Culture and Media Effects on Group Decision Making Under Majority Influence

Dongsong Zhang*
Department of Information Systems
University of Maryland, Baltimore County
zhangd@umbc.edu

Paul Benjamin Lowry
IS Department
Marriott School
Brigham Young University
Paul.Lowry@BYU.edu

Xiaolan Fu
Institute of Psychology, Chinese Academy of Sciences
fxul@psych.ac.cn

Lina Zhou
Department of Information Systems, University of Maryland, Baltimore County
zhoul@umbc.edu

Boonlit Adipat
Department of Information Systems, University of Maryland, Baltimore County
badipat1@umbc.edu

Abstract

The purpose of this study is to address questions on how collectivistic and individualistic cultures affect majority influence in a group decision making task when there are differences in media richness. We developed a theory that explains and predicts these phenomena, and tested hypotheses using 112 four-person groups that consisted of Chinese and U.S. participants. As predicted, we found strong evidence indicating that there were significant differences between Chinese and U.S. groups, with Chinese groups being more prone to follow the view of majority. Further, traditional face-to-face (FtF) unsupported groups experienced the strongest majority influence. We found that GSS use helped diminish majority influence in both Chinese and U.S. groups. These findings have broad theoretical and applied implications, which are discussed in this paper.

1. Introduction

The objective of group support systems (GSS) is to improve group task performance and quality of outcomes by breaking down communication barriers to make people less sensitive to contextual restrictions on behavior [24]. One way GSS may help groups is to decrease negative forms of majority influence. Majority influence is the attempt by a majority of group members to impose their common position on group dissenters during a decision-making process [22]. Strong majority influence can lead to poor organizational decisions, since people may not oppose incorrect majority positions because they fear reprisal from or negative evaluation by the majority [33]. People tend to adopt a majority position and convince themselves of the truth of that position by considering the issue only from the majority perspective [27].

With few exceptions, there appears to be a general agreement among researchers that GSS can increase participation and reduce domination, thereby resulting in greater equality of influence [1]. However, a glaring limitation of most GSS research is that it tends to focus on U.S. and Western cultures [4]. Though GSS may help cross-cultural collaboration, the findings of GSS research in Western cultures may not be applicable to other cultures because theories developed based on findings in one culture do not necessarily hold in other cultures. People with different values, preferences, and beliefs may view and use GSS differently. Therefore, the manner in which group behavior can be changed by GSS is likely to depend on the culture of group members [32]. Among hundreds of existing studies on GSS, only a small portion focuses on cultural issues and their impact. The literature does not provide clear evidence of systematic relationships between cultural differences, GSS use, and majority influence.

Media richness is defined as how strong a medium provides communication capabilities for users [6].
Daft and Lengel [6] present a media richness hierarchy, arranged from high to low degrees of richness, to illustrate the capacity of media types to process ambiguous communication. The criteria are (a) the availability of instant feedback; (b) the capacity of the medium to transmit multiple cues such as body language, voice tone, and inflection; (c) the use of natural language; and (d) the personal focus of the medium. Face-to-face communication is the richest communication medium in the hierarchy, and GSS setting provides a leaner communication medium. It has yet to be empirically validated whether the richness of a communication medium results in greater equality of influence for non-U.S. cultural groups.

To narrow this knowledge gap, we developed a theoretical model that explains and predicts how cultural differences in groups and communication medium affect majority influence in groups. We operationalized this theoretical model into testable hypotheses to focus on differences among teams that consisted of all Chinese members and all U.S. members in FtF unsupported, FtF GSS, and distributed GSS settings. These hypotheses were tested in a rigorous laboratory setting, involving 112 four-person groups and taking place at three major academic institutions. Finally, several significant findings and contributions are discussed, along with their theoretical and applied implications and possibilities for future research.

2. Theory and hypotheses

Figure 1 illustrates a theoretical model that we propose to explain and predict how culture and communication medium affect majority influence in groups. This model and corresponding hypotheses are further explained in this section.

2.1 Individualism-collectivism

At its most basic level, culture is conceptualized as shared symbols, norms, and values in a social collectivity such as a country. In addition, the word culture is also used as a metaphor for shared values and attitudes within a specific organization or other forms of social grouping [39]. One way to define a culture is to identify dimensions of cultural variation [35]. The most popular cultural theory that has been commonly adopted in research is Hofstede’s model of culture [19]. His model defines five cultural dimensions based on value orientations considered important and shared across cultures: power distance, individualism and collectivism, masculinity-femininity, uncertainty avoidance, and Confucian dynamism.

