14) and (b) holds since
Ψ(l) is a feasible solution while Ψ(l+1) is the optimal solution
of problem (P1.1) in (18). Also, the objective function of
problem (P̃1) is upper-bounded by the UEs’ limited energy
budgets. Hence, Problem (P̃1) in (13) as well as its equivalent
form (P1) in (9) can be solved through the DC programming
method with guaranteed convergence [34]. The final solution
of Ψ at the convergence of the (l + 1)-th iteration of the DC
programming is the solution of the BCD algorithm at the χ-th
iteration, i.e., Ψχ = Ψ(l+1).

With the obtained Ψχ, we can retrieve ϕ̃χ by decomposing
Ψχ = ϕ̃χϕ̃

H
χ with denoting ϕ̃χ = [ϕχ,0, ξχ,0]

T, and then
it is easy to obtain the RIS reflecting coefficient vector at
the χ-th iteration of the BCD algorithm as ϕχ = ϕχ,0/ξχ,0
and accordingly Φχ = diag{ϕχ}. In order to facilitate the
following analysis of designing the algorithm, we define the
effective UE-AP channels with given Φ (or ϕ) as

hn(Φ) = HAPΦhr,n + hd,n, ∀n ∈ N . (20)

B. Receive Beamforming Design

With given a = aχ−1 (pn = anẼn, n ∈ N ) and Φ = Φχ,
the sub-problem for optimizing the AP’s receive beamforming
vextors for each UE, i,e, wn for n ∈ N , can be expressed as
the following problem (P2)

(P2) : max
W

N∑
n=1

Roff
n (wn), (21)

which can be equivalently solved by addressing N parallel
sub-problems for each n ∈ N as

(P2.1) : max
wn

γn(wn) =
wH

nΘnwn

wH
nΘ−nwn

, (22)

where Θn = pnhn(hn)
H and Θ−n =

∑N
i=1,i ̸=n pihi(hi)

H +

σ2IM , with the effective channel {hn}n∈N given in (20).

Lemma 2. It is easy to note that problem (P2.1) in (22) is
a generalized eigenvector problem, and its optimal solution
w∗

n should be the eigenvector corresponds to the largest
eigenvalue of the matrix (Θ−n)

−1
Θn. Hence, the optimal

w∗
n of problem (P2.1) for n ∈ N can be given as

w∗
n = eigvec

{
max

{
eig{(Θ−n)

−1
Θn}

}}
. (23)

We then denote the receive beamforming matrix obtained
at the χ-th iteration of the BCD algorithm as Wχ =
[w∗

1, . . . ,w
∗
N ], which is used in the following subsection.

C. Energy Partition Optimization

Here, the sub-problem (P3) for optimizing the energy par-
tition parameters in a with given Φ = Φχ and W = Wχ is
considered, which is given below

(P3) : max
a

N∑
n=1

(
Roff

n (a) +Rloc
n (an)

)
(24a)

s.t. an ∈ [0, 1], ∀n ∈ N . (24b)

Note that problem (P3) is non-convex because of the non-
concave items {Roff

n (a)}n∈N in the objective function (24a).
Actually, Roff

n (a) for n ∈ N can be re-expressed as the
difference of two concave functions as follows

Roff
n (a) , Roff

n,1(a)−Roff
n,2(a−n) = (25)

BT log2

(
N∑
j=1

ajẼj |wH
nhj |2 + σ2||wH

n ||2
)
−

BT log2

(
N∑

i=1,i ̸=n

aiẼi|wH
nhi|2 + σ2||wH

n ||2
)
,

where a−n = [a1, . . . , an−1, an+1, . . . , aN ].
Then the problem (P3) can also be solved with the DC

programming method, where the second concave function
in (25), i.e., Roff

n,2(a−n), can be substituted by its linear
upper bound, so as to obtain a concave approximation of
Roff

n (a). Assuming a(m) is the solution obtained at the m-
th (m = 0, 1, . . . ) iteration of the DC programming, a linear
upper bound of Roff

n,2(a−n) at the point a(m) can be obtained
through the first-order Taylor series expansion as

Roff
n,2(a−n) ≤ R̂off

n,2(a−n;a
(m)
−n ) (26)

= Roff
n,2(a

(m)
−n ) +

N∑
i=1,i̸=n

Roff′

n,2,i(a
(m)
−n ) ∗ (ai − a

(m)
i ),

where Roff′

n,2,i(a
(m)
−n ) = BT

ln 2
Ẽi|wH

nhi|2
N∑

j=1,j ̸=n

a
(m)
j Ẽj |wH

nhj |2+σ2||wH
n ||2

is

the first-order derivative of Roff
n,2(a−n) w.r.t. ai at the point

a
(m)
−n . It is easy to note that the equality holds when a−n =

a
(m)
−n . At the (m+1)-th iteration of DC programming, we aim

at maximizing the following approximation problem

(P3.1) : max
a

N∑
n=1

(
Roff

n,1(a)− R̂off
n,2(a−n;a

(m)
−n ) +Rloc

n (an)
)

(27a)
s.t. an ∈ [0, 1], ∀n ∈ N , (27b)

which is a convex problem and can be easily solved by CVX
[36]. Through solving problem (P3.1) with CVX, the optimal
solution, i.e., a(m+1), can be finally obtained.

Lemma 3. The objective function of problem (P3) in (24a)
is monotonic increasing w.r.t the iteration index m as

Roff
n (a(m+1)) +Rloc

n (a(m+1)
n ) (28)

(a)

≥Roff
n,1(a

(m+1))− R̂off
n,2(a

(m+1)
−n ;a

(m)
−n ) +Rloc

n (a(m+1)
n )

(b)

≥Roff
n,1(a

(m))− R̂off
n,2(a

(m)
−n ;a

(m)
−n ) +Rloc

n (a(m)
n )

=Roff
n (a(m)) +Rloc

n (a(m)
n ),

where (a) comes from the inequality (26) and (b) holds since
a(m) is a feasible solution while a(m+1) is the optimal solution
of problem (P3.1) in (27). Besides, the objective (24a) is upper-
bounded due to the limited energy supply of UEs. In summary,
the convergence of the proposed DC programming method for
solving problem (P3) in (24) can be guaranteed [34]. We can



obtain the final solution of a at the χ-th iteration of the BCD
algorithm when the DC programming converges at the (m+1)-
th iteration, which is denoted as aχ = [a

(m+1)
1 , . . . , a

(m+1)
N ].

