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Abstract

Occurrence and development of cancers are governed by complex networks of interacting intercellular and intracellular
signals. The technology of single-cell RNA sequencing (scRNA-seq) provides an unprecedented opportunity for dissecting
the interplay between the cancer cells and the associated microenvironment. Here we combined scRNA-seq data with
clinical bulk gene expression data to develop a computational pipeline for identifying the prognostic and predictive
signature that connects cancer cells and microenvironmental cells. The pipeline was applied to glioma scRNA-seq data and
revealed a tumor-associated microglia/macrophage-mediated EGFR/ERBB2 feedback-crosstalk signaling module, which was
defined as a multilayer network biomarker (MNB) to predict survival outcome and therapeutic response of glioma patients.
We used publicly available clinical data sets from large cohorts of glioma patients to examine the prognostic significance
and predictive accuracy of the MNB, which outperformed conventional gene biomarkers and other methods. Additionally,
the MNB was found to be predictive of the sensitivity or resistance of glioma patients to molecularly targeted therapeutics.
Moreover, the MNB was an independent and the strongest prognostic factor when adjusted for clinicopathologic risk factors
and other existing gene signatures. The robustness of the MNB was further tested on additional data sets. Our study
presents a promising scRNA-seq transcriptome-based multilayer network approach to elucidate the interactions between
tumor cell and tumor-associated microenvironment and to identify prognostic and predictive signatures of cancer patients.
The proposed MNB method may facilitate the design of more effective biomarkers for predicting prognosis and therapeutic
resistance of cancer patients.
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Introduction

Multiple cell types interactively coexist in a multicellular
tissue or organism [1]. The cellular functioning and fate is
not only determined by the cell itself but is also coordinated
by its local environment and its neighboring cells [2]. The
mechanisms by which extracellular signals regulate intracellular
gene expression are essentially important to understand
cell–cell interactions and cellular fate determination in a
heterogeneous cell environment [3, 4]. Defects in the cell
microenvironment and dysregulation of microenvironmental
signals [5] have been found to play significant roles in the
occurrence and development of various diseases, such as cancer
[6], inflammation and metabolic diseases [7].

An increasing amount of experimental studies have demon-
strated that tumor–microenvironment interactions impose pro-
found impacts on tumor growth, progression and drug resistance
[8–12]. The tumor microenvironment is the exterior environment
of a living tumor cell and includes various types of cells (e.g.
fibroblasts, endothelial cells and immune cells) and biochemical
factors (e.g. cytokines, growth factors and chemokines) [13].
The tumor–microenvironment interaction occurs in two ways:
physical interaction through direct contact, such as cell adhesion
[14], and cell–cell communication through the exchange of secre-
tory molecular factors, primarily consisting of ligand–receptor
interactions [15].

Traditional experimental studies have primarily focused on
a few or linear signaling pathways that are involved in cell–cell
interactions. How best to systematically investigate the signaling
network of cell communication is a challenging but invaluable
task. Moreover, the signaling network involved in cell–cell inter-
actions contains not only intercellular signaling pathways but
also intracellular signaling transduction and gene expression
[16]. Therefore, a systematic, multilayer, intercellular and intra-
cellular signaling network is required to elucidate the signaling
mechanisms that underlie the interplay between the microenvi-
ronment and tumor cells.

The recently emerging single-cell RNA sequencing
(scRNA-seq) technologies provide a powerful tool to fulfill
this goal [17–20]. The scRNA-seq transcriptome data can be
used to identify cell types and to quantify cell type-specific
gene expression in mixed cell populations, enabling us to
resolve tumor–microenvironment interactions and dissect the
microenvironment-mediated intercellular and intracellular
signaling pathways of tumor cells. Recently, Boisset et al. [21]
developed a cellular network approach to investigate physical
cell interactions based on single-cell mRNA sequencing data.
This approach, however, did not account for ligand–receptor-
mediated cell communications. Zhou et al. [22] constructed a
map of the cell–cell communication network of melanoma
using scRNA-seq data that specified the gene expression of
ligand–receptor interactions [23]. Similarly, Skelly et al. [24]
used scRNA-seq data to construct large-scale networks of
intercellular communication in the mouse heart. However, these
studies did not consider the downstream signaling cascades that
follow receptor activation, thus falling short in the intracellular
signaling network mechanisms.

In this study, we developed a novel scRNA-seq data-
based approach to reconstruct a multilayer signaling network
that contains pathways from intercellular ligand–receptor
interactions, intracellular transcriptional factors (TFs) and
their target genes. We combined scRNA-seq data [19] with
bulk gene expression data and clinical information of glioma
patients as a case study to illustrate our method. Our approach

was to build an immune cell-mediated multilayer signaling
network of tumor cells, which revealed crosstalk and feedback
loops of the EGFR signaling module and identified a novel
multilayer network biomarker (MNB) that was proven to be of
prognostic and predictive value for glioma patients. Moreover,
we compared the predictive performance of the MNB with
that of other existing biomarkers used for gliomas and other
computational methods of biomarker identification. We also
tested the robustness of the MNB using additional data sets
and bootstrapping approach. Furthermore, we developed a mul-
tiscale model to mechanistically depict the intrinsic interplay
between intercellular and intracellular signals in the MNB to
interpret its superiority in comparison to the conventional gene
signatures.

Methods
A schematic illustration of the multilayer intercellular/intracel-
lular signaling network reconstruction, modeling and prediction
is shown in Figure 1. We first analyzed the scRNA-seq data to
infer the cell types based on the biological properties of marker
genes. Based on the specificity of gene expression in different
cell types, we constructed a multilayer intercellular/intracellular
signaling network to identify MNB as a prognostic signature
and therapeutic biomarker of glioma patients. Furthermore, a
multiscale model was developed to mechanistically understand
the functional role of dynamic interaction and regulation of
components in the MNB in determining cellular fate and driving
heterogeneous response kinetics.

Dimensionality reduction and clustering of scRNA-seq
data

The scRNA-seq data of glioma patients [19] were downloaded
from the GEO database with accession number GSE89567. The
data included 6341 cell samples, each with 23 687 genes. We rep-
resented the data as an m × n matrix (m = 23,687, n = 6341), with
columns corresponding to each cell and rows corresponding to
the expression of each gene.

Since the scRNA-seq data are high dimensional and encom-
passing various types of noise, so, in this study, we employed a
kernel-based manifold learning method, diffusion map (DM) [25,
26], to reduce the dimensions of the scRNA-seq data. DM uses
the Gaussian kernel function to define the diffusion distance
between any two nodes (data points) and then constructs ran-
dom walk process on graphs using the graph Laplacian normal-
ization method. DM can filter noisy and nonessential informa-
tion during the diffusion process. Massive cells can be embedded
and visualized into a low-dimensional (i.e. 2D–3D) space based
on their gene expression similarity.