Individualism describes cultures in which the ties among individuals are loose, while collectivism describes cultures in which people are integrated into strong, cohesive groups that protect individuals in exchange for unquestioning loyalty [20]. Because Hofstede’s model has been the most widely validated by theoretical and empirical evidence [25], and the individualism-collectivism dimension has been suggested to be used for developing hypotheses concerning the relationship between cultures and social behavior, we use this dimension as the underpinning cultural theory in this research. It is particularly appropriate because individualism-collectivism seems to best reflect cross-cultural variations in conformity behavior such as majority influence [33].

Further exploration into the constructs of individualism and collectivism helps explain why people in individualistic cultures should be less susceptible to majority influence than those in collectivistic cultures. In an individualistic culture, people tend to think or act independently, and task concerns prevail over relationship concerns [19]. People tend to follow their own conscience, be true to themselves, and make their own choices without being affected or controlled by any external cause [23]. When they disagree with a majority position, they are likely to resolve conflicts via open and direct communication.

A collectivistic culture is one where people are integrated into strongly cohesive groups so that they base their self-understanding on the reactions of others. This type of culture focuses on keeping balance and harmony within a group [13]. Relationships prevail over tasks when making group decisions [19]. If there is a conflict between personal and collective goals, it is considered socially desirable to place collective goals ahead of personal goals [34].

![Figure 1. Theoretical Model](image-url)
People’s willingness to integrate or to adjust themselves to group norms is indispensable to their perceived progress of a group, which should lead to stronger majority influence.

Research comparing group outcomes between individualistic and collectivistic cultures reveals differences in how group members behave. In a meta-analysis, the dimension of individualism-collectivism was significantly related to conformity, with individualistic cultures showing lower levels of conformity (i.e., lower majority influence) than collectivist cultures [2]. It is also suggested that people in a collectivistic culture are more inclined and more readily to modify their own preferences and positions than individualists [1].

Based on the literature, we argue that the level of majority influence is negatively associated with the tendency toward individualism in groups but is positively associated with the tendency toward collectivism in groups.

Prior research has shown that the U.S. culture leans strongly toward individualism whereas Chinese culture leans strongly toward collectivism [19]. Thus, to operationalize a hypothesis for this claim, we assert that Chinese culture is a strong operationalization of collectivism, whereas U.S. culture is a strong operationalization of individualism. Therefore, we propose the first hypothesis as follows:

\[H1: \text{Chinese group minorities will experience stronger majority influence than U.S. group minorities.} \]

2.2 Social presence and media richness

We now discuss and predict how social presence and media richness of a communication medium may affect majority influence in collectivistic and individualistic cultures. **Social presence** is defined as “the degree to which a medium facilitates awareness of the other person and interpersonal relationships during the interaction” ([14], p. 118) Electronic media are typically viewed as being low in social presence whereas FtF communication is typically viewed as being high. Several studies also show that distributed groups have less social presence than FtF groups [3, 30].

Media richness theory (MRT) [6] suggests that communication media vary in the capacity of processing rich information. It is built upon the presumption that increased media richness is linked to increased social or physical presence. According to MRT, FtF communication is the richest medium because it provides immediate feedback and conveys multiple information cues via body language, voice, and so on. Other media (e.g., email, memo, and voice messages) are traditionally considered as having low social presence, as compared to traditional FtF interaction, because they send fewer cues or provide slower feedback. Roberts et al. [30] show a direct correspondence between media richness and social presence: higher levels of social presence require higher levels of media richness for appropriate communication. Distributed groups tend to use leaner media to communicate than FtF groups [3]. We assert that the more a communication medium resembles FtF communication, the more social pressure can be exerted on group members through interactive and reciprocal communication. In FtF environments, the group majority can employ many methods to exercise influence on the minority and the minority is least willing to challenge the majority position [33].

We believe that one of the key factors in social presence and media richness affecting conformance pressure is whether anonymity of individual opinions is provided. The fear of rejection by the group can be reduced by having individual judgments or comments given anonymously [12]. Without anonymity, many participants may withhold ideas or comments due to evaluation apprehension [17] because they fear their ideas may be criticized or ridiculed by other group members [21]. Anonymity also helps overcome the related negative phenomenon known as conformance pressure [17]. Conformance pressure occurs in groups when team members do not want to criticize any of a team’s efforts or to elicit a dissenting viewpoint because of desire to be polite or concerns of getting retaliation or rejection [17]. As a result, anonymity can promote more objective and honest evaluation of ideas [5], thus increasing the tendency of group members to resist or disagree with a majority view. Anonymity’s reduction in evaluation apprehension and conformance pressure is reported to promote more equal participation by group members [16, 38].