D. Benchmark with Zero Forcing (ZF) Receive Beamforming

An important benchmark scheme of our proposed algorithm
is leveraging ZF receive beamforming at the AP, and thus the
receive beamforming matrix obtained in Section III-B should
be replaced as Wχ = [w1,ZF, . . . ,wN,ZF] = H(HHH)−1

in the χ-th iteration of the proposed BCD algorithm, where
H = [h1, . . . ,hN ] ∈ CM×N is the compact matrix of the
UEs’ equivalent channels. For the case of M ≥ N with
independent and identically distributed (i.i.d.) channels, the
interference among the UEs can be eliminated, and thus the
offloading rate of UE n can be rewritten as

Roff
n,ZF(an) = BT log2

(
1 +

anẼn

σ2||wH
n,ZF||2

)
, ∀n ∈ N , (29)

which is concave w.r.t. an. Then the problem (P3) in (24)
is reduced to a convex optimization problem, which can be
optimally solved by CVX in a parallel fashion by addressing
N sub-problems for n ∈ N given below

(P3.2) : max
an

(
Roff

n,ZF(an) +Rloc
n (an)

)
(30a)

s.t. an ∈ [0, 1]. (30b)

It is known that the ZF receive beamforming cannot effectively
deal with the cases when M < N , while our proposed optimal
solution in Section III-B can perform well even in these cases,
which will be validated in the simulation results.

E. Algorithm, Convergence, and Complexity

The proposed three-step BCD optimization algorithm for
solving the original TCTB maximization problem (P0) in (8)
is summarized in Algorithm 1, through which problem (P0)
can be effectively solved with guaranteed convergence [37]. In
fact, the convergence can be easily proved based on Lemma
1, 2, and 3, and we can show that the objective function of
problem (P0) in (8a) gradually increases with the iteration
index χ through updating ϕ, W, and a iteratively.

The computational complexity of the proposed three-step
BCD optimization Algorithm 1 in each iteration mainly lies
in the DC programming for solving problem (P1) to design
the RIS reflecting coefficients and problem (P3) to optimize
the energy partition parameters. Note that the complexity of
solving problem (P1.1) in (18) and problem (P3.1) in (27)
can be estimated as with the order of O(K6) and O(N3.5)
according to the complexity of solving convex problems with
interior point method [38]. Denote the number of iterations
for solving problem (P1) and problem (P3) as L1 and L3,
respectively, thus the total computational complexity of Al-
gorithm 1 can be further given as O(L(L1K

6 + L3N
3.5)),

where L represents the total iteration number of the the BCD
algorithm. It is easy to observe that the complexity of the
proposed algorithm increases dramatically with the number of
RIS reflecting elements and the number of UEs.

Algorithm 1 Three-Step BCD Optimization Algorithm for
Solving the Original TCTB Maximization Problem (P0)

1: Input T , N , M , K, B, {En, Cn, κn,hd,n,hr,n}n∈N , HAP,
and the tolerant thresholds ε, ε1, ε3;

2: Initialize The iteration index χ = 0 and ϕ0, W0, a0;
3: Repeat
4: χ = χ+ 1;
5: Step 1: Initialize l = 0, ϕ(0) = ϕχ−1, W = Wχ−1, a =

aχ−1;
6: Repeat 1
7: a) Solve problem (P1.1) with CVX to obtain Ψ(l+1);
8: b) Calculate R

(l+1)
1 =

∑N
n=1 F1,n(Ψ

(l+1))−F2,n(Ψ
(l+1));

9: c) l = l + 1;
10: End Repeat 1 until convergence, i.e., |R(l)

1 −R
(l−1)
1 | < ε1

(l > 1), and obtain Ψχ = Ψ(l); Then we decompose Ψχ =
ϕ̃χϕ̃

H
χ with denoting ϕ̃χ = [ϕχ,0, ξχ,0]

T; Thus, we can obtain
ϕχ = ϕχ,0/ξχ,0 and Φχ = diag{ϕχ};

11: Step 2: Initialize ϕ = ϕχ and a = aχ−1;
12: Obtain Wχ according to Lemma 2;
13: Step 3: Initialize m = 0, a(0) = aχ−1, ϕ = ϕχ, W = Wχ;
14: Repeat 3
15: a) Solve problem (P3.1) with CVX to obtain a(m+1);

b) Calculate the TCTB at the (m+1)-th iteration, represented
as R

(m+1)
3 =

∑N
n=1

(
Roff

n (a(m+1)) +Rloc
n (a

(m+1)
n )

)
;

c) m = m+ 1;
16: End Repeat 3 until convergence, i.e., |R(m)

3 −R
(m−1)
3 | < ε3

(m > 1), and obtain aχ = a(m);
17: Calculate the TCTB at the χ-th iteration, which is denoted as

Rχ =
∑N

n=1

(
Roff

n (aχ,wn,χ,ϕχ) +Rloc
n (an,χ)

)
by substitut-

ing Wχ, aχ and ϕχ into the objective function of problem (P0).
18: End Repeat until convergence, i.e., |Rχ −Rχ−1| < ε (χ > 1),

and obtain the maximum TCTB Rχ with the solution W∗ =
Wχ, a∗ = aχ, ϕ∗ = ϕχ.

IV. DEEP LEARNING ARCHITECTURES

The proposed BCD Algorithm 1 provides an effective opti-
mization method for solving the TCTB maximization problem
(P0) in an iterative way. Although the BCD optimization
algorithm can achieve effective solutions with guaranteed
convergence, its high computational complexity may hinder it
from being applied in real-time applications, which is a major
bottleneck for most of the iterative optimization algorithms
proposed in existing works [12–15]. However, the effec-
tiveness, robustness, and computational overhead of online
implementations are known as crucial indicators for practical
networks. One way to overcome this drawback is leveraging
the deep learning methods, not only due to the fact that
DNNs are regarded as universal function approximators but
also because deep learning is well known as a promising way
to achieve effective online implementations [16–18]. Hence,
in this section, we explore the potentials of deep learning
approaches in obtaining effective solutions of the original
problem (P0).