Based on the dimension-reduced data, we employed the
shared-nearest-neighbor (SNN) algorithm [27] to cluster the cell
samples. SNN is a density-based unsupervised clustering algo-
rithm that does not require prior knowledge of the appropriate
number of clusters and can effectively eliminate the noise data
points. We used the ‘Seurat’ R package to perform the dimen-
sion reduction and cell clustering. In the current study, most
parameters in functions ‘RunDiffusion’ (for DM-based dimen-
sion reduction) and ‘FindClusters’ (for SNN clustering) in ‘Seurat’
package were set as default, except that parameter ‘resolution’ in
‘FindClusters’ was set to 0.03 for getting the consistent clustering
results with the previous study [19]. A larger value of ‘resolution’
would result in an increasing number of clusters.
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Figure 1. Schematic illustration of the scRNA-seq data-based multilayer intercellular/intracellular signaling network reconstruction, prediction and modeling. (A) We

first analyzed the scRNA-seq data and conducted unsupervised clustering to infer cell types based on the biological properties of marker genes of each cell cluster. (B)

Based on cell type-specific gene expression, we then constructed the intercellular pathways (ligand–receptor interactions) and intracellular sub-networks (receptor-TF

pathways, TF–target gene interactions, TF sub-network and target gene sub-network). (C) As a result, a multilayer intercellular/intracellular signaling network was built

by integrating the above sub-networks. (D) A core multilayer signaling module with crosstalk and feedback loops was extracted and analyzed. (E) An MNB was defined

based on bulk gene expression data and clinical information to predict survival outcome and therapeutic response of cancer patients. (F) A multiscale simulation model

was developed to mechanistically understand the dynamic interplay between intercellular and intracellular signals in the MNB.

Marker gene selection and cell type identification

Following unsupervised clustering, we selected and analyzed
cell cluster-specific marker genes to infer cell types. A marker
gene or differentially expressed gene (DEG) for each of the cell
clusters can be viewed as a binary classifier, distinguishing
this cell type from the other cells. The area under the curve
(AUC) of the receiver operating characteristic (ROC) was used to
evaluate the performance of each classifier and to select marker
genes. We used the ‘FindMarkers’ function with parameters
logfc.threshold = 2 and test.use = ‘roc’ in the ‘Seurat’ R package
[28, 29] to identify cluster-specific marker genes. Several known
marker genes of some cell types were also used to infer specific
cell types. The functional enrichment of DEGs was also used to
verify the cell type identification results based on the functional
association network of DEGs in the STRING database (https://
string-db.org/).

Constructing primary intercellular signaling pathways

We collected ligand–receptor pairing information from databases,
including DLRP, IUPHAR, HPMR, HPRD and STRING and previous
studies [30], and formed them into a list containing 2558 ligand–
receptor directed pairs (Supplementary Table S1), denoted as
E = {(

ligandi, receptori

)}
. This list provides the basis for con-

structing the ligand–receptor-mediated intercellular signaling
network.

Based on the above data clustering and cell type identifica-
tion, we then analyzed cell type-specific gene expression. We
extracted the expression of each secretory ligand gene and cell
surface receptor gene in each cell type. To reduce the com-
plexity and false positives of the intercellular signaling network
construction, we only considered highly expressed ligand and
receptor genes. In this work, a gene was considered to be highly
expressed in a specific cell type if the fold-change value (log
scale) was greater than a threshold (e.g. 2) and the P-value
from the t-test was less than 0.05. The set of highly expressed
ligand genes in cell type A and receptor genes in cell type B
were denoted as LA

H and RB
H, respectively. The primary intercel-

lular signaling pathways from cell A to cell B were defined as

E∩
(
LA

H×RB
H

)
based on the above ligand–receptor interaction paths

and cell type-specific gene expression. These ligand–receptor

interaction paths in E∩
(
LA

H × RB
H

)
were assumed to be the most

probabilistically highly activated and physiologically important
[23].

Constructing the intracellular signaling network

The intracellular signaling network includes three layers: recep-
tors, TFs and target genes. The Fisher’s exact test and LASSO
regression models were used to evaluate the significance of TF
activation and regulation relationships among TFs and their
target genes. The TF–target gene networks were then connected
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to the receptor layer by evaluating the significance of the con-
nected pathways.

Constructing TF–target gene interactions

We collected human TF–target interactions from the TRED
and KEGG databases, resulting in a TF–target gene pairing
list (Supplementary Table S2). All upregulated genes in tumor
cells (versus other cells) were denoted as Tup. For each TF, LTF

denoted a collection of its target genes. In addition, Lall denoted
a collection of all annotated genes. We then evaluated the
significance of the TF activation using the Fisher’s exact test
by calculating the following probability:

P =
(

a + b
a

)(
c + d

c

)

/

(
a + b + c + d

a + c

)

, (1)

where
(n
k

)
represents the binomial coefficient, a = ∣

∣Tup ∩LTF

∣
∣ rep-

resents activated target genes, b = ∣
∣Tup

∣
∣ − a represents activated

nontarget genes, c = ∣
∣LTF

∣
∣ − arepresents inactivated target genes

and d = ∣
∣Lall

∣
∣-a-b-c represents inactivated nontarget genes. A TF

was considered to be significantly activated if the above P-value
was less than 0.05.

Constructing TF sub-network and target gene sub-network

The TF regulatory sub-network was modeled using the following
linear weighted model:

xi =
L∑

j=1,j �=i

aijxj + ci, i = 1, 2, · · · , L, (2)

where xi represents the expression level of each TF and L is the
number of all activated TFs. The parameters (aij, ci) in the above
model were estimated by fitting the model to the experimental
data (xi

exp) using the LASSO regression method as follows:

min
aij ,ci

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥
xi

exp −
L∑

j=1,j �=i

aijxj − ci

∥
∥
∥
∥
∥
∥

2

L2

+ λi

∥
∥aij

∥
∥2

L1

⎞

⎟
⎠ , i = 1, 2, · · · , L, (3)

where λi is a weight parameter for the penalty term. The
R package ‘glmnet’ [31] was used to optimize the above objective
function. A 10-fold cross validation was performed to select the
optimal values of λi by minimizing the mean cross-validated
error. The estimation of parameters was then obtained as
the regression coefficients at the optimal penalty weight. The
nonzero coefficient of aij was used to construct a sparse TF sub-
network.

The target gene regulatory sub-network was constructed
using a similar approach, i.e. a linear weighted model and the
LASSO regression method.

Connecting receptor-TF pathways

To connect intracellular sub-networks of TFs and target genes
to the intercellular signaling network, we needed to find path-
ways that connected the receptors to the TFs. We used the
information from the KEGG PATHWAY database to extract the
shortest pathways that connected receptors to the downstream
TFs. The significance of the connected pathways’ activation
was evaluated using the Fisher’s exact test, similar to that in
Equation (1).

Multilayer intercellular/intracellular signaling network

The above five sub-networks (i.e. intercellular pathways, TF–
target gene interaction, TF sub-network, target gene sub-
network and receptor-TF pathways) were denoted as N1, N2, N3,
N4 and N5, respectively. The multilayer intercellular/intracellular
signaling network could then be constructed as Ntotal = N1 ∪ N2 ∪
N3 ∪ N4 ∪ N5. The cytoscape software was used to visualize and
characterize each of the above sub-networks and the integrated
network.