In summary, we propose that majority influence in a group positively relates to the level of social presence and media richness offered by a communication medium.

We now extend this claim to the specific technology of GSS. GSS use has unique implications for social presence and media richness, as compared to other technologies. Contemporary GSS provide more social presence than traditional electronic technologies due to increased media richness. Roberts et al. [30] show that key media-richness features of GSS provide adequate social presence and media richness that enable reasonable interaction. These features include support of parallelism [9], group memory [42], and anonymity [5].
Parallelism is the ability of group members to contribute information simultaneously [9]. Parallelism in GSS has been tied to reduced production blocking [36] and cognitive interference. Production blocking occurs when only one group member can communicate at a time, which can lead to group members’ ideas being suppressed or forgotten [21]. In traditional FtF unsupported groups, production blocking is a major cause of poor information sharing [18]. Cognitive interference occurs when the idea generation of a group interferes with the idea generation of an individual [10]. Parallelism can also result in reduced cognitive interference, because participants do not have to wait to contribute their ideas [10]. In a GSS environment, having more time to process information increases opportunities for minorities to challenge and assert positions.

Group memory is the retention of group discussions and outcomes [42]. It is provided in GSS by allowing all team members to store and review all comments [8]. This feature prevents important information from being overlooked [28]. Thus, group memory in a GSS helps counterbalance potential information overload caused by parallelism.

Although GSS have the above features that provide adequate social presence and media richness [30], they still have less media richness and social presence than FtF unsupported setting. Accordingly, GSS use tends to dampen social-oriented information exchange [40]. Group members exchange opinions using textual cues (and visual cues in the case of FtF GSS); however, because verbal cues are removed, the group majority may exercise less normal influence and pressure on the minority [29].

Anonymity in GSS is enabled by removing identifications of those who are contributing ideas or providing opinions, which further dampens social-oriented information exchange. It potentially motivates group members to participate more actively [7]. Group minorities are more likely to oppose a majority viewpoint when they use GSS, especially when working anonymously [11]. Finally, in a distributed, anonymous GSS setting, due to the removal of both verbal and visual cues (a much leaner media than FtF settings), and the anonymity feature of GSS, the majority of a group likely has the least influence and conformance pressure on the minority [24]. Extending our theoretical claim with the GSS literature yields hypothesis H2 as follows:

\[H2(a): \text{FtF non-GSS groups should have stronger majority influence than FtF GSS groups}; \ (b) \text{FtF non-GSS groups should have stronger majority influence than distributed GSS}; \ (c) \text{FtF GSS groups should have stronger majority influence than distributed GSS.} \]

3. Methodology

3.1 Experimental design

We conducted a series of controlled laboratory experiments to test these hypotheses. They were carried out by a 2*3 factorial design that manipulated national culture of group members (individualistic groups versus collectivist groups) and group decision making setting (FtF unsupported, FtF GSS, and distributed, anonymous GSS).

Operationalizing a direct measure of majority influence in groups is difficult. We adopted a proven surrogate measure of majority influence based on the number of rounds a group takes in a decision making process to make a consensus decision, which has been used by Tan et al. [33]. This measure indicates that groups that experience stronger majority influence tend to take fewer rounds to reach a group consensus than groups that experience less majority influence.

3.2 Participants

112 four-member groups participated in the study (Table 1). GSS research findings indicate that group size has an effect on group outcomes [30] [37]. Some empirical evidence reveals that the majority influence is approximately optimal when the majority of a group consists of three members [26]. Therefore, we used four-member groups in this study. Each group had one naïve participant and three carefully trained and scripted confederates who must follow specific pre-developed instructions during the group task. Confederates were used so that we could guarantee a consensus majority of three was formed in every group that acted in a consistent and predictable manner.