The proposed deep learning methods in this section aim at
reducing the computational complexity of the proposed BCD
optimization algorithm by effectively emulating this algorithm
via supervised learning, so as to facilitate lightweight online
implementation of the BCD algorithm with high accuracy
and stability. Moreover, the use of DNNs enabled the de-
sign of a location-only deep learning approach that reduces



overheads for CSI estimation and feedback compared to the
BCD algorithm. Through training the constructed DNNs of-
fline with data samples generated from the BCD algorithm,
the DNNs are capable of learning the inherent mappings
of the algorithm and output effective solutions mimicking
this algorithm. Hence, we can use the trained DNNs to
predict the required solutions online with significantly reduced
computational complexity/running time. Specifically, we resort
to the deep learning approaches to obtain partial solution of
problem (P0), including the RIS reflecting coefficients in ϕ
and the energy partition parameters in a. Then, we can directly
obtain the receive beamforming vectors in W via Lemma 2
without learning. In this way, we can effectively combine the
prior knowledge (Lemma 2) with deep learning to achieve
the required solution of the proposed BCD algorithm, with
reduced cost for constructing, training, and testing the DNNs.

As mentioned before, the channel links between UEs and
the RIS as well as that between the RIS and AP are very
likely to be LoS channels, when the location of the RIS is
carefully planned. For the multiplexing computation offloading
mechanism considered in this paper, the direct links between
UEs and the AP play a significant role in providing multi-
path diversity gain for wireless communications. Two typical
RIS-aided edge computation offloading scenarios in terms
of whether LoS direct links exist between UEs and AP are
considered here as shown in Fig. 2, where one is without LoS
direct links denoted as scenario (a) and the other is with strong
LoS direct links denoted as scenario (b). In order to effectively
deal with these two scenarios, we construct two deep learning
architectures in the following two subsections.

hr,n

UE n

hd,n

MEC

server

AP

RIS

HAP

h

hr,n

UE n

hd,n

MEC

server

AP

RIS

HAP

(a) (b)

Fig. 2. Two typical RIS-aided edge computation offloading scenarios in
terms of whether LoS direct links exist between UEs and the AP: (a) Scenario
without LoS direct links between UEs and AP where the LoS direct paths are
blocked by objects such as buildings (urban area); (b) Scenario with strong
LoS direct links between UEs and AP where no obstruction exists along the
direct signal paths (suburb area).

A. CSI-Based Deep Learning Architecture

For scenario (a) without LoS direct links between UEs and
AP, a CSI-based deep learning architecture is given, as shown
in Fig. 3, to obtain the solutions of {ϕ,a,W}. The real and
imaginary parts of the channel coefficients {hd,n}, {hr,n} and
HAP constitute the input feature of the constructed DNN-CSI,
represented by the input vector x with a dimension of I =
2(MN+KN+MK). In contrast, the normalized angles of the
RIS reflecting coefficients ϕ, denoted as θ̃ = θ/2π, and the
energy partition parameters in a constitute the corresponding

output vector y = [θ̃1, . . . , θ̃K , a1, . . . , aN ] with the dimension
of (K + N). It is easy to note that all the elements of the
output vector are within the range of [0, 1], and thus we can
use the sigmoid function, i.e., Sigmoid(z) = 1

1+e−z as the
output activation function. With the final output ϕ and a of the
DNN-CSI, the optimal receive beamforming vector for each
UE n ∈ N , i.e., wn, can be readily obtained according to
Lemma 2 in Section III-B.

Lemma 2

Input

Channel

Coefficients x
Obtaining  and a (y)

DNN-CSI

W

Channel

Coefficients

Fig. 3. The architecture for obtaining the solutions of {ϕ,a,W} with the
CSI-based DNN-CSI.

TABLE I
LAYOUT OF DNN-CSI FOR OBTAINING ϕ AND a

Layer Size Parameter Activation
Input Layer I - -
Layer1-1 (Dense) 1024 1024(I+1) ELU
Layer1-2 (BN) 1024 4096 -
Layer1-3 (Dropout 0.1) 1024 0 -
Layer2-1 (Dense) 512 524800 ELU
Layer2-2 (BN) 512 2048 -
Layer2-3 (Dropout 0.1) 512 0 -
Layer3-1 (Dense) 256 131328 ELU
Layer3-2 (BN) 256 1024 -
Layer3-3 (Dropout 0.1) 256 0 -
Layer4-1 (Dense) 128 32869 ELU
Layer4-2 (BN) 128 512 -
Layer4-3 (Dropout 0.1) 128 0 -
Layer5-1 (Dense) 128 16512 ELU
Layer5-2 (BN) 128 512 -
Layer5-3 (Dropout 0.05) 128 0 -
Output Layer (Dense) K+N (K+N )(128+1) sigmoid
Total Trainable Parameters 1,632,288 (M=8,N=8,K=24)

Here, we adopt a feedforward DNN with the layout in
Table I, which consists of an I-dimensional input layer, 5
normal hidden dense layers (layers 1-1, 2-1, 3-1, 4-1, 5-1),
and a (K + N)-dimensional output layer, which are the key
functional layers of DNN-CSI. There are respectively 1024,
512, 256, 128, 128 neurons for the five hidden layers of the
DNN-CSI. The function of exponential linear units (ELU) is
leveraged as the activation functions of the hidden layers with

ELU(z) =

{
z, if z > 0,

α(exp(z)− 1), otherwie, z ≤ 0,
(31)

which has many attractive advantages such as high learning
speed, high robustness with zero-centered outputs, etc.2 It
should be noted that we add the Batch-Normalization layers
(layers 1-2, 2-2, 3-2, 4-2, 5-2) and Dropout layers (layers 1-
3, 2-3, 3-3, 4-3, 5-3) between two normal dense layers to
accelerate the training speed, avoid gradients vanishing, as
well as prevent overfitting of the DNN. To be specific, this
fully connected feedforward DNN-CSI is with 10% of random
dropout of neurons for the hidden layer 1 to hidden layer 4
and 5% of random dropout for the hidden layer 5 during each
training epoch, so as to avoid overfitting.

2We use the default form of ELU function in the Keras platform with α=1.