Evaluation of prognostic significance and accuracy of
the MNB

The EGFR-mediated MNB consists of 14 genes: ligand genes
(CAMP, ZP3, AREG, ANXA1, HBEGF, SPINK1, ICAM1, FGL1, HLA-A
and SEMA4D), receptor genes (EGFR and ERBB2) and TFs (ESR2
and ELK1). To assess the prognostic significance of the proposed
MNB, we collected clinical information and RNA-seq data of
glioma patients from The Cancer Genome Atlas (TCGA) database
(https://cancergenome.nih.gov/) and Chinese Glioma Genome
Atlas (CGGA) database (http://www.cgga.org.cn/). By matching
patient sample IDs from the clinical information and the gene
expression data, we prepared a TCGA data set (N = 689) and a
CGGA data set (N = 310) for survival analysis. A multivariate Cox
proportional hazards (PH) model [32] was built to compute the
hazard function at time t for each patient as follows:

H (t|X) = H0(t) · exp

(
m∑

i=1

λi · yi

)

, (4)

where yi is the expression level of gene i involved in the MNB and
m is number of genes in the MNB.λi is the regression coefficient
of gene i in the Cox PH model. We then formulated the following
risk score (RS) for each patient based on the expression level of
the MNB:

RS =
m∑

i=1

λi · yi. (5)

An MNB-based risk signature was trained from the TCGA data
set: RS = 0.0256 × CAMP + 0.2140 × ZP3 + 0.1258 × AREG + 0.5908 ×
ANXA1 − 0.0922 × HBEGF + 0.1946 × SPINK1 + 0.0353 × ICAM1 +
0.3163 × FGL1 + 0.1571 × HLA-A + 0.0895 × SEMA4D − 0.0637 ×
EGFR + 0.0799 × ERBB2 + 0.1117 × ESR2 − 0.1106 × ELK1. The
same risk signature was used to compute the RSs for patients in
the CGGA data set. The patients in each data set were classified
into a high-risk group and a low-risk group according to the
optimal cut-off value of their RS that maximizes the sum of
sensitivity and specificity using the ROC method. K-M survival
curves were plotted for patients in the high-risk and low-risk
groups. The statistical significance of difference between two
K-M curves was assessed using the two-sided log-rank test.

To further investigate the predictive accuracy of prognostic
classification with MNB, we used time-dependent ROC analysis
[33]. The above RS was used to predict the 1 year, 3 year and 5 year
survival of patients in the TCGA data set and CGGA data set.

Comparisons with other related signatures and
other methods

To compare the prognostic accuracy of the MNB with other risk
signatures for predicting the overall survival of glioma patients,
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we calculated the AUC of ROC of the MNB, EGFR and ERBB2
signatures and a signature of Cheng et al. [34] that consists of the
immune-related genes FOXO3, IL6, IL10, ZBTB16, CCL18, AIMP1,
FCGR2B and MMP9. The statistical significance of the difference
between the areas under the two ROC curves was assessed using
DeLong’s test [35].

To assess whether the MNB was independently correlated
with the prognosis of glioma patients, we conducted univari-
ate and multivariate Cox regression analyses of clinicopatho-
logic factors and available gene signatures. Clinicopathologic
information, including age, gender and grade, was available for
glioma patients in both the TCGA, while information of age,
gender and IDH mutation status was available for the CGGA
data set. We also included the following gene signatures in the
multivariate Cox regression analyses: the MNB signature newly
proposed in this study; an EGFR + ERBB2 gene signature studied
by many groups [36, 37]; and a recently published signature for
predicting the prognosis of glioma patients, i.e. the immune-
related signature [34].

The above risk factors that were significantly correlated with
the overall and 5 year survival of glioma patients in both the
TCGA and CGGA data sets were extracted for construction of
a combined signature using the LASSO method for variable
selection. As a result, we defined the combined signature
as follows: CS = (0.87213085 × Age) + (0.73262929 × Grade) +
(0.63292736 × MNB) + (0.04822249 × Immune-related signature).
Here, Grade = 1 stands for lower-grade glioma (LGG), and
Grade = 2 stands for glioblastoma multiforme (GBM). The
prognostic accuracy of the MNB was compared with that of
the combined signature.

In addition, we compared the predictive accuracy and
robustness of the MNB with that of LASSO Cox PH model [38]
and random forest methods for survival prediction (such as
RF-SRC [39]).

Multiscale modeling and simulation of EGFR signaling
module

To mechanistically understand the interplay between intercellu-
lar signaling pathways and intracellular gene expression regula-
tion dynamics, we developed a multiscale model to simulate the
fast signaling transduction and the relatively slow gene expres-
sion across multiple temporal scales, ranging from seconds to
minutes. The multiscale model employed a hybrid approach that
coupled ordinary differential equations (ODEs) and stochastic
simulation to describe the ligand–receptor-TF signaling trans-
duction and the gene expression, respectively. The details of
the modeling development were described in Supplementary
Text S1.

Results
Cell type identification and gene expression specificity
based on scRNA-seq

We employed the DM method and SNN algorithm to conduct
an unsupervised clustering of cell samples based on single-cell
gene expression data (see Methods section). A sample of 6341
cells was clearly divided into 3 main clusters (Figure 2A) contain-
ing 104 cells, 5168 cells and 1069 cells. Supplementary Figure S1A
shows the expression profile of marker genes in each cell cluster.
Figure 2B shows the specificity of the expression of marker genes
of cluster 1 and cluster 3 (Supplementary Figure S1B and C),

demonstrating the effectiveness of the selection of the marker
genes for identifying cell types.

Human brain glioma tissue comprises at least tumor cells,
immune cells, such as tumor-associated microglia/macrophages
(TAMs), and normal neural/glial cells such as oligodendrocytes
[13]. There are some known significant marker genes for TAMs
(e.g. CD14, CD163 and CX3CR1 [40]) and oligodendrocytes (e.g.
MBP, MOBP, PLLP and CLDN11 [41]). Figure 1C shows the expres-
sion of oligodendrocytic marker genes, which were preferentially
expressed in cluster 1 cells, leading to the inference of the cluster
1 cells as oligodendrocytes. TAM-specific marker genes were
preferentially expressed in cluster 3 cells (Figure 1D), suggesting
that cluster 3 cells consisted of TAMs.

To verify the inference of cell type, we performed a functional
enrichment analysis of the marker genes in each cell type.
The marker genes of cluster 1 cells were significantly enriched
in axon ensheathment, myelination, oligodendrocyte differen-
tiation, central nervous system myelination, oligodendrocyte
development etc. (Figure 1E). These biological functions support
the inference of cluster 1 cells as oligodendrocytes, a type of neu-
roglia that functions to provide support and insulation to axons
in the central nervous system [42]. Meanwhile, the marker genes
of cluster 3 cells were significantly enriched primarily in inflam-
matory response and immune response functions (Figure 1F),
supporting the inference of the cluster 3 cells as TAMs, a known
type of immune cell.

