Xiaoming He

Xiaoming He
The Ohio State University | OSU · Department of Biomedical Engineering

About

162
Publications
27,623
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,296
Citations

Publications

Publications (162)
Article
The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogen...
Article
Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of TP53, an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon...
Article
Full-text available
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assem...
Article
Full-text available
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the “powerhouse” inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For severa...
Article
Full-text available
Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotect...
Article
Full-text available
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailo...
Article
Full-text available
In breast cancer, genetic heterogeneity, the lack of actionable targets and immune evasion all contribute to the limited clinical response rates to immune checkpoint blockade therapy. Here, we report a high-throughput screen based on the functional interaction of mouse- or patient-derived breast tumour organoids and tumour-specific cytotoxic T cell...
Article
Full-text available
Breast cancer and its most radical treatment, the mastectomy, significantly impose both physical transformations and emotional pain in thousands of women across the globe. Restoring the natural appearance of a nipple-areola complex directly on the reconstructed breast represents an important psychological healing experience for these women and rema...
Article
Full-text available
Background Therapy with mesenchymal stem cells remains a promising but challenging approach to critical limb ischemia in diabetes because of the dismal cell survival. Methods and Results Critical limb ischemia in type 2 diabetes mouse model was used to explore the impact of diabetic limb ischemia on the survival of bone marrow mesenchymal stromal...
Article
Full-text available
Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) are valuable for the understanding/treatment of the deadly heart diseases and their drug screening. However, the very much needed homogeneous 3D cardiac differentiation of human iPSCs is still challenging. Here, it is discovered surprisingly that Rock inhibitor (RI), us...
Article
The three classical core technologies for the preservation of live mammalian biospecimens—slow freezing, vitrification and hypothermic storage—limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combinat...
Article
Human induced pluripotent stem cells (iPSCs) are ideal for developing personalized medicine. However, the spontaneous differentiation of human iPSCs under conventional 2D and 3D cultures results in significant heterogeneity and compromised quality. Therefore, a method for effectively isolating and expanding high‐quality human iPSCs is critically ne...
Article
Directed neural differentiation of embryonic stem cells (ESCs) has been studied extensively to improve the treatment of neurodegenerative disorders. This can be done through stromal-cell derived inducing activity (SDIA), by culturing ESCs directly on top of a layer of feeder stromal cells. However, the stem cells usually become mixed with the feede...
Article
Full-text available
Human induced pluripotent stent cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to then widespread use. However, contemporary methods for hiPSC cryopreservation ate associated with both limited cell survival and high concentration of toxic cryoprotect...
Article
Microfluidic encapsulation of cells/tissues in hydrogel microcapsules has attracted tremendous attention in the burgeoning field of cell-based medicine. However, when encapsulating rare cells and tissues (e.g., pancreatic islets and ovarian follicles), the majority of the resultant hydrogel microcapsules are empty and should be excluded from the sa...
Article
Full-text available
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell...
Article
Full-text available
One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-...
Article
Human induced pluripotent stem cell-derived cardiac spheroids (iPSC-CSs) in 3D possess tremendous potential for treating heart diseases. The beating pattern (including beating frequency and amplitude) of iPSC-CSs is a direct indicator of their health and function. However, detecting the beating pattern of 3D cardiac spheroid is not well studied and...
Article
Full-text available
The transmembrane P-glycoprotein (P-gp) pumps that efflux drugs are a major mechanism of cancer drug resistance. They are also important in protecting normal tissue cells from poisonous xenobiotics and endogenous metabolites. Here, we report a fucoidan-decorated silica-carbon nano-onion (FSCNO) hybrid nanoparticle that targets tumor vasculature to...
Article
Nanotechnology research has continued to garner interest and is investigated across a number of fields and industries, ranging from water treatment to clinical and biomedical applications. In biomedical research, for example, polymeric nanoparticles can be leveraged for controlled delivery of drugs and chemical compounds into cells. In cryobiologic...
Article
Full-text available
Cancer stem cells (CSCs) are rare cancer cells that are postulated to be responsible for cancer relapse and metastasis. However, CSCs are difficult to isolate and poorly understood. Here, a bioinspired approach for label‐free isolation and culture of CSCs, by microencapsulating one cancer cell in the nanoliter‐scale hydrogel core of each prehatchin...
Article
Cancer is the second leading cause of mortality globally. Various nanoparticles have been developed to improve the efficacy and safety of chemotherapy, photothermal therapy, and their combination for treating cancer. However, most of the existing nanoparticles are low in both subcellular precision and drug loading content (<≈5%), and the effect of...
Article
Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associa...
Article
Full-text available
Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associa...
Article
Endothelial progenitor cells (EPCs) are important to tissue repair and regeneration especially after ischemic injury, and very heterogeneous in phenotypes and biological features. Reactive oxygen species are involved in regulating EPC number and function. N-acetylcysteine (NAC) inhibits ischemia-induced reactive oxygen species formation and promote...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Bone marrow (BM) stem cells (BMSCs) are an important source for autologous cell therapy. The outcome of cell therapy could be ultimately associated with the number and function of donor BMSCs. The present study was to evaluate the effect of long‐term high fat diet (HFD) on the population of BMSCs and the role of reactive oxygen species (ROS) in agi...
Conference Paper