B. Location-Only Deep Learning Architecture

For scenario (b) with strong LoS direct links between UEs
and AP, the CSI-based deep learning architecture given in the
previous subsection is still applicable. Nevertheless, note that
the channel coefficients as well as the solutions of {ϕ,a,W}
are highly related to the locations of UEs, i.e., {(xn, yn)}n∈N ,
in this scenario, and thus we may use the UEs’ locations as
the only input feature of DNNs to obtain {ϕ,a,W}. In our
considered scenarios, we assume that each UE is installed
with an advanced global positioning system (GPS) module
for outdoor localization [39] and is capable to apply the
Wi-Fi round-trip time technology and standards for indoor
localization [40], through which UEs’ location information can
be obtained with high accuracy.3

In order to further use the known relations between the
solutions, e.g., Lemma 2 presenting the relationship between
{W} with {ϕ,a} and the channel coefficients, a location-
only deep learning architecture is proposed as shown in
Fig. 4. Here, two DNNs are constructed, where DNN-Loc1
aims at calculating the channel mapping between the UEs’
locations and the channel coefficients with 2N -dimensional
input feature z and I-dimensional output feature denoted as
y1 while DNN-Loc2 focuses on obtaining {ϕ,a} with input
feature z and (K+N)-dimensional output feature denoted as
y2. Then the optimal receive beamforming matrix, i.e., W, can
be easily calculated based on Lemma 2 in Section III-B. Note
that the complicated pilot channel estimation and feedback
can be removed when utilizing the location-only deep learning
architecture for online implementation.

Lemma 2
DNN-Loc2

Obtaining  and a (y2)

Input

UEs

Locations z

DNN-Loc1

Channel Mapping (y1)
W

Fig. 4. The architecture for obtaining the solutions of {ϕ,a,W} with the
location-only DNN-Loc1 and DNN-Loc2.

The layout of the feedforward DNN-Loc1 and DNN-Loc2
are given in Table II and III, respectively, where both have
5 normal hidden dense layers. There are respectively 512,
512, 256, 128, 256 neurons for the five hidden layers of the
DNN-Loc1, and respectively 512, 256, 128, 64, 32 neurons for
the five hidden layers of the DNN-Loc2. Similarly, the layers
of Batch-Normalization and Dropout are also utilized for the
DNN-Loc1 and DNN-Loc 2 with same dropout policy of the
DNN-CSI. Here, the sigmoid activation function is not only
leveraged at the output layer of the DNN-Loc2 for obtaining
{ϕ,a} but also at that of the DNN-Loc1 for channel mapping
where the output data samples are scaled into the range of [0, 1]
with the MinMaxScaler in Tensorflow. In the testing stage, an
inverse transformation of MinMaxScaler is used to achieve the
required form of the output feature.

3According to the data shown in the website of GPS.gov, for high-end users
with dual-frequency receivers and/or augmentation systems, the GPS accuracy
can be dramatically boosted, which can enable real-time positioning within a
few centimeters and long-term measurements at the millimeter level [39]. It
is shown in [40] that an one-meter accuracy indoor localization is available
for smart devices through the Wi-Fi round-trip time technology by 2018.

TABLE II
LAYOUT OF DNN-LOC1 FOR CHANNEL MAPPING

Layer Size Parameter Activation
Input Layer 2N - -
Layer1-1 (Dense) 512 512(2N+1) ELU
Layer1-2 (BN) 512 2048 -
Layer1-3 (Dropout 0.1) 512 0 -
Layer2-1 (Dense) 512 262656 ELU
Layer2-2 (BN) 512 2048 -
Layer2-3 (Dropout 0.1) 512 0 -
Layer3-1 (Dense) 256 131328 ELU
Layer3-2 (BN) 256 1024 -
Layer3-3 (Dropout 0.1) 256 0 -
Layer4-1 (Dense) 128 32869 ELU
Layer4-2 (BN) 128 512 -
Layer4-3 (Dropout 0.1) 128 0 -
Layer5-1 (Dense) 256 33024 ELU
Layer5-2 (BN) 256 1024 -
Layer5-3 (Dropout 0.05) 256 0 -
Output Layer (Dense) I I(256+1) sigmoid
Total Trainable Parameters 702,208 (M=8,N=8,K=24)

TABLE III
LAYOUT OF DNN-LOC2 FOR OBTAINING ϕ AND a

Layer Size Parameter Activation
Input Layer 2N - -
Layer1-1 (Dense) 512 512(2N+1) ELU
Layer1-2 (BN) 512 2048 -
Layer1-3 (Dropout 0.1) 512 0 -
Layer2-1 (Dense) 256 131328 ELU
Layer2-2 (BN) 256 1024 -
Layer2-3 (Dropout 0.1) 256 0 -
Layer3-1 (Dense) 128 32896 ELU
Layer3-2 (BN) 128 512 -
Layer3-3 (Dropout 0.1) 128 0 -
Layer4-1 (Dense) 64 8256 ELU
Layer4-2 (BN) 64 256 -
Layer4-3 (Dropout 0.1) 64 0 -
Layer5-1 (Dense) 32 2080 ELU
Layer5-2 (BN) 32 128 -
Layer5-3 (Dropout 0.05) 32 0 -
Output Layer (Dense) K+N (K+N )(32+1) sigmoid
Total Trainable Parameters 186,304 (M=8,N=8,K=24)

C. Input Feature Uncertainty

In the previous subsection, an ideal scenario is considered
where we assume that the input features to the CSI-based and
the location-only DNNs, i.e., the input vector x of CSI in
Fig. 3 and the input vector z of UEs’ locations in Fig. 4, are
perfectly known. In this case, the constructed DNNs can be
trained and tested based on the perfect input information of
CSI and UEs’ locations. However, the obtained CSI and UEs’
locations are usually imperfect in practice due to the deviation
of channel estimation and GPS/Wi-Fi localization.

In this section, we focus on a more practical scenario where
the input features of CSI and UEs’ locations for the CSI-
based DNN and the location-only DNNs are corrupted with
uncertainty. For the input vector x of CSI, the corresponding
corrupted counterpart is x̂ = x+△x, where △x ∼ N (0, σ2

△x)
following the normal distribution is the random offset of the
achieved CSI to the perfect CSI. For the input vector z of
UEs’ locations, the corresponding corrupted counterpart is ẑ =
z + △z, where △z ∼ N (0, σ2

△z) is the random offset (in



meter) of the achieved UEs’ locations to the perfect ones.4

In this practical case with uncertain input features, the CSI-
based DNN and the location-only DNNs are trained and tested
based on the corrupted input information of CSI and UEs’
locations, respectively. The effectiveness and robustness of
the two proposed deep learning architectures are validated
by comparing their performance in the cases with perfect
and imperfect input features, also comparing with the BCD
optimization algorithm, which will be shown in Section VI.