Taken together, we identified that cluster 1 cells were oligo-
dendrocytes and cluster 3 cells were TAMs. As such, the remain-
ing cluster 2 cells were considered mainly as tumor cells, in
accordance with [19]. In this way, we obtained the cell type-
specific gene expression from the scRNA-seq data, which pro-
vided a basis for the following multilayer intercellular/intracel-
lular signaling network construction.

Multilayer signaling network reveals a TAM-mediated
EGFR signaling module

TAMs are a type of abundant immune cell in the tumor-
associated microenvironment, playing important roles in tumor
growth and drug resistance [43–46]. We therefore investigated
the interactions between glioma cells and TAMs by constructing
the primary intercellular signaling pathways between them,
as described in the Methods section. We further constructed
the intracellular signaling networks of tumor cells in response
to the stimulus of cytokines secreted by TAMs. The highly
expressed genes, including 62 TAM-secreted ligand genes, 68
receptor genes as well as 12 TFs and 21 target genes in tumor
cells, were included in the construction of the intercellular
and intracellular networks. The intracellular signaling network
included three layers: receptor layer, TF layer and target
gene layer. The Fisher’s exact test was used to evaluate the
significance of TF activation, and LASSO regression models
were built to construct sub-networks for TFs and their target
genes (see the Methods section). The TF layer and target gene
layer sub-networks were then connected to the receptor layer
to construct the intracellular signaling transduction network.
Supplementary Figure S2A–E shows the constructed primary
intercellular signaling pathways, TF–target gene interactions,
TF sub-network, target gene sub-network and receptor-TF
pathways, respectively.

A multilayer signaling network (Figure 2G) was constructed
by integrating the above intercellular pathways and intracel-
lular sub-networks. The reconstructed network represented
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Figure 2. Cell type identification, marker gene analysis and multilayer network construction. (A) The cell clustering shows that 6341 cells were divided into 3 clusters,

containing 104 cells, 5168 cells and 1069 cells, respectively. (B) The expression of the first two marker genes in cluster 1 cells (i.e. MAG and CLDN11) and cluster 3 cells

(i.e. RNASET2 and C1QB), respectively. (C) Violin plots showing the expression of oligodendrocytic marker genes, including MBP, MOBP, PLLP and CLDN11 [41], which

were highly expressed in cluster 1 cells, indicating cluster 1 cells as oligodendrocytes. (D) The expression of known marker genes of TAMs, including CD14, CD163 and

CX3CR1 [40]. These marker genes were highly expressed in cluster 3 cells, indicating cluster 3 cells as TAMs. (E and F) Functional enrichment of marker genes of cluster

1 cells and cluster 3 cells, respectively. The top enriched gene ontology terms were listed with enrichment scores, shown as −log10(q), where q is the significance of

the enrichment after multiple testing. (G) Multilayer intercellular/intracellular signaling network of tumor cells (TC) activated by TAMs. The nodes with different colors

represent ligands (green), receptors (red), TFs (yellow) or target genes (blue). Green lines represent ligand–receptor signaling pathways from TAMs to tumor cells. Red

lines represent receptor-TF signaling pathways within tumor cells. Yellow lines represent correlations between TFs. Blue lines represent correlations between target

genes.
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Table 1. Experimental evidences for functional roles of the MNB genes in cancer progression. The table lists the gene name, the biological
functions in cancers and the corresponding PubMed IDs and literature references for each TAM-related gene

Symbol Gene name Functional roles in cancers PMIDs References

EGFR Epidermal growth factor receptor Promotes glioma growth and angiogenesis 22139077 [48]
ERBB2 Erb-B2 receptor tyrosine kinase 2 Regulation of cell death 19578738 [49]
ESR2 Estrogen receptor 2 Tumor suppressor; suppression of GBM 27126081 [50]
ELK1 ELK1, ETS transcription factor Promotes glioma proliferation, migration and

invasion
25707769 [51]

CAMP Cyclic adenosine monophosphate Inhibits proliferation and proapoptotic of glioma
stem cells

30171713 [52]

ZP3 Zona pellucida glycoprotein 3 Not reported – –
AREG Amphiregulin Promotes immunosuppression, dampens local

inflammation and mediates type 2 immune
resistance

28741529 [53]

ANXA1 Annexin A1 Enhances cancer growth and migration 29263330 [54]
HBEGF Heparin-binding EGF like growth factor Promotes glioblastoma invasion through

activation of EGFR
22294205 [55]

SPINK1 Serine peptidase inhibitor, Kazal type 1 Promotes epithelial–mesenchymal transition
through EGFR signaling pathway

24619958 [56]

ICAM1 Intercellular adhesion molecule 1 Antitumor immunity 10463777 [57]
FGL1 Fibrinogen-like 1 Promotes cell proliferation, invasion and

migration
29845203 [58]

HLA-A Major histocompatibility complex, class I, A Adaptive immune responses against tumors 23852952 [59]
SEMA4D Semaphorin 4D Induces glioma invasiveness and angiogenesis 29133239 [60]

intercellular/intracellular signaling transduction from the TAM-
secreted ligands to the tumor cell receptors and then to
downstream TFs and target genes. The multilayer network
correctly predicted some known important TAM-mediated
pathways in gliomas that have been validated by experimental
studies, such as the EGF pathway, TGF pathway and IGF1
pathway [13, 47]. Our approach also discovered some new ligand–
receptor interactions in gliomas, such as THBS1-LRP5 and APOE-
LRP6, which generated a new hypothesis of TAM-tumor cell
interaction for further experimental testing.

The multilayer signaling network showed that EGFR and
ERBB2 were two hub receptors connecting the extracellular TAM-
secreted ligands and intracellular TFs. Moreover, we observed
two feedback loops involved in the EGFR and ERBB2 signal axes,
including EGFR-ESR2-egfr-EGFR and ERBB2-ELK1-erbb2-ERBB2.
In addition, the TF sub-network indicated that correlations
between ESR2 and ELK1 existed, suggesting a crosstalk between
the EGFR-ESR2 pathway and the ERBB2-ELK1 pathway. The
TAM-mediated EGFR feedback-crosstalk signaling module
contains ligand genes (CAMP, ZP3, AREG, ANXA1, HBEGF,
SPINK1, ICAM1, FGL1, HLA-A and SEMA4D), receptor genes
(EGFR and ERBB2) and TFs (ESR2 and ELK1). Table 1 lists
the experimental evidences for functional roles of the EGFR
module genes in cancer progression [48–60]. Furthermore,
the above 14 genes in the EGFR module exhibited signifi-
cantly differential expression profiles between LGG (N = 172)
and high-grade GBM patients (N = 530) in TCGA database
(Figure 3A), indicating their potential correlation with glioma
progression.

The prognostic significance and accuracy of an MNB

Based on the above multilayer signaling network, we proposed
a novel MNB to predict the prognosis of cancer patients. We
formulated the above TAM-mediated EGFR feedback-crosstalk

signaling module as an MNB-based risk signature (see the
Methods section). The identified MNB included 10 ligand genes
(CAMP, ZP3, AREG, ANXA1, HBEGF, SPINK1, ICAM1, FGL1, HLA-A
and SEMA4D), 2 receptor genes (EGFR and ERBB2) and 2 TFs (ESR2
and ELK1).