<table>
<thead>
<tr>
<th>Table 1. Number of groups in each setting*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Chinese</td>
</tr>
<tr>
<td>U.S.</td>
</tr>
</tbody>
</table>

* A: FtF, unsupported setting (high media richness); B: FtF, identified GSS setting (moderate richness); C: Distributed, anonymous GSS setting (low richness)

Participants were undergraduate students enrolled in IS courses at four universities. All of them contributed to the study on a voluntary basis and were
compensated with a monetary reward. Each group was randomly assigned to one of the three experimental settings. Participants of Chinese (collectivistic) groups were recruited from two Chinese universities in Beijing, China, whereas participants in U.S. (individualistic) groups were recruited from two universities in the U.S. To minimize the potential errors of confederates and ensure their consistency in experiments, we used the same group of confederates in all experimental sessions at each site. In addition, we balanced genders in each group so that half members were male and the other half was female. We also notified all naïve participants that their teammates were also students, so that status effects would not be inadvertently generated.

3.3 Task and procedure

We chose a commonly used group decision making task called the desert survival problem, which has been used in other IS research [41]. The hypothetical task scenario was as follows: assuming a plane landed in the middle of a desert in a hot summer day due to a severe mechanical problem. Fortunately, passengers (i.e., four group members) had saved eight items, such as parachute, knife, and a magnetic compass. Group members were required to work together to rank those items in terms of their importance to the desert survival. The task went through a number of rounds. In every round, each member was required to rank those items based on his/her own judgment and other teammates’ opinion in the previous round(s), and to explain his/her ranking decision to the rest of the group. Such a process would be repeated for several rounds until certain termination condition was satisfied. This task was selected to draw upon general knowledge with which both U.S. and Chinese participants were equally familiar.

In the FfF unsupported setting, group members sat FfF in a lab. The naïve participant in a group always sat at space A, whereas three confederates always sat in spaces B, C, and D (experiment IDs). At the beginning of an experiment, each participant was introduced to other members and knew the experiment IDs of other members. In each round, when a participant finished, he/she would submit his/her rankings to a facilitator who only coordinated the experiment but never involved in group discussion or decision judgment. After the facilitator collected rankings from all group members, he/she wrote down their IDs and rankings on a whiteboard, so that every participant could see the rankings of other members in the group. Then, the facilitator would ask each group member, starting with the naïve participant, to briefly explain his/her ranking to the rest of the group. The confederates gave scripted answers based on the explanation of the naïve participant. After all group members finished explanation, if the group had not reached a consensus, the facilitator would announce the start of the next round and the above process would be repeated.

The first round started uniquely by having the confederates wait until the naïve member finished his/her ranking, which was presented on the whiteboard by the facilitator. Based on that ranking, confederates followed a preplanned algorithm to generate their rankings that were significantly different from the naïve participant’s ranking. To prevent possible suspicion from naïve participants, confederates B, C, and D’s rankings in the first round were also different from each other rather than forming a consensus at the very beginning.

Starting with round two, the facilitator posted all the rankings at the same time, because in later rounds, confederates would rank items by completely following instructional scripts regardless of naïve participant’s ranking. In particular, confederate B was instructed to keep his/her first-round ranking (which was significant different from the original ranking of the naïve participant) unchanged in the rest of the experiment, while confederates C and D were instructed to gradually change their rankings in the second and third rounds, so that at the end of the third round, their rankings would be the same as that of confederate B, creating a consensus and majority ranking. In each of the following rounds, all confederates would keep their unanimous rankings unchanged (maintaining majority) and only provide explanations or arguments based on the ranking and explanation of the naïve participant. The gap between the rankings of confederates and that of the naïve participant, along with normative statements provided in the explanations, enabled confederates to exercise persistent normative influence on the naïve participant. The facilitator would terminate a group session when one of the following two conditions occurred: (1) the naïve participant changed his/her ranking to follow the group majority so that a group reached a consensus on rankings; or (2) groups had already gone through eight rounds.

The FfF GSS supported groups worked in the same lab as FfF unsupported groups with a similar setting, except that each group member worked on the task through a GSS only (see the next section) rather than through verbal communication. In each round, participants entered item rankings and explanations into the system. After a group member submitted his/her ranking and explanation through the system, he/she would be able to see rankings and explanations
submitted by other group members on the system interface. After all group members finished, if no group consensus was reached, the system would automatically start the next round. Similar in FtF unsupported group sessions, three confederates would produce a majority ranking that was significantly different from the ranking generated by the naïve participant in the first round. In the first round, the group support system used in the study would automatically display a naïve participant’s ranking on the screen of all confederates so that they could generate their own initial rankings. Participants were not allowed to talk with each other during the experiment.