V. IMPLEMENTATION AND COMPLEXITY REDUCTION OF
THE DEEP LEARNING APPROACHES

In this section, we indicate the implementation setting of
the proposed CSI-based and location-only deep-learning archi-
tectures. In addition, the comparison results of the two deep
learning methods as well as the proposed BCD optimization
algorithm in terms of the average running time are given,
which further validates the potentials of the two proposed data-
driven approaches in reducing the computational complexity
for achieving lightweight online implementations.

The training (including validation) and testing of the con-
structed DNNs are implemented based on the platforms of
Tensorflow and Keras via supervised learning. Also, the adap-
tive moment estimation (Adam) optimizer is utilized to train
the DNNs with adaptive learning rates. We adopt the mean
absolute error (MAE) as the loss function for the CSI-based
DNN-CSI given in Table I and the location-only DNN-Loc2
given in Table III for obtaining ϕ and a. Through training
the weights and bias terms between layers, the input-output
mappings of these two DNNs are driven to emulate the inher-
ent mapping of the proposed BCD optimization algorithm. In
contrast, the mean square error (MSE) is leveraged as the loss
function for the location-only DNN-Loc1 given in Table II for
achieving the location-channel mapping. The other parameters
relating to training and testing the constructed DNNs are given
in the following Table IV.

TABLE IV
PARAMETERS RELATED TO TRAINING AND TESTING

Parameter Values
Number of training samples 200000
Number of testing samples 10000
Batch size 128
Number of epoches 1000
Initial learning rate 0.001
Validation split 0.2

A. Comparison between Two Deep Learning Approaches

For the CSI-based deep learning architecture, it is required
to obtain CSI in advance via pilot channel estimation for time
division duplex (TDD) systems. Due to the random charac-
teristics of wireless channels, it is quite difficult to estimate
CSI accurately especially considering the pilot contamination.
Moreover, the difficulty for wireless channel estimation may

4In the simulation results, the default standard deviation of σ△x is set as
0.001 according to the setting in [41] and the default standard deviation of
σ△z is set as 1 based on the localization accuracy of GPS given in GPS.gov
[39] and the Wi-Fi round-trip time technology shown in [40].

dramatically increase and the accuracy may degrade when the
adopted subcarriers are with higher frequencies or the APs
are with larger set of antennas which lead to more random
multi-path fading or larger dimension size of CSI.

In comparison, UEs’ location information is less random
and its dimension size being independent of the number of
APs’ antennas is much smaller than that of the corresponding
CSI. Hence, it is much easier and more convenient to obtain
UEs’ location information in practice. In addition, highly
accurate location information for UEs in both outdoor and
indoor scenarios can be guaranteed thanks to the advanced
GPS modules [39] and the Wi-Fi round-trip time technology
[40]. In fact, the location-only deep learning architecture
provides a promising way to emulate the proposed BCD
algorithm for lightweight online implementation, which can
remove the complicated pilot channel estimation and feedback
prior to wireless communications for task offloading.

Furthermore, in Table V, we present the values of trainable
parameters, training time, testing time, and average inference
time of the constructed DNN-CSI, DNN-Loc1, DNN-Loc2 for
the case with M = 8, N = 8, K = 24 in both situations
with perfect and imperfect input features.5 It is shown that
the time overhead for training and testing the constructed
DNNs with imperfect input features is slightly larger than
that with perfect input features due to the fact that more
complicated input-output mappings need to be figured out.
Note that the total required training parameters of the two
location-only DNNs are considerably less (nearly half) than
that of the DNN-CSI as shown in Table I-III. Also, the training,
testing, and inference overhead can be significantly reduced
by leveraging the location-only data-driven method, which is
verified by the much less required training, testing, and average
inference time of DNN-Loc1, DNN-Loc2 shown in Table V
that are only around 60% of those for DNN-CSI in both
cases.6 Hence, it is of great benefits to leverage the location-
only deep learning architecture in situations that it can provide
satisfactory inference solutions, such as in the scenario with
strong LoS direct links between UEs and AP.

TABLE V
PROCESSING TIME OF THE PROPOSED ALGORITHMS

Parameter DNN-CSI DNN-Loc1 DNN-Loc2
Trainable parameters 1,632,288 702,208 186,304
Training samples (x,y) (z,y1) (z,y2)
Training time 5.7426 h 3.3504 h 1.3979 h
Testing time 0.3883 s 0.2418 s 0.1025 s
Average inference time 38.83 µs 24.18 µs 10.25 µs
Training samples (x̂,y) (ẑ,y1) (ẑ,y2)
Training time 6.0345 h 3.5123 h 1.4862 h
Testing time 0.4015 s 0.2568 s 0.1156s
Average inference time 40.15 µs 25.68 µs 11.56 µs
Average BCD Running Time 28.7 s

5The training, testing, and inference time in Table V correspond to the
processing time by a computer with 64-bit Intel(R) Core(TM) i5-9600KF CPU
@3.7GHz and 32 GB RAM, running Python 3.7.7 and Tensorflow 2.1.0. Note
that the training and testing time can be further reduced when implemented
through more powerful computing servers.

6The training, testing, and inference time of the location-only architecture
are the maximum of those for DNN-Loc1 and DNN-Loc2 (such as 3.3504 h,
0.2418 s, 24.18 µs for the case with perfect input feature) since these two
DNNs can be trained and tested in a parallel way.



B. Complexity Reduction Compared with the BCD Algorithm

As we mentioned in Section IV, the proposed deep learning
methods aim at emulating the proposed BCD algorithm with
reduced computational complexity, so as to make it possible
for lightweight online implementation. In Table V, the average
running time of the BCD algorithm for one realization is
also given for comparison, i.e., 28.7 s, which is almost 106

times to those of the two proposed deep learning methods
that the CSI-based and the location-only DNNs only require
38.83 µs (40.15 µs) and 24.18 µs (25.68 µs) for the case
with perfect (imperfect) input features. This result effectively
validates the ability of the proposed deep learning architectures
in reducing the computational complexity/running time for
providing lightweight online inference solutions.
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Fig. 5. The average running time for one realization of the proposed solutions
versus the number of UEs (N ) in the scenarios with NLoS and LoS direct
links: (a) Optimization-based solutions, (b) Learning-based solutions without
and with input uncertainty.