Triple-negative breast cancer (TNBC) is a molecularly diverse and clinically heterogeneous disease. The challenges for developing novel treatment approaches for TNBC are the paucity of actionable targets, lack of targeted therapies, and poor prognosis of patients. Breast cancer genomics revealed that heterozygous deletion of chromosome 17p (Chr17p)...
Article
Full-text available
Myocardial infarction (MI) is a life‐threatening disease resulting from the irreversible death of cardiomyocytes (CMs). Stem cell‐based therapies have been studied for MI treatment over the last two decades with promising outcomes. Here, the past work in this field is critically reviewed to elucidate the advantages and disadvantages of treating MI...
Article
Full-text available
Correction for ‘Fluid displacement during droplet formation at microfluidic flow-focusing junctions’ by Haishui Huang et al., Lab Chip , 2015, 15 , 4197–4205.
Article
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with i...
Article
Full-text available
Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost/kil...
Conference Paper
Amplification of chromosome 17q23 is a frequent genomic event that occurs in ~ 11% of human breast cancers. The 17q23 amplification is enriched in HER2+ breast cancers, which is significantly correlated with poor clinical outcomes. Previous studies have identified the oncogenic phosphatase WIP1 gene in the amplicon, which functions as a master inhi...
Conference Paper
Amplification of chromosome 17q23 is a frequent genomic event that occurs in ~ 11% of human breast cancers. The 17q23 amplification is enriched in HER2+ breast cancers, which is significantly correlated with poor clinical outcomes. Previous studies have identified the oncogenic phosphatase WIP1 gene in the amplicon, which functions as a master inhi...
Article
Full-text available
The Supplementary Information originally published with this Article was an older version, in which ‘IFN-γ’ was misspelled ‘INF-γ’ in Supplementary Fig. 9 and the β-Actin blot in Supplementary Fig. 13 was the wrong image. The Supplementary Information has now been replaced.
Article
Full-text available
TP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53...
Article
Efficient capture of rare circulating tumor cells (CTCs) from blood samples is valuable for early cancer detection to improve the management of cancer. In this work, we developed a highly efficient microfluidics-based method for detecting CTCs in human blood. This is achieved by creating separate capture and flow zones in the microfluidic device (Z...
Article
Full-text available
Chromosome 17q23 amplification occurs in ~11% of human breast cancers. Enriched in HER2+ breast cancers, the 17q23 amplification is significantly correlated with poor clinical outcomes. In addition to the previously identified oncogene WIP1, we uncover an oncogenic microRNA gene, MIR21, in a majority of the WIP1-containing 17q23 amplicons. The 17q2...
Article
Full-text available
Heterozygous deletion of chromosome 17p (17p) is one of the most frequent genomic events in human cancers. Beyond the tumor suppressor TP53, the POLR2A gene encoding the catalytic subunit of RNA polymerase II (RNAP2) is also included in a ~20-megabase deletion region of 17p in 63% of metastatic castration-resistant prostate cancer (CRPC). Using a f...
Article
Full-text available
SMAD4 is the only common SMAD (co-SMAD) in transforming growth factor (TGF)-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, here we demonstrated that selective deletion of Smad4 in natural killer (NK) cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases,...
Article
Stimuli-responsive nanoparticles hold great promise for drug delivery to improve the safety and efficacy of cancer therapy. One of the most investigated stimuli-responsive strategies is to induce drug release by heating with laser, ultrasound, or electromagnetic field. More recently, cryosurgery (also called cryotherapy and cryoablation), destructi...
Article
Full-text available
Drug resistance due to overexpression of membrane transporters in cancer cells and the existence of cancer stem cells (CSCs) is a major hurdle to effective and safe cancer chemotherapy. Nanoparticles have been explored to overcome cancer drug resistance. However, drug slowly released from nanoparticles can still be efficiently pumped out of drug-re...
Article
Synthetic lethality-based strategy has been developed to identify therapeutic targets in cancer harboring tumor suppressor gene mutations, as exemplified by the effectiveness of PARP inhibitors in BRCA1/2-mutated tumors. However, many synthetic lethal interactors are less reliable due to the fact that such genes usually do not perform fundamental o...
Article
Full-text available
Multidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate,...
Article
Full-text available
Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products,...
Article
Microfluidic encapsulation of cells or tissues in biocompatible solid-like hydrogels has wide biomedical applications. However, the microfluidically encapsulated cells/tissues are usually suspended in oil and need to be extracted into aqueous solution for further culture or use. Current extracting techniques are either non-selective for the cell/ti...
Article
Vitrification is considered as an important alternative approach to traditional slow freezing method for cryopreservation of cells. A typical cell vitrification procedure involves a non-equilibrium cooling process commonly accomplished in liquid nitrogen, while in which film boiling is believed to greatly hinder heat transfer surrounding the sample...
Article
Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system conf...
Article
Full-text available
Stem cell therapy holds great potential for treating ischemic diseases. However, contemporary methods for local stem cell delivery suffer from poor cell survival/retention after injection. We developed a unique multiscale delivery system by encapsulating therapeutic agent-laden nanoparticles in alginate hydrogel microcapsules and further coentrappi...
Article
Development of high-fidelity 3D models to recapitulate the tumor microenvironment is essential for studying tumor biology and screening anticancer drugs. Here we report a method to engineer the 3D microenvironment of human tumor, by encapsulating cancer cells in the core of microcapsules with a hydrogel shell for miniaturized 3D culture to obtain a...
Article
Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high sub-zero temperature (> -10 °C) during cryopreservation, which often refers as ice seeding, could resu...
Article
Full-text available
Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascularized tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The r...
Article
It is difficult to achieve minimally invasive injectable cell delivery while maintaining high cell retention and animal survival for in vivo stem cell therapy of myocardial infarction. Here we show that pluripotent stem cell aggregates pre-differentiated into the early cardiac lineage and encapsulated in a biocompatible and biodegradable micromatri...