We first evaluated the prognostic significance of the MNB
by using the TCGA data set (N = 598) and independent data set
of glioma patients (N = 310) in CGGA database (Figure 4A and B).
The statistical significance of the difference between the K-M
survival curves for patients in the high-risk group (blue) and
low-risk group (red) was assessed using the log-rank test, with
P-values less than 0.0001 for both the TCGA and CGGA data sets.
The high-risk group of patients had shorter overall survival time
than the low-risk group. In addition, most of the 14 signature
genes exhibited significantly differential expression profiles in
high-risk group patients (N = 397) and low-risk group patients
(N = 305) (Figure 3B).

We then evaluated the prognostic accuracy of the MNB
by calculating the AUC of the time-dependent ROC with
respect to the 1 year, 3 year and 5 year survival of glioma
patients. The MNB showed good prognostic accuracy for both
the TCGA data set (AUC at 1 year, 0.887; AUC at 3 years,
0.901; AUC at 5 years, 0.854; Figure 4C) and CGGA data set
(AUC at 1 year, 0.774; AUC at 3 years, 0.867; AUC at 5 years,
0.931; Figure 4D). More evaluation indexes, including sensitivity,
specificity, precision, accuracy, F1 score etc., of the predictive
performance of the MNB in the validation set were listed in
Supplementary Table S3.

We further compared the prognostic accuracy of the MNB
with other prognostic biomarkers, including EGFR/ERBB2 genes
and an immune-related gene signature (Cheng et al. [34]). The
areas under the ROC curves of these biomarkers for predicting
the overall survival of glioma patients in the TCGA and CGGA
data sets were calculated and compared (Figure 4E and F). The
results demonstrated a superior prognostic accuracy of the MNB
in comparison with that of EGFR/ERBB2 genes and the immune-
related gene signature (see also the Discussion section).
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Figure 3. Expression profiles of the 14 signature genes involved in the MNB in different samples of glioma patients. (A) The distribution of 14 signature genes in

GMB (green) samples and LGG samples (brown), respectively. (B) The distribution of 14 signature genes in low-risk group (green) and high-risk group (brown) samples

of glioma patients, respectively. Mann–Whitney–Wilcoxon test was used to assess the significance of the difference of each gene’s expression between two groups

(∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Gene names and the corresponding P-values were listed.

The MNB is associated with long-term response of
targeted therapies in gliomas

We further selected the patients who received molecularly tar-
geted therapy to examine the association between the above
MNB-based risk signature and the drug sensitivity or resistance
of glioma patients. The 3 year or 5 year survival status (alive or
dead) of each patient following the molecular targeted therapy
was used to evaluate the long-term response of the drug treat-
ment (sensitive or resistant). Based on the above MNB-based risk
signature, each patient was classified into sensitive group (i.e.
low-risk group) or resistant group (i.e. high-risk group) according
to the optimal cut-off value of the RS using ROC method. To
assess the accuracy of the MNB for predicting the response
of the targeted therapies, we compared the AUC of the ROC
of the MNB with other gene biomarkers including EGFR/ERBB2
genes and an immune-related gene signature (Cheng et al. [34]).
Figure 5A shows the AUC of the ROC of these signatures for
predicting targeted-therapeutic response evaluated by the 3 year
survival (AUC of MNB, 0.897; AUC of EGFR/ERBB2, 0.712; AUC
of Cheng et al. signature, 0.823). Figure 5B shows the AUC of
the ROC of these signatures for predicting targeted-therapeutic
response evaluated by the 3 year survival (AUC of MNB, 0.854;
AUC of EGFR/ERBB2, 0.662; AUC of Cheng et al. signature, 0.779).
These results demonstrated a significantly higher accuracy of

the MNB-based signature compared with other signatures for
predicting the long-term response of the molecularly targeted
therapies in glioma patients.

The MNB is an independent and robust prognostic
signature

We conducted univariate and multivariate Cox regression anal-
yses and found that the MNB was independently correlated with
the overall and 5 year survival of glioma patients in both TCGA
data set (Table 2) and CGGA data set (Supplementary Figure S3)
with adjustment for clinicopathologic factors (e.g. age, gender
and grade), IDH mutation status and other existing gene
signatures.

To explore the prognostic value of the MNB in stratified
cohorts, patients were first classified by two important
clinicopathologic factors, age and grade, that significantly
correlated with the prognosis of glioma patients (Table 2;
Supplementary Figure S3). Figure 6A–D shows the prognostic
significance of the MNB in different glioma cohorts stratified
by age (Figure 6A and B) or grade (Figure 6C and D). In all of
these cohorts, patients were classified as high-risk versus
low-risk groups using cut point from ROCs, and the high-
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Figure 4. The prognostic significance and accuracy of the MNB. (A and B) Prognostic significance of the MNB assessed by the TCGA data set (N = 598) (A) and CGGA

data set (N = 310) (B) of glioma patients. An RS was formulated from the Cox PH model based on the gene expression levels of the MNB. The statistical significance of

the difference between K-M survival curves for patients in the high-risk group (blue) and in the low-risk group (red) was assessed using the log-rank test. (C and D)

Prognostic accuracy of the MNB evaluated by the AUC of the time-dependent ROC with respect to 1 year, 3 year and 5 year survival of glioma patients in the TCGA data

set (C) and CGGA data set (D). The MNB showed good prognostic accuracy. (E and F) Comparison of ROC curves of the MNB with that of EGFR and ERBB2 genes and an

immune-related gene signature (Cheng et al. [34]) for the TCGA data set (E) and CGGA data set (F). The statistical significance of the difference between areas under the

two correlated ROC curves was assessed using DeLong’s test [35]. The MNB showed superior predictive power.

risk patients had a significantly shorter overall survival
than low-risk patients. Subsequently, patients who received
chemotherapy and radiotherapy were utilized to validate the
prognostic significance of the MNB. Figure 6E–H demonstrates
that the MNB retained prognostic significance for glioma
patients treated with or without chemotherapy (Figure 6E and F)

and radiotherapy (Figure 6G and H). These results indicated
that the MNB could accurately identify patients with an
unfavorable prognosis regardless of their clinicopathologic
and treatment characteristics. The analysis in the stratified
cohorts of CGGA data set showed the consistent results
(Supplementary Figure S4).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbz040/5475028 by Sun Yat-Sen U

niversity user on 25 April 2019

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz040/-/DC1


10

Figure 5. The accuracy of the MNB in predicting long-term response of the targeted therapy in glioma patients in comparison with other signatures [EGFR/ERBB2 genes

and an immune-related gene signature (Cheng et al. [34])]. The predictive accuracies of these signatures evaluated by the 3 year survival (A) or 5 year survival (B) were

assessed by the AUC under the ROC curves. The statistical significance was assessed using DeLong’s test [35]. The MNB showed more accuracy.