In Fig. 5, we further show more details of the average run-
ning time for one realization of the proposed BCD optimiza-
tion algorithm, the CSI-based and location-only deep learning
architectures versus the number of UEs (N ), in the scenarios
with NLoS and LoS direct links, respectively. In addition, the
corresponding results of the two deep learning methods in
the cases with input feature uncertainty are also provided. It
is noticeable that the average running time, i.e., the average
inference time, of both two deep learning architectures are
always quite small in all scenarios (measured in microsecond-
µs) and increase slightly with N , especially compared with
those of the proposed BCD algorithm (measured in second-
s) that increase quite considerably with N . Specifically, the
average running time of the CSI-based leaning architecture is
nearly millionth and the location-only learning architecture is
less than millionth of that required by the corresponding BCD
optimization solution, which indicates that lightweight online
implementations are available by the proposed two data-driven
architectures via periodically training.

VI. SIMULATION RESULTS

In this section, simulation results are given to verify the
effectiveness and performance improvement of the proposed
BCD optimization algorithm as well as the CSI-based and
location-only deep learning architectures. In addition, the
effectiveness and robustness of the two proposed deep learning

methods to the corrupted input features of CSI and UEs’
locations with uncertainty is also validated by simulations.

A three-dimensional (3D) Euclidean coordinate system is
adopted to describe the locations of the AP as (0, yAP,H0),
the RIS as (xR, 0,HR) and UE n ∈ N as (xn, yn, 0), all
measured in meters (m) as shown in Fig. 1. The aided RIS
is with a uniform rectangular array (URA) of K = KxKz

reflecting elements, while the M -antenna AP is equipped with
a uniform linear array (ULA). We assume that the N ground
UEs are randomly distributed in a square serving area of D×
D m2, with four vertices at horizontal locations of (xs, 0),
(xs+D, 0), (xs, D), and (xs+D,D). We consider the Rician
fading channel model to account for both the LoS and non-
LoS (NLoS) components of all the channels as [42]

hr,n =

√
ϱr

1 + ϱr
hLoS
r,n +

√
1

1 + ϱr
hNLoS
r,n , ∀n ∈ N , (32)

HAP =

√
ϱAP

1 + ϱAP
HLoS

AP +

√
1

1 + ϱAP
HNLoS

AP , (33)

hd,n =

√
ϱd

1 + ϱd
hLoS
d,n +

√
1

1 + ϱd
hNLoS
d,n , ∀n ∈ N , (34)

where ϱr, ϱAP, ϱd indicate the corresponding Rician factors.
Without loss of generality, we denote ζr = ϱr

1+ϱr
, ζAP =

ϱAP

1+ϱAP
, ζd = ϱd

1+ϱd
as the Rician parameters related to the

LoS components which are used to generate the channels in
the simulations. Assuming that a half-wavelength spacing is
assumed among adjacent elements/antennas at the RIS and AP,
the LoS components modeled in the angular domain are then
given as [42, 43]

hLoS
r,n =

√
Lr,ne

r
r,n(β

r
r,n, γ

r
r,n), ∀n, (35)

HLoS
AP =

√
LAPe

r
AP(β

r
AP)(e

t
R(β

t
R, γ

t
R))

H, (36)

hLoS
d,n =

√
Ld,ne

r
d,n(β

r
d,n), ∀n, (37)

where err,n(β
r
r,n, γ

r
r,n) ∈ CK×1 = err,n,x(β

r
r,n, γ

r
r,n) ⊗

err,n,z(β
r
r,n, γ

r
r,n) with err,n,x(β

r
r,n, γ

r
r,n) = {exp(jπ(kx − 1)

sinβr
r,nsinγ

r
r,n)}

Kx

kx=1 ∈ CKx×1 and err,n,z(β
r
r,n, γ

r
r,n) =

{exp(jπ(kz−1)sinβr
r,ncosγ

r
r,n)}

Kz

kz=1 ∈ CKz×1, erAP(β
r
AP) =

{exp(jπ(m − 1)sinβr
AP)}Mm=1 ∈ CM×1 and erd,n(β

r
d,n) =

{exp(jπ(m− 1)sinβr
d,n)}Mm=1 ∈ CM×1 are the receive array

steering vectors with the effective angles of arrival (AOAs).
Also, etR(β

t
R, γ

t
R) ∈ CK×1 = etR,x(β

t
R, γ

t
R) ⊗ etR,z(β

t
R, γ

t
R)

is the transmit array steering vector with the effective angles
of departure (AOD), where etR,x(β

t
R, γ

t
R) = {exp(jπ(kx − 1)

sinβt
Rsinγ

t
R)}

Kx

kx=1 ∈ CKx×1 and etR,z(β
t
R, γ

t
R) = {exp(jπ

(kz − 1)sinβt
Rcosγ

t
R)}

Kz

kz=1 ∈ CKz×1. Here, β and γ respec-
tively represent the azimuth and elevation of AOA or AOD.

Lr,n, LAP and Ld,n in (35)-(37) model the distance-
dependent path loss of the corresponding channels. Suppose
that each element of the RIS has a 3 dBi gain due to the fact
that only the front half-space reflects signals [44], while each
antenna of the AP has an isotropic radiation pattern with 0
dBi antenna gain. Then we have Lr,n = 100.3L0(dr,n/d0)

−αr ,
LAP = 100.3L0(dAP/d0)

−αAP and Ld,n = L0(dd,n/d0)
−αd ,

where dr,n, dAP, dd,n are the corresponding Euclidean dis-
tances between the transceivers, L0 is the average constant



TABLE VI
SIMULATION PARAMETERS

Parameter Symbol Value
The parameters related to the square serving area xs, D 20m, 40m
The location of the AP (0, yAP, H0) (0,20,5) m
The location of the RIS (xR, 0, HR) (40,0,20) m
The length of the time slot T 5 seconds
Number of UEs N 8
Number of AP’s antennas M 8
Number of RIS’s reflecting elements K = KxKz 24=8× 3
Energy budgets of UEs En (n ∈ N ) 10 J
Required CPU cycles per bit of UEs Cn (n ∈ N ) 200 cycles/bit
The effective switched capacitance of UEs κn(n ∈ N ) 10−28

The total system bandwidth B 40 MHz
The noise power σ2 −60dBm
The channel power gain at a reference distance of d0=1 m L0 −10dB
The channel attenuation coefficients αd, αr, αAP 3.5, 2.5, 2
The standard deviation of the offset to the perfect CSI σ△x 0.001
The standard deviation of the offset to the perfect UEs’ locations σ△z 1

path loss for all the channels at the reference distance of d0,
and αr, αAP, αd are the channel attenuation coefficients.