Distributed GSS groups worked in a similar way as FtF GSS groups using the same system, except that group members were arranged to sit in different rooms. Naïve participants were not able to see their teammates before, during, and even after the experiment. To increase realism, the facilitator told the naïve participant in each group that other group members were located at remote sites at that moment and would work with him/her through the system in real-time. Naïve participants were informed that other group members were also students and knew their experiment IDs, but were not aware of their true identities (i.e., anonymity).

3.4 Tool

We designed and developed a web-based GSS for this research, which was used by both FtF and distributed GSS groups. It ran on an Apache server and could be easily accessed and used over the Internet. All the rankings and explanations of each member were automatically captured and stored in an Oracle database. Figure 2 shows the main system interface, which consisted of three parts: (1) the upper table shows the ranking results of the previous and current rounds from each member of a group (each column shows the ranking of one group member); (2) the middle part lists the explanation of each group member; and (3) the bottom part is used by participants to rank items and to provide explanations for their rankings.

Figure 2. The GSS Interface

3.5 Measures

Independent variables were group culture and communication medium. The dependent variable (DV), majority influence, was measured using the number of rounds to make a consensus decision, as introduced earlier. If a naïve participant did not yield to the group majority after eight rounds, a value of 9 was assigned to this DV. The number of rounds to reach consensus represents how long it took a naïve participant to yield to the normative influence formed by confederates, which reflected the strength of majority influence. The larger the number of rounds taken to reach a consensus, the higher the majority influence.

4. Analysis

The manipulation on national culture was checked using the standard questionnaire items adopted from the Values Survey Module 94 developed by Hofstede. Each naïve participant was asked to answer four questions on a 1~5 scale in a pre-experiment questionnaire. Then, those answers were calculated based on the formula provided by the Values Survey Module to measure the individualism-collectivism scores. We found that Chinese participants (collectivistic) were much lower on the index of individualism than U.S. participants (individualistic). A t-test confirmed the significance of this difference (p < 0.05) and demonstrated the evidence of successful manipulation.

One-way ANOVA on national culture tested highly significant (F=8.121,106, p<0.01); one-way ANOVA on communication medium tested highly significant at F=13.312,106, p<0.01; two-way ANOVA on the interaction term of communication medium*national culture also tested significant at
F=11.252,106,p<0.01. We then conducted a Fisher’s LSD analysis on communication medium. Table 2 summarizes the hypotheses and analysis results related to settings and culture. We further highlight these results as follows: Chinese groups used significantly fewer rounds than U.S. groups, which indicated stronger majority influence in Chinese groups, so H1 was supported. FtF non-GSS groups used significantly fewer rounds to reach a group consensus than FtF GSS groups, so H2(a) was supported, indicating that the use of GSS can reduce the majority influence; distributed GSS groups used more rounds to reach a group consensus than FtF non-GSS groups, so H2(b) was also supported; however, there was no significant difference between FtF GSS groups and distributed GSS groups, so H2(c) was not supported.

Table 2. Analysis results

<table>
<thead>
<tr>
<th>H</th>
<th>(a)</th>
<th>(b)</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chin</td>
<td>US</td>
<td>8.12</td>
<td>0.005**</td>
</tr>
<tr>
<td>2a</td>
<td>FtF non-GSS</td>
<td>FtF GSS</td>
<td>21.55</td>
<td>0.000**</td>
</tr>
<tr>
<td>2b</td>
<td>Dist. GSS</td>
<td>FtF non-GSS</td>
<td>13.05</td>
<td>0.000**</td>
</tr>
<tr>
<td>2c</td>
<td>FtF GSS</td>
<td>Dist. GSS</td>
<td>1.06</td>
<td>0.303</td>
</tr>
</tbody>
</table>

** p<0.01

5. Discussion

The results of our experiment demonstrate statistically significant findings that support most of our hypotheses. In summary, Chinese minorities were affected more by majority influence than U.S. minorities—especially when comparing U.S. distributed GSS groups and Chinese distributed GSS groups; FtF non-GSS groups experienced more majority influence than FtF GSS groups and distributed GSS groups, but no significant difference was found between FtF GSS groups and distributed GSS groups.