Table 2. Multivariate Cox regression analysis of clinicopathologic factors (age, gender and grade) and three gene signatures for predicting overall
survival and 5 year survival in TCGA glioma patients. The MNB signature showed prognostic significance for both the overall survival and 5 year
survival (P-values are denoted in red) of glioma patients, indicating that the MNB signature is an independent risk factor for glioma patients.
See also Supplementary Figure S3 for multivariate Cox regression analysis using CGGA data set

Variable Overall survival 5 year survival
Univariate COX Multivariate COX Univariate COX Multivariate COX
P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI)

Age
≥40 versus <40 <2e-16 4.342 (3.193–5.904) 1.50e-06 2.406 (1.682–3.440) <2e-16 5.159 (3.62–7.352) 1.13e-05 2.440 (1.638–3.634)

Gender
Male versus female 0.111 1.224 (0.954–1.571) 0.343173 1.133 (0.876–1.465) 0.0699 1.279 (0.980–1.669) 0.36602 1.136 (0.862–1.496)

Grade
GBM versus LGG <2e-16 9.499 (7.212–12.51) 0.000381 2.080 (1.389–3.116) <2e-16 9.499 (7.212–12.51) 0.00114 1.975 (1.311–2.975)

MNB
High-risk versus
low-risk

<2e-16 2.718 (2.420–3.054) 6.07e-10 1.893 (1.547–2.318) <2e-16 2.832 (2.511–3.195) 1.88e-10 2.011 (1.622–2.493)

EGFR + ERBB2
High-risk versus
low-risk

<2e-16 2.718 (2.264–3.263) 0.995660 0.999 (0.800–1.248) <2e-16 2.82 (2.335–3.405) 0.60139 0.940 (0.745–1.186)

Immune-related
signature

High-risk versus
low-risk

<2e-16 1.559 (1.469–1.655) 0.424095 1.042 (0.942–1.154) <2e-16 1.581 (1.488–1.679) 0.52072 1.035 (0.932–1.149)

We also examined whether combining the MNB with
clinicopathologic risk factors and other existing gene signatures
could significantly improve the prognostic accuracy of the
risk signature. The time-dependent ROC curves (Figure 7)
compared the prognostic accuracy by age, grade (LGG or GBM),
MNB, an immune-related gene signature (i.e. Cheng et al.
signature) and the combined signature (see the definition
in the Methods section). The AUCs of ROC curves in both
the TCGA data set (Figure 7A and B) and the CGGA data
set (Figure 7C and D) showed that the combined signature
greatly outperformed other risk signatures except the MNB
for predicting the 3 and 5 year survival rates of glioma
patients. Noticeably, the AUC of the ROC of the MNB was
rather close to that of the combined signature. These results
indicated that the MNB possessed convincingly strong prog-

nostic power and was almost as accurate as the combination
of all the considered clinicopathologic factors and existing risk
signatures.

We tested the robustness of the MNB in comparison with
LASSO Cox PH model using a bootstrapping approach (Figure 8).
We generated 100 random data sets by randomly taking 60% of
the samples from the CGGA data sets (i.e. validation set). The
AUC values of ROC with respect to overall survival (Figure 8A),
3 year survival (Figure 8B) and 5 year survival (Figure 8C) were
computed. Kolmogorov–Smirnov test (K-S test) P-values were
computed to assess the significance of the difference between
the probability distributions of AUC values of the MNB and
LASSO. Although LASSO was fitted well with the TCGA data set
(i.e. training set; Supplementary Figure S5), its predictive accu-
racy on the validation set was significantly lower than the MNB.
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Figure 6. Prognostic significance of the MNB in the stratified cohorts of TCGA data set. (A–D) Prognostic significance of the TAM-related gene signature in different

cohorts stratified by age (age ≤ 40 or age > 40, panels A and B, respectively) or grade (LGG and GBM, panels C and D, respectively). (E–H) The MNB signature retained

prognostic significance for glioma patients treated with or without pharmaceutical therapy (E and F) and radiotherapy (G and H). Optimal cut-off values were used

to determine high-risk and low-risk groups in each stratified cohort, and the statistical significance of the difference between two K–M survival curves was assessed

using the log-rank test. See also Supplementary Figure S4 for the analysis results in the stratified cohorts of CGGA data set.
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Figure 7. Time-dependent ROC curves comparing the prognostic accuracy of the MNB with clinicopathologic risk factors and other existing gene signatures or their

combination. Only significant signatures in the multivariate Cox regression analysis, i.e. MNB and immune-related gene signature (Table 2; Supplementary Figure S3),

were used for analysis and comparison. (A and B) Comparisons of the prognostic accuracy by age, grade (LGG or GBM), MNB, an immune-related gene signature (i.e.

Cheng et al. signature) and the combined signature using the TCGA data set with respect to 3 year survival (A) or 5 year survival (B). (C and D) Comparisons of the

prognostic accuracies with respect to 3 year survival (C) or 5 year survival (D) using the CGGA data set.

Therefore, the MNB was verified to be more accurate and robust
than LASSO.

We further validated the prognostic value of the MNB
on a large external data set (N = 899) involving both gene
expression values and clinical information of glioma patients
from GSE55918 [61] that was well aggregated from 16 previous
microarray data sets and was used for external validation.
The MNB had good prognostic significance (Figure 9A) and
accuracy (Figure 9B) on this data set. Furthermore, we performed
robustness tests of the MNB on 100 random sub-data sets
using a bootstrapping approach as described above. The mean
AUC values with 95% confidence intervals for 3 year and
5 year survival predictions were 0.755 (0.745–0.764) (Figure 9C)
and 0.747 (0.747–0.756) (Figure 9D), respectively. These results
demonstrated that the MNB is an independent and robust
prognostic signature.

Mechanistic simulation illuminated dynamic interplay
between multilayer signals in the MNB

Next, we sought to investigate the intrinsic interplay between
intercellular and intracellular pathways in the TAM-mediated

EGFR module to understand the role of the MNB in regulating
cellular function. The TAM-mediated EGFR feedback-crosstalk
signaling module is depicted in Figure 10A, where L1 and L2
represent TAMs-secreted ligands for EGFR and ERBB2, respec-
tively, and α and β represent the crosstalk strength between
ESR2 and ELK1, respectively. Generally, in mammalian cells, bio-
chemical reactions in signaling transduction (including ligand–
receptor binding, protein phosphorylation and TF activation, at
a time scale of seconds) is relatively faster than the stochastic
switching of TF-regulated genes (at a time scale of minutes)
[62] (Figure 10B). Therefore, a multiple temporal scale model is
required to describe the multilayer signaling dynamics. As such,
we developed a multiscale model that couples ODEs for signal-
ing transduction at short time scales and stochastic processes
for TF-gene interactions at long time scales, simulated using a
Gillespie-ODE hybrid algorithm (see the Methods section).

We investigated the combinatorial effects of extracellular
ligand concentrations and intracellular crosstalk strength on
the signaling dynamics. Figure 10C shows the mean values of
EGFR activation at steady state (evaluated in 100 min) from
1000 simulations, in which a dramatic switch was observed as
α increased above −0.12 when L1 was greater than 0.5. Mean-
while, the noise of EGFR activation increased singularly near
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Figure 8. Robustness tests of the MNB compared with LASSO. We generated 100 random data sets by randomly taking 60% of the samples from the validation set.