In addition, the NLoS components of the channels in (32)-
(34) are modeled as the Rayleigh fading combining with the
distance-dependent path loss as follows

hNLoS
r,n =

√
Lr,nηr,n =

√
100.3L0(dr,n/d0)−αrηr,n, (38)

HNLoS
AP =

√
LAPΓAP =

√
100.3L0(dAP/d0)−αAPΓAP, (39)

hNLoS
d,n =

√
Ld,nηd,n =

√
L0(dd,n/d0)−αdηd,n, (40)

where ηr,n ∼ CN (0, IK), ΓAP ∼ CN (0, IM ), and ηd,n ∼
CN (0, IM ) denote the corresponding Rayleigh fading coeffi-
cients. In the following simulation results, we assume that the
LoS channels between the RIS and the AP as well as UEs
are achieved by deploying the RIS at a desirable location, and
thus ζr = ζAP = 1. The other basic simulation parameters are
listed in Table VI unless specified otherwise.

A. Results in the Scenario without LoS Direct Links

In this subsection, the LoS paths of UEs’ direct links are
blocked as shown in the scenario (a) of Fig. 2, which is quite
common in practical communications especially in central
building districts of urban areas. Hence, we set ζd = 0 in this
subsection. Numerical results for the proposed optimization
solution (‘BCD-Optimized Solution’), the CSI-based deep
learning solution (‘DL CSI-Based’) as well as its counterpart
with input uncertainty (‘DL CSI-Based Uncertainty’) are pre-
sented in comparison with three traditional benchmarks, where
the ‘Direct Offloading-No RIS’ scheme corresponds to the
case without deploying RIS, the ‘ZF Receive Beamforming’
scheme considers the ZF beamforming for detecting UEs’
signals as in Section III-D, and the ‘Equal Energy Allocation’
scheme is operated by equally allocating the UEs’ energy
budgets for local computing and computation offloading.7

7Note that the learning-based works mentioned in the Introduction section
either focus on traditional MEC or RIS-aided downlink architectures, and
none of them consider the RIS-aided MEC systems. Even though some
optimization schemes of RIS-aided MEC systems were given in [12–15],
different performance metrics or scenarios were considered as discussed in the
Introduction. Hence, these works and our current work are not comparable.

In Fig. 6, we first show the TCTB of all the considered
schemes w.r.t. the UEs’ uniform energy budget, i.e., E = En

for n ∈ N . From this figure, we can observe that the TCTB
curves of all the schemes increase with E, which coincides
with the intuition that more computation task-input bits can
be completed if the UEs are endowed with more energy. It is
clear to see that significant performance improvement can be
achieved by the proposed BCD-Optimized Solution, verifying
the great benefits of deploying the aided RIS, also jointly
optimizing the RIS coefficients, the receive beamforming and
the UEs’ energy allocation. It is confirmed that the proposed
BCD algorithm provides 26% improvement in TCTB over the
benchmark of direct offloading without the assistance of RIS.
More importantly, the CSI-based deep learning method can
achieve a performance very close to the proposed optimization
solution no matter with perfect or imperfect input feature
of CSI, which clearly demonstrates that the CSI-based deep
learning architecture proposed in Section IV-A can effectively
emulate the proposed BCD optimization algorithm, with a
much reduced online complexity and high robustness.
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Fig. 6. The TCTB of UEs versus the UEs’ uniform energy budget E = En

for n ∈ N .

The performance in terms of TCTB versus the number of
the AP’s antennas is presented in Fig. 7. The effectiveness,
robustness, and generalizability of the proposed CSI-Based
deep learning architecture is further validated by the results
that its performance can always approach that of the BCD-
Optimized Solution in both scenarios with and without input
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Fig. 7. The TCTB of UEs versus the number of AP’s antennas M with
N = 8.

uncertainty no matter how many antennas are installed at the
AP. Although we can see that all the curves of TCTB increase
as M grows, it is obvious that the performance of proposed
optimization solution and the DL CSI-Based schemes are
far more superior and stable than that of the other baseline
solutions especially in the situations of M < N . When the
AP has to serve more UEs than its installed antennas, the
performance gap between the DL CSI-Based with and without
input uncertainty is slightly larger, while the performances of
the schemes with ZF Receive Beamforming and Equal Energy
Allocation degrade dramatically. This is due to the fact that
the ZF receive beamforming is incapable of separating out the
signal streams when they are more than the number of receive
antennas. Also, in these situations, the interference manage-
ment through designing the UEs’ energy allocation plays a
significant role in guaranteeing the system performance.

In Fig. 8, we study the effects of the number of UEs, i.e., N ,
on the system performance of TCTB. Here, the effectiveness
of the CSI-based deep learning architecture is further verified
in the scenarios with different number of users considering
both perfect and imperfect input CSI, which also demonstrates
its robustness and the generalizability. Similar results can be
observed as from Fig. 7 that our proposed BCD-Optimized
Solution as well as the CSI-based deep learning schemes with
and without input uncertainty have strong robustness in dealing
with the cases when serving more UEs than the number of the
AP’s antennas. These cases are particularly relevant to massive
connectivity scenarios. Instead of degrading the performance
like the benchmarks, our proposed solutions are able to provide
even better performance as N becoming larger than M through
effectively designing the receive bearmforming vectors and the
UE’s energy allocation.

B. Results in the Scenario with Strong LoS Direct Links

In this subsection, we focus on implementing the mentioned
schemes in the scenario where strong LoS direct links exist
for UEs in the considered serving area, which is exactly the
scenario (b) of Fig. 2. This scenario is practically relevant
when considering the suburb districts, and we set ζd = 1 in
the following simulation results. In this scenario, the location-
only deep learning architecture (‘DL Location-Only’) can
be leveraged to mimic the mapping of the proposed BCD
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Fig. 8. The TCTB of UEs versus the number of UEs N with M = 8.

algorithm. In addition, the performance of its counterpart
solution with uncertain input UEs’ locations denoted as ‘DL
Location-Only Uncertainty’ is also given in this subsection.
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Fig. 9. The TCTB of UEs versus the UEs’ uniform energy budget E = En

for n ∈ N .

