
Xiaoqing GuoUniversity of Oxford | OX
Xiaoqing Guo
Doctor of Philosophy
About
31
Publications
8,397
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
536
Citations
Citations since 2017
Introduction
My research interests include medical image analysis and deep learning. Welcome to my homepage: https://guo-xiaoqing.github.io/
Additional affiliations
September 2017 - July 2018
Education
September 2018 - August 2022
September 2014 - June 2018
Publications
Publications (31)
This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box model. Due to the domain gap and label shift between two domains, pseudo-labeled target data contains mixed closed-set and open-set label noises. In this paper, we propose a simplex noise transiti...
Open set domain adaptation (OSDA) aims to tackle the distribution shift of partially shared categories between the source and target domains, meanwhile identifying target samples non-appeared in source domain. The key issue behind this problem is to classify these various unseen samples as unknown category with the absent of relevant knowledge from...
Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases based on scarce amount of data is of far-reaching significance. Existing methods target only at rare diseases diagnosis, while neglect to preserve the performance of common disease diagnosis. To address this issue, we first disentangle th...
Noisy labels collected with limited annotation cost prevent medical image segmentation algorithms from learning precise semantic correlations. Previous segmentation arts of learning with noisy labels merely perform a pixel-wise manner to preserve semantics, such as pixel-wise label correction, but neglect the pair-wise manner. In fact, we observe t...
Noisy labels collected with limited annotation cost prevent medical image segmentation algorithms from learning precise semantic correlations. Previous segmentation arts of learning with noisy labels merely perform a pixel-wise manner to preserve semantics, such as pixel-wise label correction, but neglect the pair-wise manner. In fact, we observe t...
Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While missing modality data is common in clinical practice and it can result in the collapse of most previous methods relying on complete modality data. Current state-of-the-art app...
Unsupervised domain adaptation (UDA) aims to exploit the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled target domain. Existing UDA techniques typically assume that samples from source and target domains are freely accessible during the training. However, it may be impractical to access source images due t...
Automatic segmentation of polyp regions in endoscope images is essential for the early diagnosis and surgical planning of colorectal cancer. Recently, deep learning-based approaches have achieved remarkable progress for polyp segmentation, but they are at the expense of laborious large-scale pixel-wise annotations. In addition, these models treat s...
Background:
Ventricular catheter tip position is a predictor for ventriculoperitoneal shunt survival. Cannulation is often performed freehand, but there is limited consensus on the best craniometric approach.
Objective:
To determine the accuracy of localizing craniometric entry sites and to identify which is associated with optimal catheter plac...
Unsupervised domain adaptation (UDA), aiming to adapt the model to an unseen domain without annotations, has drawn sustained attention in surgical instrument segmentation. Existing UDA methods neglect the domain-common knowledge of two datasets, thus failing to grasp the inter-category relationship in the target domain and leading to poor performan...
Surgical instrument segmentation is fundamental for the advanced computer-assisted system. The variability of the surgical scene, a major obstacle in this task, leads to the domain shift problem. Unsupervised domain adaptation (UDA) technique can be employed to solve this problem and adapt the model to various surgical scenarios. However, existing...
Automatic medical image segmentation plays a crucial role in many medical applications, such as disease diagnosis and treatment planning. Existing deep learning based models usually regarded the segmentation task as pixel-wise classification and neglected the semantic correlations of pixels across different images, leading to vague feature distribu...
Automatic medical image segmentation plays a crucial role in many medical image analysis applications, such as disease diagnosis and prognosis. Despite the extensive progress of existing deep learning based models for medical image segmentation, they focus on extracting accurate features by designing novel network structures and solely utilize full...
Accurate segmentation of the polyps from colonoscopy images provides useful information for the diagnosis and treatment of colorectal cancer. Despite deep learning methods advance automatic polyp segmentation, their performance often degrades when applied to new data acquired from different scanners or sequences (target domain). As manual annotatio...
Automatic polyp detection has been proven to be crucial in improving the diagnosis accuracy and reducing colorectal cancer mortality during the precancerous stage. However, the performance of deep neural networks may degrade severely when being deployed to polyp data in a distinct domain. This domain distinction can be caused by different scanners,...
Unsupervised domain adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain. Existing self-training based UDA approaches assign pseudo labels for target data and treat them as ground truth labels to fully leverage unlabeled target data for model adaptation. However, the generated pseudo labels f...
The degradation in image resolution harms the performance of medical image diagnosis. By inferring high-frequency details from low-resolution (LR) images, super-resolution (SR) techniques can introduce additional knowledge and assist high-level tasks. In this paper, we propose a SR enhanced diagnosis framework, consisting of an efficient SR network...
The automatic segmentation of polyp in endoscopy images is crucial for early diagnosis and cure of colorectal cancer. Existing deep learning-based methods for polyp segmentation, however, are inadequate due to the limited annotated dataset and the class imbalance problems. Moreover, these methods obtained the final polyp segmentation results by sim...
Super-Resolution (SR) techniques can compensate for the missing information of low-resolution images and further promote experts and algorithms to make accurate diagnosis decisions. Although the existing pixel-loss based SR works produce high-resolution images with impressive objective metrics, the over-smoothed contents that lose high-frequency in...
Automatically segmenting sub-regions of gliomas (necrosis, edema and enhancing tumor) and accurately predicting overall survival (OS) time from multimodal MRI sequences have important clinical significance in diagnosis, prognosis and treatment of gliomas. However, due to the high degree variations of heterogeneous appearance and individual physical...
Automatic melanoma segmentation in dermoscopic images is essential in computer-aided diagnosis of skin cancer. Existing methods may suffer from the hole and shrink problems with limited segmentation performance. To tackle these issues, we propose a novel complementary network with adaptive receptive filed learning. Instead of regarding the segmenta...
Automatic melanoma segmentation in dermoscopic images is essential in computer-aided diagnosis of skin cancer. Existing methods may suffer from the hole and shrink problems with limited segmentation performance. To tackle these issues, we propose a novel complementary network with adaptive receptive filed learning. Instead of regarding the segmenta...
Automatically segmenting sub-regions of gliomas (necrosis, edema and enhancing tumor) and accurately predicting overall survival (OS) time from multimodal MRI sequences have important clinical significance in diagnosis, prognosis and treatment of gliomas. However, due to the high degree variations of heterogeneous appearance and individual physical...
Accurate detection of abnormal regions in Wireless Capsule Endoscopy (WCE) images is crucial for early intestine cancer diagnosis and treatment, while it still remains challenging due to the relatively low contrasts and ambiguous boundaries between abnormalities and normal regions. Additionally, the huge intra-class variances, alone with the high d...
Linguistic steganography based on text carrier autogeneration technology is a current topic with great promise and unpredictable challenges. Limited by the text automatic generation technology or the corresponding text coding methods, the quality of the steganographic text generated by previous methods is inferior, which makes its imperceptibility...
We propose a registration algorithm for 2D CT/MRI medical images with a new unsupervised end-to-end strategy using convolutional neural networks. We also propose an effective way to introduce an ROI segmentation mask to our neural networks to improve performance. The contributions of our algorithm are threefold: (1) We transplant traditional image...
Projects
Projects (2)
Medical image segmentation, including polyp segmentation, melanoma segmentation, prostate segmentation, brain tumor segmentation, etc.
WCE image analysis, including WCE image classification, polyp segmentation in WCE images, etc.