The AUC values of ROC with respect to overall survival (A), 3 year survival (B) and 5 year survival (C) were computed. K-S test P-values were computed to assess the

significance of the difference between the probability distributions of AUC values of MNB and LASSO. MNB showed good robustness and better accuracy than LASSO.

α = −0.12 (Figure 10D). These results suggest that the increase
in crosstalk strength α might induce a critical transition of
the signaling dynamics and cellular states. Around the critical
value of α = −1.2, there were two distinct populations of EGFR
activation trajectories (Figure 10E), resulting in a bimodal steady-
state distribution of EGFR activation. The stochastic dynamics
of ERBB2 activation resulted in, whereas, a unimodal steady-
state distribution (Figure 10F). The difference between EGFR and
ERBB2 distributions verified the role of multilayered feedback-
crosstalk loops in decoding ligand specificity of stochastic cell
signaling [63, 64].

In addition, Supplementary Figure S6 shows the stochastic
dynamics of ON–OFF switching of genes egfr and erbb2
(Supplementary Figure S6A and B), the total levels of EGFR
and ERBB2 proteins (Supplementary Figure S6C and D) and the
activities of TFs ESR and ELK1 (Supplementary Figure S6G–H).
The red lines represent means, and the brown lines repre-
sent the first and third quartiles. In the above simulations,
α = −1.2, β = 1 and L1 = L2 = 1. Other parameters are listed in
Supplementary Table S4. The examination of the effects of β

on the stochastic activation of EGFR (Supplementary Figure S7)
indicated that the above results were robust with respect to the
inverse crosstalk from ESR2 to ELK1. These results demonstrated
that both the extracellular signals and the intracellular circuits
influence the dynamics of signaling transduction and gene
expression. Moreover, the model analysis revealed dynamic and
nonlinear interplay between multilayer signals, highlighting the
importance of the biological integration of multilayered signals
in decoding ligand specificity, determining cellular fate and
driving heterogeneous response kinetics.

Discussion and Conclusion
The network-based approaches to modeling cancer genomic
or transcriptomic data have been developed in the past few
years to understand cancer mechanisms and to predict can-
cer metastasis, prognosis, drug resistance and drug targets for
clinical purposes [66–68]. For example, Edwin Wang’s group pro-
posed and developed cancer hallmark networks approach for
individual tumors [65]. They developed a cancer hallmark gene
module-based network algorithm to identify highly robust can-
cer biomarkers [69]. The core cancer hallmark network could
also be used to effectively predict breast cancer subtype-specific

drug targets [70]. These studies provided encouraging examples
of using network-based prediction approaches in cancers. The
success of such methods could be attributed to the inherent
capability of biomolecular networks in representing underlying
mechanisms and principles of tumorigenesis, cancer develop-
ment and drug response.

The systematic reconstruction and modeling of intercellular
signaling pathways and intracellular gene regulatory networks
are important for understanding microenvironment-mediated
gene expression and cell–cell interactions. The technology of
scRNA-seq provides a new tool with which to accomplish
this challenging task. In this study, we proposed an scRNA-
seq data-based pipeline to reconstructing and modeling the
multilayer signaling networks that consist of pathways, from
intercellular ligand–receptor interactions to intracellular TF
activation and gene switching. To illustrate our method, we
used scRNA-seq transcriptomic data from glioma patients. We
built a multilayer intercellular/intracellular signaling network
to investigate tumor cell–microenvironment interactions. The
reconstructed network not only correctly predicted some
experimentally validated TAM-mediated pathways in gliomas
but also discovered some new pathways that exist between
cancer cells and TAMs.

We acknowledge that some assumptions and simplifications
have been made for the scRNA-seq transcriptome-based recon-
struction of the multilayer signaling network. Both intercellu-
lar and intracellular signaling transduction pathways involve
complex posttranslational modifications of proteins, such as
phosphorylation, ubiquitination and acetylation [71]. However,
due to difficulties in obtaining high-throughput single-cell pro-
teomic and secretome proteomic data, the use of scRNA-seq
to approximate protein activity in cells is a good alternative
given that highly expressed mRNA levels correlate well with
increased protein activity because the ratio of protein to mRNA
level is conserved between tissues for every protein [72]. In
this way, the false-positive prediction rate would be reduced,
although a variety of elements in the natural signaling network
might be missed. In addition, we did not consider direct physical
contact between cells in our network reconstruction, which is
also important for the interaction of physically adjacent cells.
In the future, we will integrate this type of cell interaction
mode [21] into the multilayer signaling network to build a more
comprehensive interaction map between cells.
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Figure 9. Validation of the prognostic value of the MNB on more data sets. An integrated data set (N = 899) involving both gene expression values and clinical information

of glioma patients from GSE55918 that was merged from 16 previous microarray data sets was used for external validation. (A) K-M survival curves for patients in the

high-risk group (blue) and in the low-risk group (red) predicted by the MNB signature, with log-rank test P-value less than 0.0001. (B) Prognostic accuracy of the MNB

evaluated by the AUC of the time-dependent ROC with respect to 3 year and 5 year survival of glioma patients in the whole external validation set. The MNB showed

good prognostic accuracy. (C and D) Robustness tests of the MNB using a bootstrapping approach by generating 100 random sub-data sets each randomly taking 60%

of the samples from the external validation set. The mean AUC values with 95% confidence intervals for 3 year survival prediction (C) and 5 year survival prediction

(D) were 0.755 (0.745–0.764) and 0.747 (0.737–0.756), respectively.

Despite these flaws in our approach, the reconstructed
network verified some known pathways, such as the EGF
pathway, TGF pathway and IGF1 pathway [13, 47], and discovered
some novel crosstalk and feedback loops, as motioned above
(Figure 2G). The proposed method enriched the downstream
analysis of scRNA-seq data and represents a new approach
to study cell–cell interactions that could be applied to many
biological questions, such as cancer drug resistance [67]. For
example, many studies have revealed that the interaction
between immune cells and tumor cells influences tumor
progression and drug response [43–45]. The IGF1-IGF1R path-
way between TAMs and glioma cells, as revealed in this
study, has been found to play important roles in glioma
resistance to CSF1R inhibition therapy [8]. Our previous study
[46] developed a spatio-temporal model to study the TAM-
mediated drug resistance in glioma immunotherapy based
on the IGF1-IGF1R pathway. In future work, we will use our
developed scRNA-seq transcriptome-based multilayered sig-
naling network approach to study intercellular and intracellular
mechanisms that underlie microenvironment-mediated drug
resistance.

More importantly, based on the multilayer signaling mecha-
nism, we identified a novel multilayer network-based biomarker,
namely MNB, for predicting cancer prognosis, which was proven
to be of prognostic and predictive value in the clinical data
sets of glioma patients. Although EGFR plays important roles in
glioma development [73], the studies on prognostic significance
of EGFR expression in glioma have not been consistent [74]. Some
studies have shown that EGFR expression is not associated with
the overall survival of secondary GBM patients [75], and it was
not an independent predictor of overall survival in a cohort of
glioblastoma patients [76].