We first show the TCTB performance of all the considered
schemes versus the UEs’ uniform energy budget E in Fig.
9. Obviously, both the CSI-based and the location-only deep
learning methods can achieve excellent system performance,
in both scenarios with and without input uncertainty. Even
though the DL Location-Only solution is slightly worse than
the DL CSI-Based solution which is almost the same as
the BCD-Optimized Solution, it is far more superior than
the other benchmarks. It is noticeable that the TCTB gap
between the DL CSI-Based and DL Location-Only schemes
becomes slightly smaller in the scenarios with uncertain input
features. More importantly, the UEs’ locations are quite easier
to obtain compared with the related CSI, which makes it
more flexible to achieve online implementation through the
location-only deep learning architecture in both scenarios with
perfect and imperfect input features. Also from this figure, we
can clearly see that the ZF Receive Beamforming scheme is
even worse than the scheme without RIS and the scheme of
Equal Energy Allocation. The reason behind this is that in
the considered scenario with LoS direct links, the effective
channels of different UEs may be highly correlated, and it is
almost impossible to distinguish different UEs’ data streams
through ZF receive beamforming especially in the cases with
M ≤ N . This phenomenon further indicates the importance
of effectively designing the AP’s receive beamforming and



managing the UEs’ energy budgets.
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Fig. 10. The TCTB of UEs versus the number of AP’s antennas M with
N = 8.

Fig. 10 depicts the TCTB curves versus the number of
the AP’s antennas, i.e., M . Clearly, the results in this figure
further demonstrate the effectiveness, the robustness and the
generalizability of the CSI-based DNN architecture in different
scenarios combined with the results in the previous subsection
and the location-only DNN architecture in situations where
AP is installed with different number of antennas. If only
uncertain input features are available, we can observe that
the DL Location-only scheme can almost approach the DL
CSI-Based when M < N . Similar to the results in Fig. 9,
the performance of the ZF Receive Beamforming scheme is
unacceptable when M ≤ N . When M is greater than N ,
like M = 12, the disadvantages of the scheme without RIS
becomes more obvious since all the other schemes can achieve
much better performance with the assistance of the RIS.
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Fig. 11. The TCTB of UEs versus the Rician channel parameter ζd.

In Fig. 11, we show the influence of the Rician channel
parameter related to the LoS components of the direct links,
i.e, ζd. It can be seen that the performance of the DL CSI-
Based scheme can always achieve satisfactory performance
very close to the proposed BCD-Optimized Solution if perfect
CSI is available, no matter the UEs’ direct links are highly
faded without LoS components as in ζd = 0, or with LoS
components as ζd > 0 and even ζd = 1. This result indicates
that the perfect input feature of CSI is capable of capturing
sufficient information in emulating the proposed BCD opti-
mized solution. In contrast, the DL Location-Only scheme
can achieve good performance when ζd is close to 1, but

the performance degrades as ζd decreases. This is reasonable
since the optimization solution becomes less relevant to the
UE’s locations as ζd becomes smaller where the small-scale
Rayleigh fading accounts more. Compared with the DL CSI-
Based scheme, the performance of DL Location-Only solution
is more stable and degrades slighter when ζd = 1 with
uncertain input feature. Fig. 11 verifies that the location-only
DNN architecture is more suitable to the scenarios where
strong LoS direct links for UEs are present, just coinciding
with our original intention as in Section IV-B. Interestingly, we
can see that the performance of the schemes except for the two
DL Location-Only solutions degrades as ζd increases, which
highlights that the channel fading is beneficial to wireless com-
munications when considering the multiplexing computation
offloading since channel fading provides an additional degree
of freedom for avoiding channel correlation [42]. While for
the case of ζd = 1, the performance becomes worse since the
UEs’ channels are highly correlated and no fading can be used
to achieve the additional degree of freedom gain.
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Fig. 12. The TCTB of UEs versus the uncertainty level of Input features.

Fig. 12 presents the TCTB performance of the two deep
learning architectures versus the uncertainty levels of the CSI
and UEs’ locations, respectively represented by σ△x and
σ△z. Case (a) and (b) show the performance of the CSI-
based learning solution in the scenarios with NLoS and LoS
direct links, respectively, while case (c) demonstrates that of
the location-only learning method in the scenario with LoS
direct links. From these three cases, we can observe that the
performance degradation is much less when M ≥ N , which
is quite obvious for the CSI-based learning method in (a) and
(b). In addition, the CSI-based learning solution degrades more
serious in the scenario with LoS direct links in (b) compared
with the NLoS case in (a), due to the fact that the DNN-CSI
in LoS scenario (b) without channel fading is more sensitive
to the input uncertainty in CSI. Based on (b) and (c), it is
noticeable that the location-only solution is less sensitive to the
uncertain input feature in the scenario with LoS direct links,
which further indicates its higher stability and robustness for
fulfilling lightweight online implementation in this scenario.

VII. CONCLUSION

In this paper, a RIS-aided MEC architecture with multi-
plexing computation offloading has been investigated, where



the RIS constructively reflects the UEs’ offloaded input-data-
bearing signals to improve the UEs’ computation efficiency.
During a given time slot, the TCTB of all the UEs with limited
energy budgets is maximized by jointly optimizing the RIS
reflecting coefficients, the receiving beamforming vectors and
UEs’ energy partition strategies for local computing and com-
putation offloading. A three-step BCD optimization algorithm
is proposed to solve the formulated non-convex TCTB maxi-
mization problem iteratively with guaranteed convergence. In
addition, two deep learning architectures based on CSI and the
UEs’ locations are constructed to mimic the mapping of the
BCD algorithm with a considerable complexity reduction. The
simulation results have confirmed that significant performance
improvement can be achieved by leveraging the proposed
BCD algorithm comparing with some existing schemes. For
both scenarios with perfect and imperfect input features,
the CSI-based learning architecture can always approach the
performance of the BCD algorithm, while the more practical
location-only learning architecture can provide satisfactory and
more robust performance when strong LoS direct links exist
between UEs and AP.
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