The research findings support our proposition that the level of majority influence negatively relates to the tendency toward individualism in groups and positively relates to the tendency toward collectivism in groups. Specifically, we show evidence that in the case of U.S. and Chinese groups that group members from these different cultures naturally behaved significantly different under majority influence, and that these differences are most likely to be explained by cultural propensity toward individualism or collectivism. The result conforms to the fundamental characteristics of collectivism that emphasizes harmony, conflict avoidance, and collective goals, as well as to the characteristics of individualism that encourages independence, individual goals, and challenging majority views.

The results also support the claim that majority influence in a group is affected by communication medium. In general, the less social presence and media richness offered by a communication medium can result in less majority influence. The FtF unsupported setting provided more social presence and richer medium than GSS settings. Therefore, minorities in FtF non-GSS supported groups experienced stronger majority influence than both FtF and distributed GSS groups. However, there was no significant difference between FtF and distributed GSS groups. Those results imply that verbal communication in the FtF unsupported setting can help group majorities exercise the strongest majority influence on group minorities. Removing verbal cues by using a GSS can significantly reduce the social presence and media richness, thus reducing majority influence. On the other hand, removing visual cues from an FtF GSS setting to a distributed GSS setting did not really help much.

5.1 Contributions

The primary theoretical contribution of this research is that culture does matter, at least in terms of majority influence, in group decision making—despite protestations that national culture is not very meaningful [31]. Rather than relying on simplistic definitions of national culture to be the basis of our explanations and predictions, we explained how differences in collectivistic and individualistic groups would likely manifest differences in majority influence. We then extended this theory to explain and predict potential differences in majority influence caused by variations in social presence and media richness offered by a communication medium. These explanations and predictions were largely supported when operationalizing to the specific cases of U.S. and Chinese cultures.

Furthermore, prior studies comparing performance in traditional FtF and GSS settings have found faster performance time in FtF non-GSS supported settings [15]. We observed a similar phenomenon in this study. Across all groups, the average time spent on the task by FtF unsupported groups was about 50
minutes, which was the shortest compared to 75 minutes by FtF GSS groups and 95 minutes by distributed GSS groups. These findings make much more sense in light of our findings and theory on majority influence. Because FtF groups experience more majority influence, group members tend to most quickly converge on decisions without carefully processing information. Thus, researchers and practitioners need to be careful about putting too high of a value on fast performance in decision-making settings.

Our findings also have strong implications for practice. Although it is true that globalization is erasing the boundaries of countries and that previous differences between national cultures may not be as strong as they once were, culture still influences group behavior. We found stark differences in how Chinese and U.S. group members behaved under majority influence.

Thus, although it may be “politically correct” or convenient to think that people in different national cultures behave similarly in all contexts, in reality, they operate with disparate value systems. These value systems may have a direct and significant impact on behavior and processes a group is likely to engage in. The differences we found have tremendous implications for creating work teams that transcend national culture. In our study, the use of GSS helped diminish majority influence in Chinese and U.S. groups. Thus, GSS use can be helpful in cross-cultural teams in decision making tasks. Our findings support the belief that there is a strong need for practitioners and organizational groups to be highly sensitive to cultural difference when working in a cross-cultural context. It requires some understanding, and ideally empathy, for the attitudes, norms, and values of others [39].

5.2 Limitations and future research

One limitation of our study that lends itself to future research was that the individualistic culture was operationalized as the U.S. and the collectivistic culture was operationalized as China. Other national cultures and subcultures need to be examined before these findings can be generalized to other individualistic and collectivistic cultures.

Another limitation is that in order to minimize the effect of familiarity among group members, our study only used ad-hoc groups where the naïve participants did not know other group members (i.e., confederates). An interesting future research direction is to explore the majority influence in established groups (i.e., groups with a past history of working together), which can form different levels of cohesion among members over time.

6. Conclusion

The purpose of this study was to investigate questions on how collectivistic and individualistic cultures affect people’s behavior under the majority influence in a group decision making context when there are differences in social presence and media richness. As predicted, we found strong evidence indicating that there were significant differences between Chinese and U.S. groups, with Chinese minorities being more prone to majority influence. In addition, we found that GSS use helped diminish majority influence in both Chinese and U.S. groups. Group minorities in traditional FtF unsupported setting experienced the strongest majority influence.

Acknowledgements

This research was supported in part by grants from 973 Program of Chinese Ministry of Science and Technology (#2002CB312103), the WANG KUAN CHENG foundation of Chinese Academy of Sciences, the National Natural Science Foundation of China (#60433030 and #30270466), and from the Kevin and Debra Rollins Center for e-Business at the Marriott School, Brigham Young University.

7. References