We demonstrated that the EGFR-mediated MNB possessed
better prognostic accuracy and robustness when compared
to the conventional gene signatures (Figures 4, 5 and 8;
Supplementary Figure S8) and other predictive methods such
as LASSO Cox PH model (Figure 8) and random forests method
for survival prediction (Supplementary Figure S9). We interpret
this as follows. First, the interaction among the EGFR feedback-
crosstalk module is dynamic and nonlinear as revealed by our
hybrid multiscale model (Figure 10). Therefore, a combination
of genes involved in the multilayered EGFR module could
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Figure 10. Multiscale modeling of the TAM-mediated EGFR feedback-crosstalk module depicts dynamic interplay between multilayer signals in the MNB. (A) TAM-

mediated EGFR feedback-crosstalk module. Under the stimulation of the respective ligands secreted from TAMs, receptors EGFR and ERBB2 can both activate TFs

ESR2 and ELK1 through crosstalk pathways, which regulate the gene ON–OFF switches of egfr and erbb2 and, in turn, the corresponding protein synthesis. L1 and

L2 represent the TAM-secreted ligands for EGFR and ERBB2, respectively. α and β represent crosstalk strengths between ESR2 and ELK1. (B) Schematic depiction of

multiscale modeling. The signaling transduction from extracellular ligands to intracellular receptors and TFs activation at short time scales was modeled using ODEs,

while the gene transcription at long time scales was described using stochastic processes. A hybrid simulation algorithm was designed to simulate the multiscale

model. (C) Mean of EGFR activation at steady states under different combinations of L1 and α values. A dramatic switch was observed as α increased above −0.12. (D)

Noise of EGFR activation at steady states under different combinations of L1 and α values. The noise increased singularly near α = −0.12. (E and F) Stochastic dynamics

of activated EGFR and ERBB2. A bimodal distribution of EGFR activation and a unimodal distribution of ERBB2 activation at steady states were observed. α = −1.2, β = 1,

L1 = L2 = 1.

represent the signaling regulation and cellular status more
accurately and comprehensively [77], thus having more predic-
tive power than single genes. Second, and more importantly,
the MNB takes into account the mechanism of cell–cell
interactions, in particular the tumor cell–TAMs interaction
pathways, for predicting cancer progression. Compared to the
conventional biomarkers that focus on tumor cells, the MNB
could mechanistically connect microenvironmental cells (e.g.
immune cells) to tumor cells through intercellular pathways
(ligand–receptor interactions) and further to intracellular
gene transcription (TF-gene interactions). Therefore, the MNB
provides a mechanism-based approach to identify functional

signaling modules that has predictive power for cancer
prognosis.

Although the existing immune-related gene signature [34]
was generated by screening all immune cell-related genes, it
lacks clear correspondence to the specific cell types, thus falls
short on mechanistic interpretation. Our MNB signature only
considered TAMs while produced better predictive ability to
the immune-related gene signature (Supplementary Figure S8),
highlighting the dominant roles of TAMs in glioma progres-
sion and drug resistance. In the future work, we will construct
multiple cell type-mediated multilayer networks, which would
expectedly identify a more accurate prognostic signature.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbz040/5475028 by Sun Yat-Sen U

niversity user on 25 April 2019

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz040/-/DC1


16

The addition of the interaction terms between the genes
in the MNB could be expected to improve the predictive
power of the prognostic signature, however, which would
also result in more complexity of the model and unfair-
ness of comparison with other existing signatures that was
based on linear models of gene expression features. So
in the current study we did not explicitly consider the
interaction terms in the model. In the future work we will
integrate the interaction terms in the model to improve our
approach.

In recent years, efforts have been made to develop more
accurate proportional hazards models using advanced compu-
tational methods, such as random survival forests (RSF) [39],
neural network Cox models (Cox-nnet) [78] and deep learning
models (DeepSurv) [79]. These models usually produce a large
amount of genes as features for survival prediction. For exam-
ple, we compared the MNB and RSF-based signature (i.e. rfsrc
signature; Supplementary Figure S9). Even though rfsrc signa-
ture employed a large amount of genes (up to 259 genes), its
prognostic performance was not significantly better than that
of the MNB. In particular, a robustness test using a bootstrapping
approach showed that the MNB was much more accurate than
the rfsrc signature with respect to 5 year survival prediction.
Therefore, the MNB did not only possess good predictive abil-
ity but also had less model complexity and better mechanism
interpretation.

In this study, we used scRNA-seq of IDH-mutant astrocytoma
samples to construct the multilayer network. We assumed that
the expression levels and the regulation strengths of genes in the
multilayer network might be quantitatively different between
different glioma subtypes (e.g. astrocytoma, oligodendrocytoma
and GBM), but the structures of the multilayer network between
these two types were qualitatively comparable except slight dis-
parity due to different mutation status of some genes (e.g. IDH).
So the multilayer network constructed from the astrocytoma
samples should be comparable to that of GBM. Ideally, if the GBM
samples are available and adopted also for the construction of
the multilayer network, the resulting MNB signature could be
expected to further improve the prognostic accuracy of glioma
patients especially GBM patients.

The previous study [19] has demonstrated that the analysis
of differentially expressed genes is largely independent of
different scRNA-seq platforms (e.g. the SMART-seq2 and the
10X genomics platform; Supplementary Figure S5C therein).
On the other hand, although different scRNA-seq platforms
may detect gene expression with different levels of ampli-
fication noise [80], the Seurat based on DM employed in
our pipeline could filter gene expression noise. Therefore
the analysis of the differential expression of genes between
different cellular clusters in our pipeline should be rela-
tively robust with respect to different scRNA-seq platforms.
Since the construction of the network was mainly based
on the differentially expressed genes, so we assumed that
different scRNA-seq platforms have slight influence on the
construction of the network and thus the identification of
biomarker.

In summary, we proposed a novel scRNA-seq transcriptome-
based multilayer network approach to identify prognostic and
predictive signatures of cancer patients. The MNB was shown
to be of good prognostic value in glioma patients compared
with other existing signatures and computational methods. The
proposed approach shed lights on facilitating the identification
of signatures for the clinical diagnosis, prognosis or treatment of
cancers.

Key Points
• The technology of scRNA-seq provides an unprece-

dented opportunity for dissecting the interplay between
the cancer cells and the associated microenvironment.

• We developed a novel scRNA-seq data-based approach
to reconstruct a multilayer signaling network that con-
tains pathways from intercellular ligand–receptor inter-
actions, intracellular TFs and their target genes.

• A novel MNB was proposed to predict survival outcome
and therapeutic response of glioma patients.

• The MNB showed good prognostic and predictive power
and outperformed other related gene signatures, evalu-
ated with glioma data sets.

• The MNB connects cancer cells and tumor-associated
microenvironment, which would facilitate the identi-
fication of more effective signatures for the clinical
prognosis and treatment of cancers.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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